From “living” materials to quantum optical materials – Advanced characterization of photoactive organic polyradicals as strongly-correlated spin systems.

Supervisor: Dr. Giovanni Fanchini

Project Description (Abstract):

Organic optoelectronics investigates the use of organic materials based on the element carbon (of which living organisms are made) as quantum materials that have the potential to improve digital and analog devices key areas of opto-electronics. Demonstrated organic opto-electronic devices include organic field-effect transistors and phototransistors, organic data storage components, organic photovoltaics (a.k.a. “plastic solar cells”), organic light-emitting diodes (OLEDs) and many others. Rather than directly competing with silicon in areas of opto-electronics in which this material works well, the objective of organic optoelectronics researchers (physicists, chemists, and engineers) is the design of faster, more compact, and more cost-effective components and integrated devices, to be used in sectors of next-generation consumer electronics in which silicon components are too costly, or they are underperforming. Our team has accumulated unique expertise in the synthesis, characterization, and applications in memory devices, of electronic-grade layers of advanced organic optoelectronics materials, specifically: thin films of photoactive organic polyradicals – organic polymers in which each subunit contains an unpaired electron spin. From a Physics point of view, these systems are of unique interest as examples of electron spins chains – strongly correlated one-dimensional spin systems that students can easily fabricate and characterize in the lab.

Three graduate positions are available in the areas of: 1) Measurement & modelling of the photoconductivity of organic polyradicals, using a state-of-the-art NSERC-RTI funded electrical probe station; 2) Nanoscale imaging of photoactive organic polyradicals and data storage systems made using conductive atomic force microscopy (AFM) in a CFI-funded facility, and 3) Development of advanced diagnostics (which will also involve a stage with an Industrial Partner involved in this project). These positions stem from a recently awarded NSERC Strategic Partnership Grant (SPG) in vacuum deposition of organic polyradicals and their applications. Student salaries are directly available from the NSERC-SPG project. Students will be part of a vibrant NSERC-SPG team, working closely with a research crew of Physicists (Fanchini’s group - 5 grad students, 2 post-doc fellows, and 3 undergrad assistants http://www.physics.uwo.ca/~gfanchin/) Chemists (Gilroy group – 4 grad students, 1 post-doc fellow, and 3 undergrad assistants - http://publish.uwo.ca/~jgilroy5/) and the Industrial Partners involved in the technology transfer of our research and development activities in organic polyradicals.
organic optoelectronics
Projects can be either at the MSc level or at the PhD level. Knowledge of Quantum Mechanics and Electromagnetism/Optics are required. Experience in experimental physics (e.g. through undergraduate 2nd and/or or 3rd year labs, and/or via summer research) is highly desirable. An undergraduate course in Solid State Physics, or Condensed Matter Physics, and/or 1-2 courses in university Chemistry will be a plus, but are not necessary.