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The observed distribution of long-period (> 200 yr) comet orbits has proved difficult
to reconcile with theory. Among the discrepancies is the “fading problem”: the fraction of
comets in the observed sample which are presumed to have made more than one perihelion
passage since leaving the Oort cloud is much smaller than that predicted by simple dy-
namical models of the Solar System. This may indicate that the lifetime of the long-period
comets is significantly shorter than expected from purely dynamical considerations. This
in turn points to the importance of comet losses through volatile depletion.

We examine the evolution of long-period comets through a direct numerical integration,
a more realistic approach than the Monte Carlo methods previously used to study this
problem. QOur model follows the individual trajectories of thousands of comets from the
Oort cloud to their final demise. The comets evolve within a model solar system consisting
of the Sun, the four giant planets and the Galactic tide, and to which non-gravitational
forces and a solar companion object or circumsolar disk may be added. We also consider
the effects of the heliopause, solar wind and radiation pressure, and drag on the nucleus.
Nomne of these influences are capable of producing a distribution of long-period comet orbits
matching observations. In particular, the comets’ dynamical lifetimes are too long.

We also investigate the effects of fading ¢.e. the reduction of comet brightness over time
due to volatile loss, which may lead to a shortening of comets’ observable lifetimes. A
number of simple fading laws are explored. One in which the fraction of comets remaining

observable goes like 7 =0-6%0-1

, where m is the apparition number, provides a reasonable
match with observations, and may imply a differential power-law mass distribution dN
M~16dM. A two-population model in which approximately 95% of comets live for only a
short time (~ 6 orbits) and the remainder indefinitely also matches observations reasonably

well, and could be explained physically by a division of the Qort cloud population on the

basis of their internal cohesiveness into fragile and robust objects.
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Chapter 1

Introduction

Hast thou ne’er seen the comet’s flaming flight?
The illustrious stranger passing, terror sheds

On gazing nations from his fiery train

Of length enormous; takes his ample round
Through depths of ether; coasts unnumber’d worlds
Of more than solar glory; doubles wide

Heaven’s mighty cape; and then revisits earth
From the long travel of a thousand years...

—Fdward Young,
Night Thoughts,
1741

Comets are sources of much information about the origin of our Solar System. They
provide insight into the physical and chemical processes underlying stellar and planetary
formation because they are believed to contain the condensed remnants of the solar nebula in
relatively unprocessed form. As well, the present distribution of cometary orbital elements
may reflect the dynamics of the early stages of planetary formation. Comets also serve as

probes of the interplanetary medium and the solar wind.

1.1 The nucleus

At the heart of the comet is the nucleus, a solid body typically a few kilometers in diameter
and with a mass of 10" kg ~ 107!? Earth masses. Inferred densities range from 0.1 to
1 g em™ (Mendis 1988), suggesting a volatile-rich and /or porous makeup. This is reflected
in the generally accepted model of the comet nucleus, Whipple’s (1950) dirty snowball,

which depicts the nucleus as a single solid conglomerate of refractory (e.g. silicates) and
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volatile (e.g. H,0, CO, CO3) materials. Interplanetary probes sent to meet comet P/Halley'
during its 1986 perihelion passage returned pictures of the nucleus which confirmed it was
a single solid object, and was releasing both gas and dust (A’Hearn 1988). The released
material is influenced by the solar wind, the interplanetary magnetic field and the Sun’s

gravity to form the coma and tail associated with cometary apparitions.

1.2 The gas coma

The nucleus becomes increasingly heated by sunlight if it approaches the Sun. The comet’s
volatiles begin to sublimate, dragging solid particles along with them. This mixture of gas
and dust is called the coma, the comet’s bright, fuzzy head. A comet typically develops a
coma (or becomes active) at a comet-Sun distance 7 between 3 and 5 AU, though significant
outgassing from more distant bodies has been observed. For example, the minor planet 2060
Chiron, which never approaches closer to the Sun than 8.5 AU, has been observed both
with and without an attendant gas cloud (Meech and Belton 1990). Thus the distinction
between comets and asteroids, the latter traditionally characterised by a complete lack of
coma and outgassing, may be to some degree artificial.

Solid H,O sublimates appreciably in interplanetary space at » < 4 AU (Delsemme
1982; Spinrad 1987), in the region where coma production typically begins, and pointing
to HoO as a possible constituent of the nucleus. This hypothesis is supported by spectro-
scopic evidence, including the detection of water and its photolysis products (e.g. OH, H,
H,0%, H307) in the coma. In fact, it is estimated that as much as 85% by mass of the
coma’s gas phase is derived from HyO (Festou et al. 1993b). The detection of comae
at distances significantly beyond 4 AU may be attributable to pockets of solid CO in the
nucleus. This molecule’s lower vapour pressure allows it to sublimate up to 60 AU from the
Sun (Delsemme 1982). The presence of CO in the nucleus has been inferred from the spec-
troscopic detection of it in the coma and tail, though photolysis remains a possible source.
One of its ions, COT, dominates the visible emission of the comet’s gas tail. Other, less
abundant volatiles that are seen directly or inferred to exist from their photolysis products

include NH3z, CN, COg, S3, CH4 and N3, among others (Mendis 1988).

"The prefix “P/” indicates a periodic comet, defined to have an orbital period of less than 200 years or to
have confirmed observations at more than one apparition, and “C/” indicates a comet which is not periodic
in the above sense (Minor Planet Circulars 23803 & 23804).
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The coma can be divided into three concentric, overlapping layers (Whipple and Huebner

1976):

1. The innermost layer is the molecular or inner coma. Its size is determined by the
sublimating molecules’ lifetimes 7 against photo-dissociation in the solar radiation
field. Jackson (1976) calculated 7 at 1 AU for the more abundant cometary volatiles:
water is fairly typical with 7 ~ 2 x 10* s. The neutral coma gases expand away from
the nucleus at roughly constant velocity v ~ 0.3 km s~!. The resulting size of the
molecular coma v7 is 6000 km, consistent with observations. A typical gas production
rate @ of 10?9 s7! (A’Hearn and Festou 1990) yields a mass flux of 3000 kg s~!, and
a mean number density of 10® em™3, if we assume that the mean molecular mass of

the coma is that of a water molecule.

2. Outside the molecular coma is the radical coma, where the composition of the
outflowing gas becomes dominated by radicals, molecular fragments produced from
their parents by photo-dissociation. This region is also called the visible coma, and
produces prominent fluorescence lines, including those of CN, OH, NH, C5, C; and
NH; (A’Hearn and Festou 1990; Festou et al. 1993b). The OH radical has a lifetime
7~ 2x 10° s at 1 AU (Whipple and Huebner 1976). The theoretical radius of the
radical coma is thus roughly 10° km, consistent with the typical observed size of a

few times 10° km.

3. The exosphere is also called the hydrogen coma because it is visible primarily in
Lyman-a emission. This region extends out into the interplanetary medium, ending

where the coma gases are swept away by the solar wind and radiation pressure.

A neutral ground-state hydrogen atom of mass my has an absorption cross-section o
dominated by the Lyman-a transition. The acceleration ¢ imparted to the molecule

by radiation pressure is thus
0~ 0(Lo)Fp(La)/mu, (1.1a)

where F,(L,) is the momentum flux of the radiation field in the Lyman-a line. The
absorption cross-section of hydrogen in L, o(L,), is given by me? f12/mc (e.g. Spitzer
1978) where f13 = 0.4162 is the Lyman-a transition’s oscillator strength. The mo-

mentum flux is related to the energy flux Fg through F, = Fg/c. Equation 1.1a can
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thus be rewritten

4

2 2
o(r) 7;;;;122 <@> Fi(La, Ro), (1.1b)

r

-3 r - -2
10 T AU ms”*, (1.1c)

4

where Rg is the radius of the Sun, and Fg(L,, Rg) is the Lyman-a energy flux at
its surface, approximately 3 x 10° erg em™2 s~! (Noyes and Avrett 1987). The
distance D from the nucleus at which the radiation-induced change in velocity is
comparable to the gases’ initial velocity (D ~ v?/%) constitutes the outer boundary
of the exosphere D.,,. The hydrogen atoms, having absorbed kinetic energy during
the photo-breakup of their parent molecules, are now travelling with typical velocities
of 10 km s™! (A’Hearn and Festou 1990), putting the edge of the exosphere at
Deyo ~ 10% km from the nucleus. This simple theory is consistent with observations:
Lyman-« emission has been detected out to a few tens of millions of kilometers from

some comets (Whipple and Huebner 1976).

The molecules’” mean free paths are less than their distance from the nucleus inside the
collisional radius of the coma D, which defines the boundary between hydrodynamic
and collisionless flow. The neutral coma gases are thought to expand freely away from the
nucleus, thus their density n goes as 47Q /v D?, ignoring dissociation which will add a factor
of 2-3. The collisional radius such that n(Deyy)Deono ~ 1, where o is now the collisional

cross-section, implying

L g

Doy —— =27
g o(Q/An D%, v) A

(1.2)

A typical value for o is 107 ¢cm? (A’Hearn and Festou 1990), from which a collisional
radius of a few times 10? km can be deduced, putting the collisional radius inside the visible
coma.

The total mass of the gaseous coma M is roughly @mD.,,/v where m is the mean
molecular mass of the coma constituents, taken to be that of a water molecule. When
1 AU from the Sun, the coma’s total mass M ~ 103 g, negligible next to that of the

nucleus.
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1.3 The dust coma

An active comet also produces a dust coma consisting of submicron to centimeter-sized
solid particles eroded from the nucleus. This “dust” is dragged along by the expanding
gases, decoupling from the gaseous coma at about 100 km. The dust’s dynamics are then
dominated by solar gravity, with radiation pressure and the Poynting-Robertson effect also
playing some role for the smaller components. The dust coma may have a radius of 10° km
at r =1 AU (Griin and Jessbherger 1990).

The dust grains may consist of solid H2O or other volatiles, which continue to sublimate,
or refractory materials, which are modified only slowly (e.g. by solar wind and cosmic-ray
sputtering). The dust-to-gas mass ratio of comets is difficult to determine, depending
critically on the number of large (cm-sized) particles, but is estimated to be of order unity
(Griin and Jessberger 1990). Thus, the mass of the dust coma is also small compared to

that of the nucleus.

1.4 The tail

The flow of gas within the coma is complicated by the solar wind and the interplanetary
magnetic field. A bow shock forms ahead of the nucleus, near the point where solar and

cometary mass flows Msw and Mcomet balance each other (Whipple and Huebner 1976).

Given that
Mcomet ~ Qm (13&)
MSw ~ ﬂ-Danmevaw (1-3b)

where ngy,, Mg, and vy, are the number density, molecular mass and velocity of the solar
wind’s constituents respectively, then the bow shock is expected near

Om )1/2‘

ﬂ-nsw /USIU msw

Dipw = ( (1.4)

At the Earth’s orbit, ng, ~ 10 cm ™2, v4,, ~ 5x 107 cm s~! and my,, = 0.5 Mproton = 1072 g
(Lang 1992), implying that the bow shock is approximately half a million km ahead of the
nucleus, in accord with more sophisticated calculations and spacecraft observations (Galeev

et al. 1986).
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In 1957, Alfvén theorised that interplanetary magnetic field lines would drape them-
selves over the cometary ionosphere, a prediction which has been confirmed by spacecraft
measurements of P/Giacobini-Zinner and P/Halley. This draping arises because the mag-
netic field lines are “frozen” in the solar plasma. The boundary between the solar and
cometary plasmas is called the discontinuity surface or cometopause. The details of
the comet ionosphere are too complex to treat here (see Festou et al. 1993b for a review),
but one result of the ionospheric structures and magnetic field is to deflect cometary plasma
into a gas tail pointing in the anti-sunward direction. This structure, also called a plasma
or type I tail, is visible in the spectral lines of its ions, primarily CO™, with contributions
from Hy0F, NI, COF, CHt and OH*. Though not all comets develop detectable gas tails
(Antrack et al. 1964), emission from CO™ has been detected over 10® km (~ 1 AU) from
the nucleus in the tails of the most spectacular comets (Brandt 1968; Saito 1990). Gas
tails may be 10° km wide, with CO™T densities reaching 10? to 10> cm™> (Brandt 1968).

At the surface of the nucleus, the solar gravitational acceleration exceeds the comet’s
own gravity at heliocentric distances » < 3 AU. Thus dust particles, once decoupled from
the gas, orbit the Sun independently of the nucleus, with those particles of small (micron
or less) size being strongly influenced by radiation pressure. The dust that comets shed
creates the dust coma and the dust or type IT tail. Visible in scattered sunlight, this tail
is typically curved and shorter than the gas tail, though dust has been detected up to 107
km from the nucleus (Brandt 1968). Comets generally show both type I and type II tails,

though comets which have displayed only one or neither are known.

1.5 Jets and streamers

In general, the nucleus will be aspherical and inhomogeneous, and the sublimation of
volatiles will be non-uniform. Evidence for asymmetric outgassing includes dust jets and
streamers, fountain-like structures commonly visible in the coma and indicative of strong,
localised dust/gas release. Images of P/Halley taken by the Giotto spacecraft (e.g. Keller
1990) reveal a highly irregular distribution of active regions across the comet’s surface.
Sublimation is thus likely to result in a net reaction force, commonly termed the non-

gravitational (NG) force, which contributes to the comet’s dynamical evolution (§ 3.3).
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1.6 Observing long-period comets

The visual geometric albedo oy of a comet nucleus is very low. The ESA Giotto spacecraft
measured a value of 0.02 to 0.04 for a, for P/Halley (Mendis 1988). For comparison, C-type
asteroids occasionally have a, as low as 0.05, though some E-type asteroids have albedos
as high as 0.5 (Morrison 1992). The planets have surface-averaged albedos ranging from
0.1 (Mercury, the Moon) to 0.65 (Venus), with their satellites reaching greater extremes:
as low as 0.03 to 0.05 for Jupiter V and VI (Amalthea, Himalia) with Saturn III (Tethys)
reaching 0.9 (Weast et al. 1989).

The very low albedo of the nucleus makes it difficult to observe comets before they

become active. A comet nucleus has an apparent visual magnitude m, given by
my = mg + 2.5log (Fe /F), (1.5)

where mg = —26.7 is the Sun’s apparent visual magnitude and Fi and F are the visual
fluxes received at the Farth from the Sun and the comet respectively. The flux received
from the comet is the reflected flux attenuated by the inverse-square law,

ra\ 2 avR Fo [(ra)?
lavﬂszQ (ﬁ) ] = 2vteto (ﬁ) , (1.6)

where R, is the radius of the nucleus, and r, rg4 and D are the Sun-comet, Sun-Earth and
the Farth-comet distances respectively. Substituting Equation 1.6 into Equation 1.5, and

taking D = r yields

4t
VEileh

A large, bare comet nucleus (R. = 10 km, o, = 0.03), at Saturn’s orbit (r ~ 10 AU)
thus has a visual magnitude of +24. This value increases to 454 if the comet is moved
to 10* AU. The Hubble Space Telescope WFPC2 camera can reach magnitudes of 27.5
to 28 in the V and I bands with long exposures (e.g. Groth et al. 1994), and provides
the practical observational limit for the near-future. Thus, a comet is almost undetectable
with present technology unless it approaches the Sun closely enough to develop a coma. It

should be noted however that larger bodies (~ 100 km), possibly cometary in nature but

'The geometric albedo is defined as the ratio of the flux received to that expected from a perfectly
reflecting, perfectly diffusing disk of the same radius and distance, measured at zero phase angle (Hopkins
1980).
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lacking comae, have been detected by the Hubble Space Telescope around 40 AU from the
Sun (Cochran et al. 1995).
After coma production has begun, the comet’s brightness increases rapidly. The visual

magnitude my of active comets is traditionally described by the equation
my = Ho+ 5log,q D + 2.5nlog;qr, (1.8)

where D and r are the Earth-comet and Sun-comet distances in AU. The parameter n,
which usually ranges between 2 and 6, describes the comet’s increase in brightness with r.
The value of n is generally smaller for long-period comets than short-period ones, the latter
tending to have brightness profiles which vary more strongly with r. Hg is the comet’s
absolute magnitude, defined to be its apparent magnitude were it to be placed 1 AU
from both the Sun and Earth. The observed distribution of Hy peaks at 7. The intrinsic
distribution, however, is expected to increase monotonically through values of 12 or more,

though the faint end of the luminosity function is poorly known (Everhart 1967b).

1.7 Research goals

The goal of this research is to test our current understanding of the dynamical evolution
of long-period comets against the observed distribution of their orbits. Limited investiga-
tions along these lines have prevously been done (e.g. Weissman 1980), revealing significant
discrepancies between the expected and observed orbital distributions. But until recently,
restrictions in computing speed have prevented the numerical integration of a large ensem-
ble of Oort cloud comets, thus it has been unclear whether the gap between theory and
observations is the result of over-simplifications in the models used to predict the comets’
distribution, or a real gap in our understanding of the Solar System.

Here, the results of the first large scale numerical integration of long-period comets are
presented. In Chapter 2, the observed sample of long-period comets is discussed. The
distributions of orbital elements is used to support the hypothesis that the Solar System
is likely surrounded by a spherical cloud of comets (the Oort cloud), and that the tidal
field of the Galaxy is an important mechanism for perturbing comets in such a cloud onto
orbits which pass through the inner Solar System. In Chapter 3, the dynamics of long-
period comets are detailed, and the importance of the Galactic tide and the giant planets

is demonstrated from theory. In Chapter 4, the algorithm used here to simulate comet
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trajectories is described, including testing and error control. In Chapter 5, the results of
the simulations are detailed and the gap between theory and observations discussed, along
with an examination of possible reasons behind the mismatch. In Chapter 6, conclusions

are presented, and an overview of future research possibilities is outlined.



Chapter 2

Observations

2.1 The catalogue of cometary orbits

Marsden and Williams” Catalogue of Cometary Orbits (1993) lists 1392 apparitions of 855

individual comets, observed between 239 B.C. and 1993 A.D., though with poor complete-
ness at early times. This compilation includes, where possible, the comet’s osculating or
instantaneous elements with respect to the F'K5/J2000.0 system. The orbital elements of
comets are traditionally quoted at an osculation epoch at or near perihelion, but if the
comet’s aphelion distance is large, the elements of the orbit on which the comet approached
the planetary system, called the original elements, are also of interest. These are likely to
be different from those measured at perihelion because of the gauntlet of planetary pertur-
bations the comets must run. In this context, “original” will mean “corrected for planetary
perturbations during its most recent passage through the planetary system”. The original
elements can be calculated from the orbit determined near perihelion by integrating the
comet’s trajectory backwards until well outside the planetary system, and are tradition-
ally quoted in the centre of mass frame. Marsden and Williams include such a list for
those comets with large aphelia for which orbits of sufflicient accuracy are known. This list

contains a total of 289 objects, observed between 1811 and 1993 A.D.

2.1.1 Orbital elements uncertainties

Marsden and Williams do not provide error estimates for elements in their catalogue, but do

subdivide the orbits into classes: TA, IB, ITA and IIB in descending order of accuracy. These

10
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classes are based on the estimated error in the determination of orbital energy, the time
span during which the comet was observed and the number of planets whose perturbations
were taken into account. These classes are described in more detail in Marsden et al. (1973).

The distribution of the 289 comets among these orbits is 76, 94, 72 and 47 respectively.

2.2 Comet families

Comets can be grouped usefully on the basis of their orbital periods 7; the divisions of Carusi
and Valsecchi (1992) will be used here, though there are others in the literature. Figure 2.1
plots the values of the semimajor axis a versus the cosine of the ecliptic inclination i for
all comet apparitions. Note that a statistically uniform distribution of angular momentum
vectors upon the celestial sphere, called a spherically symmetric or SS distribution, will
have a flat distribution in cost. The division of comets into families is based largely on the

clustering seen in this plot.

Short-period comets

The short-period (or SP) comets are those on orbits with periods less than 200 years.
A subset of this class, the Jupiter family, is comprised of those comets with 7 less than
20 years. The designation “Jupiter-family” arises from the clustering of their aphelion
distances ¢} around Jupiter’s orbit, as shown in Figure 2.2, and the consequent domination of
their dynamics by this giant planet. Marsden and Williams’ catalogue records 640 perihelion
passages by members of the Jupiter family, all on prograde orbits lying near the ecliptic.
Largely because of their low inclinations, these objects are believed to have been transferred
relatively recently into the planetary system from a ring of material beyond Neptune known
as the Kuiper belt (§ 3.10.4).

Also counted among the short-period comets are the Halley-type (20 yr < 7 < 200
yr) comets, which have a wider distribution of inclinations (Figure 2.1). Over 41 of the 71
apparitions of Halley family comets listed in Marsden and Williams (1993) have retrograde
orbits, though P/Halley (7 = 76 yr, ¢ = 162°) itself contributes 34 apparitions, dating back

to 239 B.C. The upper boundary of the Halley family corresponds, through Kepler’s third

'The orbital elements used here, along with some celestial mechanics results important to this project,
are outlined in Appendix A.
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axis 1/a for all observed comet apparitions. The two vertical lines indicate the family
boundaries at orbital periods 7 of 20 and 200 years. Data taken from Marsden and Williams

(1993).
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law, to a semimajor axis a ~ 34.2 AU, and thus the short-period/long-period boundary pro-
vides a useful distinction between comets whose aphelia lie within or close to the planetary

system, and those that venture significantly beyond.

Long-period comets

The long-period (or LP) comets have periods exceeding 200 years, and their orbits extend
outside those of the giant planets. These comets typically have periods of tens of millions
of years, and semimajor axes of tens of thousands of astronomical units ( AU). Figure 2.1
reveals that LP comets are not confined to the ecliptic plane. These facts suggest that the
LP comets are at a different stage of dynamical evolution than the SP comets, or, as is
thought more likely, are a dynamically different population from the SP comets. In any

case, the LP comets will be the focus of our interest here.

2.3 Orbital elements

2.3.1 Semimajor axis

The orbital energy E per unit mass of a bound Keplerian orbit is simply —G(My 4+ M3)/2a,
where a is measured in the centre of mass frame, and My and M, are the two bodies’
masses. For a test particle orbiting the Sun, this expression reduces to —G'Mg /2a. These
expressions are not strictly valid in a multi-body system, but nevertheless provide a useful
measure of a comet’s binding energy. For simplicity, the inverse semimajor axis 1/a is
used here as a measure of the comet’s orbital energy, differing from the Keplerian energy
only by a simple constant factor (see Appendix A).

The boundary between SP and LP comets is at 1/a = (200 yr)~%/% ~ 0.029 AU~
Figure 2.3 displays histograms of 1/a for the 289 LP comets with known “original” orbits,
at two different magnifications?.

From Figure 2.3b, it is clear that relatively large numbers of comets travel on orbits with
a 2 10* AU (7 2 10° yr). By way of comparison, Pluto’s semimajor axis is only 39.5 AU
(7 ~ 248 yr). Also notable is a lack of strongly hyperbolic original orbits. Comets entering

the Solar System from interstellar space would be expected to have velocities comparable to

"Unless otherwise stated, the error bars on histograms are 1 standard deviation (o) assuming Poissonian

statistics (o = \/N)
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Figure 2.3: Distribution of original inverse semimajor axes of 289 long-period comets at two
different magnifications. Data taken from Marsden and Williams (1993).

the velocity dispersion of disk stars, roughly 30 km s~ (Mihalas and Binney 1981). This
velocity is equivalent to an inverse semimajor axis of approximately —1 AU~!, impossible
to reconcile with the most hyperbolic original orbit observed, C/Sato (1976 I) which had
1/a~ —=7x107* AUTL. The few (27) weakly hyperbolic orbits in Figure 2.3 may be due to
observational error or the influence of non-gravitational forces (§ 1.5). The sharp peak in
the 1/a distribution was interpreted by Oort (1950) as evidence for a population of comets
orbiting the Sun at large (@ 2 10 000 AU) distances, a population which has come to be
known as the Oort cloud.

It is useful to consider here the distribution of original energies of comets with perihelia
inside 3 AU, for the purposes of comparison with later results. These distributions, shown
in Figure 2.4, are similar to those in Figure 2.3, but the spike is not as high, due to a
tendency for Qort cloud comets to be brighter than other comets, and thus visible at larger

distances.

2.3.2 Perihelion distance

A histogram of the number N of LP comets versus perihelion distance ¢ is shown in Fig-
ure 2.5. There is a strong peak near 1 AU due to observational biases: comets appear

brighter when nearer both the Sun and the Earth. Everhart (1967b) concluded that the
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Figure 2.4: Distribution of original inverse semimajor axes of 248 long-period comets with
perihelion distances less than 3 AU at two different magnifications. Data taken from Mars-
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intrinsic distribution i.e. the distribution which includes all LP comets, observed and un-

observed, has a slope dN/dq x 0.4+ 0.6¢ inside the Earth’s orbit, but that the distribution

at larger distances is poorly constrained, probably lying between a flat profile and one in-
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Figure 2.5: Number N versus perihelion distance ¢ for 679 long-period comets. Data taken

from Marsden and Williams (1993).
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creasing linearly with perihelion distance. Kresak and Pittich (1978) also found the intrinsic
distribution of ¢ to be largely indeterminate at ¢ > 1 AU, but consistent with dN/dq x q/?
over the range 0 < ¢ < 4 AU.

There are two estimates in the literature of the numbers of comets which pass unobserved
through the inner Solar System. Everhart estimates that only 20% of all comets approaching
the Sun to within 4 AU are observed. Kresik and Pittich estimate 60% are observed at
g < 1 AU, dropping to only 2% at ¢ = 4 AU. Though not directly comparable, these
estimates are roughly consistent in that they indicate that a large fraction of comets passing
near the Sun likely go unnoticed. It will be assumed here that perihelion distance is not
strongly correlated with the comets’ semi-major axis or angular elements, and thus that any

selection effects acting on ¢ do not affect the observed distributions of the other elements.

1 =
0.8 =
0.6 =
a 4
0.4 — E— SP comets —
_— LP comets with original orbits B
0.2 - =

0 | | |

0 2 4 6

Figure 2.6: The cumulative probability distribution as a function of perihelion distance ¢
for the short-period comets, and for the long-period comets with computed original orbits.
Data taken from Marsden and Williams (1993).

It is interesting to compare the cumulative distributions of SP and LP comets as a
function of ¢, displayed in Figure 2.6. Comets of all types are rarely observed if their
perihelia are beyond 2 AU, but those that are seen are more likely to be LP than SP. This
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difference can be explained if the SP comets have typically undergone more apparitions
than their long-period counterparts, and hence have smaller volatile inventories and produce
fainter comae. The discrepancy becomes even more striking when one considers that there
are more chances to discover SP comets due to their more frequent returns. The reduction in
cometary brightness with repeated apparitions is important to our understanding of comet

dynamics and will be discussed more fully in § 3.10.1.

2.3.3 Inclination

Figure 2.7 shows the distribution of the cosine of the LP comet inclinations. For comparison,
a spherically symmetric distribution is indicated by the heavy line. Everhart (1967b) showed
that selection effects due to inclination should only affect the distribution at the 5% level,
well below the statistical noise. The data matches the flat line fairly well by eye: the y? and
Kolmogorov-Smirnov (KS) tests return probabilities that the distribution is consistent with
spherical symmetry of roughly 0.35 and 0.99 respectively. The y? distribution examines the
match at each point and is thus more sensitive to high frequencies in the data set than the KS
test, which works with the cumulative distribution. Thus, a high probability of flatness as
indicated by the KS test, along with a low probability according to the x? test, is consistent
with small-scale clumpiness, but little or no low-frequency signal. Discrepancies between
KS and x? tests occur for a number of the distributions to follow, but as their flatness is
not central to the discussion, strong interpretations will not be imposed on the y? and K$
results.

Long period comets, unlike those with shorter periods, are not confined to the ecliptic,
and are equally likely to be on prograde or retrograde orbits. The ratio of prograde to
retrograde comets is 144/145. The x* and KS tests conflict, returning probabilities of 0.008
and 0.99 that the ecliptic distributions are flat. The distribution is less flat to the eye in the
Galactic frame. There may be a gap near zero inclination, possibly due to the influence of
the Galactic tide (§ 3.2), or to selection effects resulting from the confusion of comets with

other objects in the Galactic plane.

2.3.4 Longitude of the ascending node

The distribution of longitudes of the ascending nodes € is plotted in Figure 2.8. The flat

line again indicates a SS distribution. The two curves match fairly well, consistent with
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Everhart’s (1967a,b) conclusion that there are unlikely to be any selection effects based on
Q over time scales long compared to one Earth year, assuming the intrinsic distribution
is azimuthally symmetric. The y? and KS tests indicate probabilities of 0.35 and 0.999
respectively that the observed longitudes of the ascending nodes are drawn from an intrin-
sically flat distribution. When applied to the Galactic distribution, the y? and KS tests
yield probabilities of 0.05 and 0.99 that the intrinsic distributions are flat; again, the low
value determined by the y? test may either be due to noise in the sample, or indicate a real

deviation of the distribution from uniformity on small scales.

2.3.5 Argument of perihelion

Figure 2.9 shows the distribution of the arguments of perihelion w for the LP comets. The
x? test reveals a probability less than 0.05 that w is drawn from a flat distribution, but
the KS test puts it at over 0.99. Comets with w less than 7= outnumber those with w
greater than 7 by a factor of 5/4. This is probably due to an observational selection effect
(Everhart 1967a; Kresak 1982): comets with 0 < w < 7 pass perihelion above the ecliptic,
and are more easily visible to observers in the northern hemisphere. The lack of observed

apparitions with w > 7 is a result of the smaller number of comet searchers in the southern

Figure 2.7: The distribution of the cosine of the inclination for the long-period comets in
(a) ecliptic coordinates ¢, and (b) Galactic coordinates 7. A spherically symmetric sample
is indicated by the flat line. Data taken from Marsden and Williams (1993).
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Figure 2.8: The distribution of the longitude of the ascending node of the long-period comets
in the (a) ecliptic frame, Q, and (b) in the Galactic frame, . Data taken from Marsden
and Williams (1993).

hemisphere until very recent times. The distribution in the Galactic frame has a slight
excess of comets with orbits in the range sin 2@ > 0 (58% of the total number), and the
distribution has a probability of being flat of less than 0.01 and over 0.99 according to the
x? and the KS test respectively.

2.3.6 Aphelion directions

Figure 2.10 shows the distribution of the aphelion directions of the LP comets in the ecliptic
and Galactic references frames. Unfortunately, Marsden and Williams (1993) do not provide
the complete set of elements for the “original” orbits, and thus Figure 2.10 was calculated
from the orbital elements at perihelion. It will be shown that the angular elements are
typically only weakly perturbed during a single passage within the planetary system (§ 3.1),
so the errors in the aphelion positions are likely to be small.

Claims have been made for a clustering of aphelion directions around the solar antapex
(e.g. Tyror 1957; Oja 1975), but newer analyses with improved catalogues (e.g. Liist 1984)
have shed doubt on this hypothesis. The presence of complex selection effects, such as the
uneven coverage of the sky by comet searchers, render difficult the task of unambiguously

determining whether or not clustering is present. Attempts to avoid selection effects end up
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Figure 2.9: The distribution of the argument of perihelion in (@) the ecliptic frame, w, and
(b) in the Galactic frame, @, for the long-period comets. Data taken from Marsden and

Williams (1993).

subdividing the samples into subsamples of such small size as to be of dubious statistical
value.

Whipple (1977) has shown that it is unlikely that there are many large comet groups
i.e. comets related through having split from the same parent body, in the observed sample
though the numerous (~ 20) observed comet splittings makes the possibility plausible. A
comet group would likely have spread somewhat in semimajor axis: the resulting much
larger spread in orbital period (7 x a3/2) makes it unlikely that two or more members of
such a split group would have passed the Sun in the 200 years for which good observational
data exist. The Kreutz group of sun-grazing comets is the only generally-accepted exception.

A feature of the plot of aphelion directions in the Galactic frame, Figure 2.10b, is their
concentration at Galactic latitudes b ~ +45°. Figures 2.11a and b show histograms of
comet number versus the sine of the ecliptic latitude 3 and the Galactic latitude b. The
ecliptic latitudes deviate only weakly from a SS distribution and this deviation is likely due
to the lack of southern hemisphere comet searchers. The Galactic distribution shows two
broad peaks, centred roughly on sinb ~ £0.5. It will be shown that this is likely due to
the influence of the gravitational tidal field of the Galaxy (§ 3.2), which acts most strongly

when the Sun-comet line makes a 45° angle with the Galactic polar axis, though the gap
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(0)

Figure 2.10: Long-period comet aphelion directions on (a) ecliptic and (b) Galactic equal-
area maps. The crossed circle is the solar apex. Data taken from Marsden and Williams

(1993).
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Figure 2.11: The sine of the aphelion latitudes of long-period comets in the ecliptic (a) and
Galactic (b) reference frames. Data taken from Marsden and Williams (1993).

near b = 0° may be a selection effect resulting from the increased difficulty of spotting
comets against the more crowded skies of the Galactic plane. The weak selection effects in
the ecliptic frame are unlikely to significantly affect the distribution in the Galactic frame,

the two frames being tilted at a large angle (~ 60°) to each other.

2.4 Summary

The angular orbital elements, in both the ecliptic and Galactic frame, may or may not be
consistent with a spherically symmetric distribution. The y? test typically produces a low
probability of the distribution being uniform, while the KS test, which examines the cumu-
lative distribution, generally produces a much higher probability. This implies that there is
“high frequency” noise in the sample, but no strong “low frequency” signal. However, the
distribution of Galactic latitudes does appear to have a doubly-peaked distribution possibly
due to the Galaxy’s tidal field.

The perihelion distribution is fraught with selection effects and only its gross features are
useful for comparison with theory at this point. Fortunately, the orbital energy distribution
has a distinctive signature. It will provide the primary diagnostic when comparisons with

simulations are performed, though the other distributions also provide useful information.



Chapter 3

Dynamics

The equations of motion of the comet can be written as
F= ﬁ@ + ﬁplanets + ﬁtide + ﬁstars + ﬁclouds + ﬁdisk + F}et + F;p + ﬁsw + ﬁdragv (31)

where the different terms on the right-hand side represent the different accelerations to
which the comet is subject. Considering initially the heliocentric frame, 7 is then the vector
from the Sun to the comet. The first term of Equation 3.1 represents the Sun’s gravitational

pull,

F@ - — 7_‘), (32)

where (i is the gravitational constant and Mg is the mass of the Sun. The second term
of Equation 3.1 represents the gravitational influence of the planets (ﬁplamm), and the re-
maining terms, the accelerations due to the Galaxy’s tidal field (Eide), individual close
encounters with stars (ﬁstaTs) and molecular clouds (ﬁclouds)v a hypothetical disk of matter
outside the planetary orbits (ﬁdisk)v and non-gravitational forces resulting from outgassing
(Fier), solar radiation pressure (F,,), solar wind pressure (Fy,) and drag (Fy.q,), respec-

tively. These effects will be considered separately.

3.1 The planets

The functional form of F)plamts depends, as do all the terms, on the reference frame in which

it is expressed. The frames of interest here are the heliocentric and barycentric frames. In

23
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the barycentric frame, ﬁplanets can be expressed simply as

= GM, .
Fplanets(bary) = - Z TTP Tpes (33)
p pc

where M, is the planetary mass, and 7. is the distance vector pointing from the planet to
the comet. Complications arise when considering the heliocentric frame because it is non-
inertial: the Sun orbits the Solar System’s centre of mass. The additional terms needed to
account for the solar motion are called the indirect terms, and serve as corrections to the
principal terms (Equation 3.3) when working in the heliocentric frame,

= GM, _ GM, _
Fplanets(helio) = - Z Tp Tpe — Z _3p Tpy (34)

P TPC P Tp

where 7, is the Sun-planet radius vector.
The planets may strongly influence a comet’s path, but the comet is not massive enough
to have a detectable effect on any of the planets: a typical nucleus has a mass only 107

that of Pluto, and only 10~!* that of Jupiter.

3.1.1 Energy

The motion of the comet in the field of even one planet and the Sun has no analytic
solution, and may be quite complicated. However, if the comet’s aphelion is well outside the
planetary system, i.e. it is a long-period comet, then the planets’ influence is concentrated
near perihelion, and can be approximated for some purposes by an instantaneous “kick” in
the comet’s orbital energy.

The energy kick AE and the corresponding change in the inverse semimajor axis A(1/a)
are difficult to calculate analytically (e.g. van Woerkom 1948), but have been determined
from numerical experiments (Everhart 1968; Ferndndez 1981). For a single planet, dimen-

sional considerations show that

IAE| ~ GM,/r, (3.52)

|A(L/a)] ~ Mpy/ry, (3.5b)

where in the second equation M, is in solar masses. The values of M, and r, for the planets

are listed in Table 3.1.
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Planet ‘ M, Tp M,/r, Myr?
Mercury 1.7x1077 0.39 43x1077 25x 1078
Venus 25x107% 0.72 3.4x107% 1.3x10°°
Farth+Moon | 3.0 x 107% 1.00 3.0 x 107% 3.0 x 107
Mars 3.2x 1077 1.52 21x1077 7.5x1077
Jupiter 9.6 x 107 5.20 1.8x107* 2.6 x 1072
Saturn 29x107% 954 3.0x107° 2.6x 1072
Uranus 4.4 x107° 19.2 23x107% 1.6 x 1072
Neptune 52x107° 30.1 1.7x107% 4.7x107?
Pluto 8x 107 395 2x1071% 1.2x107*

Table 3.1: Quantities related to the mass M, and semimajor axis r, of the planets of the
Solar System. M,/r, is indicative of the size of the energy perturbation a comet receives

per perihelion passage (Equation 3.5a), Mprg, of the torque due to the planet’s orbital

quadrupole (Equation 3.16). Units are Mg and AU. Data taken from Lang (1992).

In comparison, given the same conditions as above, simple theory predicts that the

angular orbital elements 7, 2 and w and the perihelion distance ¢ receive perturbations,

At~ AQ ~ Aw ~ Aq/qg~ M,/ Mg. (3.6)

For a long-period comet with @« = 5000 AU and ¢ inside Jupiter’s orbit, A(1/a)/(1/a)~ 1,
while the fractional change in the angular elements and perihelion distance is only of order
1072, Thus the energy of LP comets on high eccentricity orbits evolves on a shorter time
scale than 2, Q, w and g¢.

The kicks due to each individual planet are uncorrelated, so the total change in F is

given by the square-root of the sum of the squares of the individual kicks

1/2 1/2
|AE| ~ [Z (AEP)Q] ~ [Z (GMp/Tp)Q] . (3.7)

P P

If the comet’s perihelion is inside the orbits of all the giant planets, Jupiter dominates the
summation, having M, /r, over six times greater than the next largest contributor, Saturn
(see Table 3.1, column 4). The contributions of the inner planets and Pluto together

constitute less than 5% of Jupiter’s contribution. Equation 3.7 is constant (within the

constraint ¢ < r,,,), and implies a constant

& (—M“") ~4x 107" AU

A(l/a)| ~
Ao~ =

(3.8)

per orbit as well. Of course, these values are only rough estimates, the actual changes

in the orbital elements being sensitive functions of the initial conditions. Nevertheless,
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Equation 3.8 provides a useful simple model, called the diffusion model, of the evolution
of Oort cloud comets with perihelia within the planetary system.

Under the diffusion model, a near-parabolic comet which makes a series of passages
within the planetary system receives an energy kick each time. The kicks are symmetrically
distributed about zero, and are uncorrelated and identically distributed as long as the
comet’s orbital period is long compared to that of the planets. The evolution of such
a comet can thus be approximated by a random walk in energy space, with step size
given by Equation 3.8. The region of energy space LP comets inhabit has two “absorbing”

boundaries:
e At 1/a <0, the comet leaves the Solar System on an unbound orbit.

e As 1/a — oo, the comet’s orbit contracts, bringing it into collision with the Sun. In
reality, comets do not reach such a state, the diffusion approximation being invalid
where a < rp. Instead, some upper limit (1/a),, is defined, below which the diffusion
model is no longer valid. It is useful to take this cutoff to be the boundary between
long and short-period comets i.e. where 7 = 200 yr, corresponding to as, ~ 34.2 AU,
or (1/a)s, &~ 0.029 AU~L. This boundary is not truly absorbing, as there is nothing
to prevent a SP comet from evolving back into an LP comet. However, only a small
number of LP comets survive to become SP (Equation 3.10b, and later, Table 5.1),
hence the possibility of SP comets returning to the LP domain is small and can be

neglected.

3.1.2 The Gambler’s Ruin problem

The random walk of a LP comet under the diffusion approximation is very similar to the
well-known Gambler’s Ruin problem, with the end-states of ejection and becoming short-
period corresponding to bankruptcy and breaking the house, respectively!.

Consider a comet random-walking on an integer lattice of energies. Let 7.; be the initial
number of steps the comet is from ejection, and let 7, be its initial distance in steps from

the short-period barrier. For a typical visible Oort cloud comet, 7.; ~ 1 and

Nsp & (Al(/f/)ag ~ 80. (3.9)

'See e.g. Kannan (1979) for a more complete description of the Gambler’s Ruin problem.
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The probabilities p.; and p,, of the comet reaching the ejecting or short-period barriers

respectively are simply

Pej = Msp/(Mej + nsp) = 0.988, (3.10a)

Psp = Nej/(Mej + nsp) = 0.012. (3.10b)

If m is the number of orbits a comet survives before crossing one of the absorbing barriers,

its expectation value m is
m = e; Nsp ~ 80. (3.11)

However, it should be noted that the distribution of lifetimes, being very broad as would
be expected for a diffusion process, is not well-characterised by Equation 3.11.
In the case of no short-period barrier i.e. 75, — oo, the number N of LP comets

remaining on orbit m is given by (Everhart 1976; Yabushita 1979)
N(m) = Nom~'/2, (3.12)

where Ng is the initial number of comets. This implies a probability p.; of ejection at each

orbit of

1 _
pej(m) = gm=*2, (3.13)

3.1.3 Distant planetary encounters

Comets with perihelia outside the planetary system do not have close encounters with
the planets, and the resulting perturbations are significantly decreased. Heggie (1975)
calculated the change in energy of a binary star system when approached by an interloper
on a near-parabolic orbit. His results provide a useful approximation to the situation in
question, though he made the assumptions that the three bodies were roughly equal in
mass, that the interloper was approaching on a near-parabolic orbit, and that ¢ > 7,
among others. With the Sun and Jupiter playing the role of the binary, the change in their
binding energy is, through conservation of energy, just the energy absorbed by the comet.
From Equation (5.43) of Heggie’s paper, the energy kick is

[ 8g*\ /2
|AE/FE|~exp |— (—) ] . (3.14)

3
97‘p
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Though Equation 3.14 was derived based on assumptions not always strictly valid in the
case of comets, the conclusion that the energy perturbation drops exponentially as ¢ — oo

is certainly correct.

3.1.4 Angular momentum

In the case of LP comets with perihelia outside the planetary system, changes in the an-
gular momentum .J induced by the planets are dominated by the torques resulting from
the quadrupole moments of the time-averaged planetary orbits. These torques affect the

perihelion distances ¢, related to J through
J = [GMga(1 — €))% ~ (2GMoq)"/? where e ~ 1. (3.15)

Approximating the planet orbits by coplanar circles, the total time-averaged quadrupole
moment of the planets @ is the sum of the planets’ individual moments Q, = Mprg (Ta-

ble 3.1, column 5)

Q=>0,=> Myr:~0.115Mg AU?, (3.16)
p p

and the associated torque J on the comet is

L 3GQ
J=7

3 sin 3 cos 3 ¢ for ¢ > r,, (3.17)
where [ is comet’s ecliptic latitude, given by sin § = sin¢ sin(w 4 f), and qAﬁ is the ecliptic
azimuthal unit vector. The rate of change of angular momentum J is related to the torque
through

G

J = m = —‘j‘sinicos(w + f). (3.18)

The absolute change in angular momentum per orbit |AJ|, assuming |AJ| < |J|, is given

by

AJ| = / i), (3.19a)
0
_ 3G0 smﬁcosﬁsmzcosydt 7 (3.19b)
2 0 e
2 2m
= % ‘/0 (14 ecos f)sinvcos l/mdl/ ) (3.19¢)

= 0. (3.19d)
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where v = w + f and k = sin?4. The planetary quadrupoles produce no net change in the
cometary perihelion distance, regardless of their relative orientation. The change in angular
momentum is zero because the quadrupole potential, and hence the torque, goes like r~2;

this is not necessarily the case for potentials with arbitrary dependences on r.

3.1.5 The loss cylinder

A comet with a semimajor axis greater than 3000 AU that comes close enough to the Sun
to become visible is likely to receive an energy kick |AF| comparable to its orbital energy
E (Equation 3.8). Such a relatively large kick results in the comet taking on either an
unbound or a much more tightly bound orbit, depending on the sign of AF. In either case,
the comet is no longer a member of the Oort cloud.

The orbit of Saturn is a rough outer limit to the perihelion distance at which an Oort
cloud comet typically receives |AE| 2 |F|. Thus the region of phase space where a 2
3000 AU and ¢ £ 10 AU is called the loss cylinder, because it is swept clear of Oort cloud
comets by the giant planets in roughly one comet orbit.

The loss cylinder gets its name from its geometry in a particular three-dimensional
velocity space, one axis of which denotes the radial velocity v, and the others the tangential

components vy and v, with vy = \/711521 + 711522- Any fixed orbital angular momentum
J =ru (320)

corresponds to a cylindrical surface in this space. As the angular momentum is related to
perihelion distance ¢ through Equation 3.15, the loss cylinder can be defined equivalently
by a fixed ¢ if e & 1. The boundary of the loss cylinder is denoted J, or by the associated
perihelion distance ¢.. A similar surface called the visibility cylinder represents the range
of perihelia for which comets produce comae; its size will be taken to be 3 AU here.

The existence of the loss cylinder implies that visible comets which approach the plane-
tary system on orbits with a > 3000 AU are probably making their first perihelion passage
close to the Sun. Such comets are referred to as dynamically new. Dynamically new
comets in the loss cylinder must have recently had their perihelia displaced inwards from
greater distances by some mechanism.

The loss cylinder is emptied on a time scale comparable to the comets’ orbital period

(1 < 107 yr for @ < 50 000 AU), and must be refilled if a steady-state distribution is to
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be maintained. If the Qort cloud is the source of new comets, a mechanism must exist for
reducing their perihelia and bringing them into the loss cylinder.

A change in perihelion distance implies a change in angular momentum. If some mech-
anism produces a change in orbital angular momentum per orbit AJ which is much smaller
than J., LP comets make their first perihelion passage inside the loss cylinder close to its
boundary, and the loss cylinder is said to be empty. In this case, the comets do not become
part of the observed sample. They are removed from the loss cylinder before their perihelia
can evolve inward sufficiently for coma/tail development. Such comets are sometimes said
to encounter the Jupiter barrier, because they are typically removed when their perihelia
approach Jupiter’s orbit.

Oort cloud comets may hurdle the Jupiter barrier and become visible if a mechanism

exists to produce
Ag R g, (3.21)

which could push comets deep into, and possibly even through, the loss cylinder. Under
these conditions, the cylinder is said to be full.

Due to the lack of net change in angular momentum the giant planets produce in comets
with ¢ > r, (Equation 3.19d), some other mechanism is required to draw in the Oort cloud
comets which are observed. Though the major planets may produce larger changes in J in
comets with perihelia near their orbits, such encounters would strongly affect the comets
energies as well. The narrow spike in the observed distribution of comet inverse semi-major
axes (I'igure 2.3) arges against the giant planets being the dominant injectors of Oort cloud

comets.

3.1.6 Planet X

There is little evidence for a massive solar companion beyond Pluto, and dynamical con-
siderations set an upper limit to its mass of roughly 30 Jupiter masses, and probably much
less (Tremaine 1990; Hogg et al. 1991). Nevertheless, the presence of such a companion
could strongly affect the evolution of long-period comets, which may be useful probes of the

existence of such an object, and will be discussed further in § 5.4.2.
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3.2 The Galactic tidal field

The Solar System resides within an extended mass distribution, namely the Galaxy. This
distribution produces a tidal field in our vicinity, which is referred to as the Galactic tidal
field or the Galactic tide (Morris and Muller 1986; Torbett 1986; Heisler and Tremaine
1986; Matese and Whitman 1989).

The effect of the Galactic tide is distinct from that of individual close stellar encounters.
They constitute two different parts of the Galaxy’s gravitational field: the overall “smooth”
field, and the “clumpy” field due to the concentration of mass into stars. Heisler and
Tremaine (1986) have shown that individual stellar encounters are the source of the variance

of the changes in comet velocity, while the Galactic tide is the source of the mean change.

3.2.1 The Galactic reference frame

Consider a set of mutually perpendicular unit vectors {éz, &y, é;} with their origin at the
Sun and rotating with it about the Galactic centre. Let é; be directed radially outward
from the Galactic centre, let é; be directed tangentially to the Galaxy, in the direction of
its rotation, and let é; be directed towards the North Galactic Pole. These vectors form
the Galactic reference frame (see also Appendix A).

The acceleration term due to the Galactic tide in Equation 3.1 has the form (Heisler

and Tremaine 1986)
Fiige = (A — B)(3A + B)iés — (A — B)*jéy — [4nGpo — 2(B? — A%))zés, (3.22)

where pg is the mass density in the solar neighbourhood; and A and B are the usual Oort
constants. The numerical values of the Qort constants are A = 14.4 + 1.2 km s~! kpe™!
and B = —12.04+ 2.8 km s™! kpc™! (Kerr and Lynden-Bell 1986). The local mass density
is less well-known. Observable matter (stars and gas) contributes about 0.1 Mg pc™2, but
the amount of dark matter present in the solar neighbourhood, if any, is controversial.
Recent calculations based on dynamical arguments allow the total/observed mass ratio P
to be between 1 and 2 (Bahcall 1984; Kuijken and Gilmore 1989; Kuijken 1991). A
recent determination by Bahcall et al. (1992) finds P = 1.53, and a constant value for pg of
0.15 Mg pc= will be adopted here. It should be noted that pg is probably not constant, but
modulated somewhat by the Sun’s excursions above and below the Galactic plane during

its orbit around the Galaxy (Matese et al. 1995).
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‘ Coordinate Momentum ‘
f L = (GMga)'/?
& J = [GMga(l — *)]1/?
Q Js; = Jcost

Table 3.2: A set 7 of canonical coordinate-momentum pairs, useful for the orbit-averaged
Hamiltonian of a comet orbiting the Sun in the presence of the Galactic tide.

Given the above values of A, B and pg, the 47Gpg term of Equation 3.22 exceeds the
others by an order of magnitude. This dominant component of the tidal acceleration can

be expressed as
Frige ~ —4nGpoZés = —4dnGporsin b éz, (3.23)

where b is the comet’s Galactic latitude sinb = sin 7 sin(@ + f). This dominant component

is along the Galactic polar axis, and corresponds to a gravitational potential of the form
Viide = 20Gpo3*. (3.24)

The Hamiltonian H of a body orbiting the Sun under the influence of the Galactic tide
provides a complete description of the body’s motion. However, this description is more
comprehensive than is required for some investigations. If the changes in the orbit due
to the tidal perturbation are small, it is reasonable to average H over a full orbit 7 and
consider the resulting simpler Hamiltonian H,,. The orbit-averaged Hamiltonian provides
a useful description of the evolution of the comet’s orbital elements under the tide, though
at a loss of short time scale (¢ < 7) information.

Following the example of Heisler and Tremaine (1986), the set 7 of canonical coordinate-
momentum pairs listed in Table 3.2 will prove useful in the discussion of the orbit-averaged
Hamiltonian. The symbols 7, © and & represent the inclination, longitude of the ascending
node and argument of perihelion measured in the Galactic frame; f is the true anomaly,
which is independent of the reference frame. The momentum J is the usual orbital angular
momentum per unit mass of the comet, and J; is its component along the Z-axis. L is a
measure of the two-body orbital energy through the semimajor axis a.

Expressed in these canonical variables, the orbit-averaged Hamiltonian H,, has the form

(Heisler and Tremaine 1986)

(GMg)?* | 7po L?

Hav = - Ty
212 GMZ J?

(J2 = J2) [ 4 5(12 = J?)sin? 3] , (3.25a)
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which can be expressed in terms of the standard orbital elements as

M,
H,, = —% + 7Gpoa’sin?i (1 — e? 4 5e?sin? ©). (3.25b)
a

The canonical variables f and € are absent from Equation 3.25a, so the corresponding
momenta L and J; are conserved. The conservation of I implies that of a as well, hence the
semimajor axis and the orbital energy are conserved under H,,. However, © does appear in
Equation 3.25a, implying that the angular momentum .J, and hence the perihelion distance
q are not constants of the motion.t

The comet’s angular momentum oscillates with time, with the eccentricity reaching

minimum and maximum values ex. If C =1 — €2 + 5e?sin?isin? @ is greater than 1, then

1
e = w 3 [C —5(1+ K2)+ /(54 5K2 - )2 — 80K ] (3.26)

where Kz = (1 — €2)'/2| cosi|. If C < 1 then the limiting eccentricities are given by

1-C, (3.27a)

o
|
(

1
ep = w +3 [C —5(1+ K2)+ \/(5 +5K2 — ()2 — 80K?2 ] (3.27b)

Equations 3.26 and 3.27a,b can be used in conjunction with the conservation of the semima-
jor axis to compute the minimum and maximum perihelion distances a comet will oscillate
between under the tide’s influence.

To determine whether or not the tide can fill the loss cylinder, consider the orbit-
averaged rate of change of angular momentum J, which can be obtained from H,, through

Hamilton’s canonical equations

. dH,,
_ 2
J o (3.28a)
L2
_ —gﬁgﬁ(ﬁ—@(ﬁ—ﬁ) sin 26, (3.28b)
= gﬁ;g e? L sin? 7sin 20, (3.28¢)

from which it can be deduced that

5
17| < Gg\gg 21, (3.29)

TThough no notational distinction is made here, the orbit-averaged coordinates and momenta in Hg.,
t.e. L, J, J: and @&, are not, in general, equal to their instantaneous values in the unaveraged system, except
in the himit po — 0.
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The change in angular momentum over a single orbit |AJ| = | [7 Jdt| ~ |J7| is given by
1/2
5Tpo 5,4 [ 47%a® 1072pg o, -
AJ| ~ L = L. 3.30
M~ G\ G ML (3:30)

Equation 3.30 can be solved to determine the conditions under which the tide can fill the

loss cylinder, i.e. produce AJ > J,. These conditions are, assuming e ~ 1, that

2/7

v 2q,. M
a« 2 (ﬁ) : (3.31a)

1072pg

17 —2/7
G Po

2 25000 —_— AU. 3.31b
(10 AU) ( 0.15 Mg pc_3) ( )

The Galactic tide thus provides a mechanism by which Oort cloud comets may become

observable, but only if the comets’ semimajor axes exceed 25 000 AU.

3.3 Non-gravitational forces

The asymmetric sublimation of cometary volatiles results in a net acceleration of the nucleus.
These non-gravitational’ (NG) forces are limited to times of significant outgassing (i.e.
coma production), and remain small even then. For example, as P/Halley passed perihelion
in 1986, the nucleus was subjected to a radial NG acceleration only 10~° times that of
the Sun’s gravity. The transverse and normal components were over 10 times weaker still
(Rickman 1986). NG forces are small but not negligible: acting in the same direction
over many perihelion passages, they may produce significant changes in a comet’s orbit. In
fact, the need for NG correction terms in comet orbit calculations has long been known.
As early as 1823, Encke noted that some comets’ orbits deviated from purely gravitational
ones, which he attributed to a resisting medium through which the comets passed.
Non-gravitational forces are difficult to model. Their strength depends on the comet’s
distance from the Sun, but displays less regular variability as well: Gas production may vary
by a factor of 2 or more between the pre- and post-perihelion legs of the orbit (Sekanina
1964; Festou 1986); and jets and streamers are observed to evolve on time scales of less

than a day (Festou et al. 1993b), suggesting that NG forces change on similar time scales.

TTraditionally, the term “non-gravitational forces” has been reserved for the reaction forces resulting from
the uneven sublimation of cometary volatiles, and it will be used here in that manner. It will be shown in
§ 3.7 that the other forces of a non-gravitational nature e.g. radiation pressure, are negligible in comparison
to the outgassing forces.



CHAPTER 3. DYNAMICS 35

Further complications arise from the rotation of the nucleus, which is difficult to measure
through the coma, and which may be quite complicated due to precession (Wilhelm 1987).
Our inability to measure or predict the effects of outgassing with confidence makes a precise
treatment of these accelerations difficult.

A simple and naive model of NG accelerations, which is all the data allows, assumes that
the short time scale components of the NG forces are uncorrelated and cancel out, leaving
only fairly regular, longer time scale components as dynamically important. A simple and
widely-used model called Style IT parameters was devised by Marsden et al. (1973). The
NG acceleration term F}eﬁ in Equation 3.1 is written as

—

Fiet = Fiéy + Faéa + Faés, (3.32)

where the three orthogonal components are: radial Fy (positive outward from the Sun),
transverse Fy (in the orbital plane, positive along the direction 90° ahead of the Sun-
comet line), and normal F5 (perpendicular to the orbital plane, parallel to é; x é;3). The
Style II model assumes that the accelerations are symmetric about perihelion, and can be

represented by
Fi(r) = Aqg(r), Fy(r) = Aag(r), F3(r) = Asg(r), (3.33)

where { A1, A3, A3} are independent constants, and ¢(r) is a non-negative function describing
the increase in activity with decreasing comet-Sun distance r. The form of ¢g(r) is based on

an empirical water sublimation curve by Delsemme and Miller (1971),

o) b ()T

where m = 2.15, k = 4.6142, n = 5.093, r, = 2.808 AU and «, the normalisation parameter,
is chosen to be 0.1113 so that g(1 AU) = 1. Note that g(r) is roughly proportional to
r™ x r2 for r < 1,. At 1> 71,, g(r) drops much faster than the simple inverse square
that describes the incident solar flux (Figure 3.1).

The constants Ay, Az and Az are calculated by Marsden et al. (1973) for each comet
by a fitting process: the constants are assigned the values which minimise the difference

between the observed and modelled positions of the comet. If the residuals calculated from

a model including NG forces are significantly smaller than those predicted from a purely

"The symbol Fis again used here to represent the acceleration and not the force, to maintain consistency
with the literature.
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Figure 3.1: The Style II non-gravitational acceleration function ¢(r), and a 1/r% curve.

gravitational description of the comet’s motion, then NG forces may play a significant role.
Note that determinations of {A;, A3, A3} sometimes assume that their values are constant
over one or more apparitions, despite the fact that some comets show changes in these
values, in both sign and amplitude, from apparition to apparition (Marsden 1976). As
the peak outgassing occurs on the sunward side of the cometary nucleus, the sign of A is
always positive. The signs of A; and A3 are determined by the rotation of the nucleus and
the non-symmetrical nature of the gas release, which cause the acceleration to deviate from
the precisely sunward direction.

Despite the uncertainties involved, the calculated values of the NG constants give us an
idea of the order of magnitude of the forces involved. The value of A; is typically 107 to
10=7 AU day=2 (~ 1073 to 107! m s~! day~!) with error estimates variable, but in the
10-50% range (Marsden et al. 1973). Comets with shorter periods tend to have smaller
values of Ay, which does suggest that their volatile supplies have been depleted by their
more frequent passages near the Sun. The values of | A;| are typically only 10% of | Ay |, with

similar errors. The tangential component is presumed to be due to the displacement of the
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most active outgassing region away from the subsolar point due to rotation of the nucleus.
If this is the case, a ratio of A;/Ay ~ 10 implies a lag angle of roughly sin=! 0.1 ~ 6°. The
inclusion of a normal component in the models does not reduce the residuals significantly,
and so As is generally taken to be zero (Marsden et al. 1973; Marsden 1976).

The effect of the NG forces can be deduced from Gauss’s planetary equations (described
in Appendix A). Note that the absence of a normal component F5 would mean that Equa-
tions A.19c and A.19d are identically zero, and that the comet’s orbital plane is constant.

Gauss’s equations allow us to estimate the impact of NG forces on cometary dynamics.
Assuming the accelerations imparted are given by the Style II function ¢(r) (Equation 3.34),

Equations A.19a—f yield expected changes in inverse semimajor axis and perihelion of

_ e [ gl
A1) = - gt AQ_/ e, (3.35a)

A 7 (1 =2cosf)
A= S A f I T ecos 7 (3.35b)

where e &~ 1 has been assumed, and df = Jdt/r? (which can be deduced from Kepler’s
second law) has been used. The median value of the semimajor axis in these simulations
will be shown to be around 100 AU (§ 5.2). Taking a typical visible long-period comet to
have ¢ = 1.5 AU, and a = 100 AU (though the result is insensitive to the exact value of a as
long as e < 1), the integrands in Equations 3.35a and 3.35b can be numerically integrated,
using the expression r = a(1 — €%)/(1 + ecos f) to transform g(r) to a function of the true

anomaly. We find

_ A _
A(l/a) ~ —6.8x 10 6<10_9 Aé day—2) AU, (3.36a)
Ay
Ag ~ —25 10—6< ) AU 3.36b
1 X 102 AU day—2 ’ ( )

Typical values of Ay are 1072 AU day~? (Marsden et al. 1973) and thus, acting alone, NG
forces could move a comet out of the visibility cylinder only on a time scale of hundreds of
thousands of orbits. However, the energy change imparted is only about a factor of sixty
less than that due to the planets (Equation 3.8), thus a comet could conceivably be moved
from an orbit with a semimajor axis of 100 AU to an unbound one in a thousand orbits.
Equation 3.36a and 3.36b do not depend on A; because the radial NG forces’ effect on

the energy and perihelion distance averages to zero over a full orbit. However, the radial
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acceleration may produce variations in the elements on shorter time scales e.g. from aphelion
to perihelion. These short-term variations might be important if, say, the NG forces were
strong enough to push comets into unbound orbits during the outbound leg of the orbit.

The “typical” kick during the perihelion-aphelion leg is

dq 7 g(r)sin f
Al ~ o — A d .
(1/a) GMy ! / (14 ecos f)? J (3.37a)
0
Aq
~ —9.6x107° 3.37b
X (10_8 AU day_z) ’ ( )

which is too small to unbind orbits with semimajor axes less than 100 000 AU. Larger
values of A; impart larger kicks, and an order of magnitude increase would provide an
energy change of order that of the planets; thus radial non-gravitational forces may have
some role to play in certain highly active comets.

When a comet’s nodes cross the orbit of a planet, a close encounter becomes much more
likely. The nodal distances r, are given by

a(l —e?)
L= 3.38
! 1+ ecosw ( )

where the plus in the denominator refers to the ascending node, the minus to the descending

node. The rate of change of the nodal distances under NG forces is

Ar, ~ 2Aq 2¢ sin wAw

"1+ cosw (14 cosw)?’ (3.39)

where e = 1 has been used. Using Gauss’s equations, the change in w is found to be

_ 4q? 7 g(r)cos f
Aw = _GM@ Ay / (1 + ¢ cos f)2df7 (3.40)

and the change in r, per orbit can then be deduced to be

Ar, ~

5x 107 ( A, ) 1.3 x 10~ *sinw ( Aq

AU, (341
1079 AU d~2 (14 cosw)? 10~% AU d—z) » ( )

14 cosw
where again ¢ = 100 AU and ¢ = 1.5 AU have been used.

If Ar,/r, < 1, a close encounter is very likely if one of the nodes crosses a planet’s
orbit. The number of orbits m required for a node to migrate near to a planet’s orbit is of
order r,/Ar, or, for Jupiter’s orbit and the values used above, m ~ 10° orbits. Thus, the

motion of the nodes is too slow to appreciably shorten the lives of LP comets.
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3.4 Passing stars

A long-period comet, passing aphelion far from the Sun, may have its orbit perturbed by
stars travelling through the solar neighbourhood. The comet’s velocity at aphelion is of

L. much less than the velocity dispersion of stars in the Galactic disk, which

order 100 m s~
is 30 km s=! (Mihalas and Binney 1981). Thus, to a first approximation, the comet can be
considered stationary during a stellar encounter, and the impulse approximation used.
The net impulse A¥ due to a passing star of mass M, and velocity v, is the difference

between the impulses imparted to the Sun A% and the comet A%,

2G'M. B 2G' M, =

A?})I A/EC - A??@ ~ U*Dz c mp®7 (342)

where D, and 5@ are the vectors directed to the point of closest approach from the comet
and the Sun respectively. In the case of a star passing very close to the Sun, Dg < D,

and Equation 3.42 can be approximated by

2GM
|Av| ~ = (3.43a)

?J*D@

If the encounter is a distant one, D. and 5@ are nearly parallel, and the impulse reduces to

2G M, r cos @

Av| ~
A2 P

(3.43b)

where 0 is the angle between 5@ and the Sun-comet vector 7.

Consider the case of the Sun and its attendant comet cloud moving with velocity vg
through a homogeneous and isotropic distribution of static stars of mass M, and number
density ny. The stars transfer kinetic energy to the comet cloud; the average rate of change

in the square of a comet’s velocity (9?) is given by (cf. Bailey 1983, Equation 45)

(92) ~ SrCEMin, [hl (d r ' ) ~2(1-1In 2)] : (3.44)

Ve min b

thus the change per orbit Av? is

2M2 2
<AU2> ~ T 87TGU® % Nk lhl (d 'Tb : ) _ 2(1 —In 2)] N (345&)
16m2G32 M 2. a3/2 2
L 16T 172"*“ In # —0.614] , (3.45b)
@®M® min Ymin
L SCEMIn G (v Matss) ] (3.45¢)
v@MG/ 2G'M?
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where b,,;, = (271'71*?]@1555)_1/2 is the minimum impact parameter expected during the Solar
System’s lifetime tgs, dpin & QM*(GM@T)UQ/M@U@ is the distance within which a single
encounter would result in the comet escaping from the Solar System, and 132 <7‘3/2> ~

a3/? has been used.

3.4.1 Energy

The change in a comet’s inverse semimajor axis A(1/a) &~ —Av?/G Mg caused by passing
stars can be obtained from Equation 3.45¢. Taking ve = 30 km s~!, the local stellar velocity
dispersion, n, = 0.15 pc™> and M, = 0.3 My (Bahcall and Soneira 1980), the change in
1/ais

30 km s~! M. ? a o
A(1/a) ~ 1078 —2= - AU 3.46
(1/a) (0.15 pc—3)( ve )(0.3 M@) (25 000 AU) (3.46)

per orbit, where the logarithmic term has been taken to be constant. This result is consistent

with other derivations (cf. Fernandez 1980; Fernandez and Ip 1991), and from it one
deduces that stellar perturbations have only a very small effect on comet orbital energies
over a single orbit. Over time, however, the net transfer of energy to the cloud unbinds
its members, and may significantly deplete its numbers over the age of the Solar System

(Bailey 1986).

3.4.2 Angular momentum

The analytic determination of the change in cometary angular momentum due to passing
stars is complex, and beyond the scope of this project. The subject was treated thoroughly
by Heisler and Tremaine (1986). A result of interest is that the loss cylinder is only filled

at semimajor axes
a 2 36 000 AU (3.47)

(1. c. Equation 39), well outside the Galactic tide’s value of @ 2 25 000 AU (Equation 3.31b).

We will see that the number density of comets in the Oort cloud drops sharply with
distance (§ 4.2.2), with the result that the tide dominates the overall flux into the loss
cylinder. This result allows the injection of comets into the loss cylinder by passing stars

to be neglected when constructing a theoretical model of LP comet evolution.
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3.4.3 Comet showers

Every 10® yr on average, a very close stellar encounter (D < 10 000 AU) may cause a
comet shower, enhancing the comet influx rate by up to a factor of twenty (Hills 1981;
Heisler et al. 1987; Duncan et al. 1987). Because the loss cylinder is cleared on time scales
of order 107 yr, the odds are against a shower currently being in progress. Heisler (1990)
estimates that the comet flux significantly exceeds its background rate only 2% of the time.
The correlation of comet aphelion directions with the Galactic plane, along with the lack
of strong clustering associated with any other points in the sky (Figure 2.10), also suggest
that the present comet flux is at its quiescent level, though the possibility of a weak shower
being in progress has been advanced (Heisler 1990). The possibility of comet showers will

be ignored here.

3.5 Molecular clouds

A penetrating encounter between the Solar System and an interstellar molecular cloud with

velocity vy and impact parameter D applies an impulse of

D2)3/2
R | cos b, (3.48)
(-7

to a comet, where 6 is the angle between 7 and 5, and the cloud is assumed to be spherical

2rG M,

Av| =~
| U| vchQ

and of uniform density with mass M. and radius R (Biermann 1978; Fernandez and Ip
1991). Assuming for simplicity that D ~ R, e &~ 1, and that the comet is at aphelion
during the encounter, the corresponding change in angular momentum A.J is

AG M. a® sin 26

AJ =rAvsind ~ o D7 (3.49)
The semimajor axis above which the molecular cloud fills the loss cylinder is
9 4\ 1/4
GV Ma D
R 775 3.50
¢ (8GMC21 sin’? 20) (3:50)
D My >—1/2 ( Vel )1/2 ( ¢ )1/4
2 8000 AU. 3.51
(20 pC) (105 Mg 10 km s~* 10 AU (3.51)

Such encounters stir the Qort cloud to great depths and result in large increases in the
cometary influx, but their frequency is unknown: giant molecular clouds (M. 2 105 Mg,

R ~ 20 pc) may be encountered as rarely as every 5x 10% yr (Bailey 1983; Torbett 1986),
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but smaller clouds (M. ~ 10° to 10* Mg) could be 100 times more common (Drapatz and
Zinnecker 1984). It will be assumed here that the current flux of comets is unaffected
by a recent encounter with a molecular cloud, because of the rarity of such encounters
and the Galactic tide’s strong signature in the distribution of cometary aphelion directions

(Figure 2.11b).

3.6 A massive circumsolar disk

If the Sun were to have a matter disk, a possibility suggested by the presence of disks around
[ Pictoris and other stars, the dynamics of long-period comets would be affected. A disk
potential can be approximated by a Miyamoto-Nagai potential, expressed mathematically

as (e.g. Binney and Tremaine 1987),

-G M
Vidisk = d ZREYP) (3.52)
(02, + 32, + (a0 +1/22 +0%) |
where M, is the disk mass, 72, = 2% + y2 4+ z? is the distance to the Solar System’s

barycentre!, and ag and by are parameters describing the disk’s characteristic radins and
thickness respectively. This disk will be taken here to be centred on the Solar System’s
barycentre, with the disk plane coinciding with the ecliptic.

The resulting acceleration F=-VVis

~ -G M 7
Fdisk = i (ch + L) . (353)

22+ 02+ (w24 83) ] NEEYY

The disk potential is conservative and axisymmetric, and thus conserves the z component

of the angular momentum.

The disk around # Pic is observed in the infrared out to a least 1100 AU (Smith and
Terrile 1987). It is seen nearly edge-on, allowing its axis ratio a4/by to be estimated at five
a few hundred AU from the central star (Smith and Terrile 1984; Paresce and Burrows
1987). The mass of the § Pic disk is poorly known: estimates of H column density based
on observations of CO predict values between 1014 r?lisk kg and 10%° r?lisk kg, where 7451
is the gas’ distance from the central star in AU. For values of rg;s, of 500 AU, this yields
values of 107® to 1072 Jupiter masses. Early estimates of the mass in dust yield results of

1075 to one Jupiter mass (Smith and Terrile 1984).

T As the planets have been assumed to be coplanar and in the ecliptic, zem = 2.
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There is little or no evidence for a substantial disk in our own Solar System. A study
of planetary residuals limits the mass in a 100 to 1000 AU disk to less than a few Jupiter
masses. A study of P/Halley sets much more stringent limits, around 1072 Jupiter masses,
though the inclusion of non-gravitational corrections could be masking the effects of a disk
(Tremaine 1990; Hogg et al. 1991).

Observational evidence also puts relatively strong limits on the mass of such a disk.
Imaging with the Hubble Space Telescope puts a preliminary limit of less than 1072 Jupiter
masses in 5-10 km sized objects within 40 AU of the Sun (Cochran et al. 1995). Models
of the infrared emission expected from dust generated by collisions in a belt of comets
distributed over 30-100 AU from the Sun puts a similar limit (Backman et al. 1995). A
more distant (500-1000 AU) belt could have an upper mass of roughly one Jupiter mass
(Backman 1995).

Thus, it is unlikely that a significant amount of mass resides in an unseen disk within
100 AU of the Sun, but that at larger distances (~ 1000 AU) much larger masses (~ M)

could be present.

3.7 Miscellaneous perturbations

3.7.1 Radiation pressure and the solar wind

The acceleration I imparted to the nucleus by the solar wind or radiation pressure is given

by
F = ngrR2F,/M.,, (3.54)

where M. and R. are the comet’s mass and radius, F, is the momentum flux to which the
comet is subjected, and 7 is a coefficient describing the efficiency of the momentum transfer.
For a radiation field, F, is related to the energy flux Fg through 7, = Fg/c. For the solar
wind, whose parameters are given in § 1.4, the momentum flux is ng,mg,vZ,.

These accelerations are small, and since they are always directed radially outward, the
perturbations arising during the inward and outward legs tend to cancel. However, the
acceleration during the outbound leg could potentially serve to eject comets. Using Gauss’s

equations for the e &~ 1 case (Equation A.21a), one finds the perturbation incurred during
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the outbound leg to be

7/2
1
Alfa) = - [ad, (3.552)
0
2yl REF,
_ nNrrgiy, p(rﬂﬂ)’ (355b)
GM@MCQ

where rg is the radius of the Earth’s orbit. The numerical values of these perturbations,

for a small nucleus (R. = 1 km, M. = 10'% kg) with perihelion ¢ = 1.5 AU, are

-1 2
R M, N\
A(l/a),, ~ —3x107%(-—2 ¢ ( ¢ ) AU .
(1/a)y 310 (1.5 AU) (1 km) 10 kg v (3-56a)
-1 2 .
_1n-13 q R. M. ) -1
A(1/a)en 10 (1'5 AU) (1km) (1012 o)A (3.56b)

where the solar constant F(rg) is taken to be 1400 W m™2, and inelastic collisions (5 = 1)
are assumed.

During times of close approach to the Sun, the effective solar wind cross-section of the
nucleus is increased by the draping of solar magnetic field lines over the coma. However, the
nucleus itself has no substantial magnetic field; any back reaction can only be transmitted
back to the nucleus through the coma’s gases. Thus, instead of the solar wind impacting
the nucleus directly, a pressure gradient is set up across the coma. This pressure will be of
order the solar wind pressure, and thus will not result in perturbations significantly larger
than those calculated above.

The single-leg solar wind and radiation pressure perturbation are small, and unlike
outgassing accelerations, the contributions on the inward and outward bound legs tend to
cancel. These perturbations will thus be assumed to be negligible.

Under a radial acceleration, there is no change in a comet’s angular momentum, a fact
which is implicit in the calculation of Equations 3.56a and 3.56b. But the flow direction
of the solar wind is not precisely radial, and the resulting transverse component of the
acceleration does not have opposite signs on the inward and outward legs. However, the
angle 6 by which the solar wind deviates from radial is less than 1° (Foukal 1990). The
resulting one-orbit perturbations are, for the orbital energy,

Ly

|A(1/a)sw] , (3.57a)
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27T2777‘éR2fp(7‘@)| sin 6]
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A(1/a)p| ~ 5x 1074 (1 c c AU-Y(3,
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and for the perihelion distance,

(3.57b)

Agl = |[ [0 — ) = aél ], (3.58)
0
2 p2 2
m™qra RIF,(rg) | | 0/7T 1—2cos f — ecos fd
3.58b
GMgM. i . 1+ecosf gE ( )
2 -1
_ R M | sin 6|
Adow| ~ 10-13 q c ¢ AU ‘
Al ~ 310 (1.5 AU)(l km) (1012 kg) (0.017) Y (3-58¢)

These perturbations are also small compared to those resulting from outgassing. Thus, the

solar wind and radiation pressure have negligible effects on cometary orbital dynamics.

3.7.2 Drag

The solar wind, unlike solar radiation, does not reach distances arbitrarily far from the Sun,
but is halted by the pressure of the interstellar medium at the heliopause. This boundary
lies between 75 and 105 AU from the Sun in the direction of the solar apex, and further in
other directions (Hall et al. 1993). When outside this boundary, comets are subjected to
drag from the interstellar medium (ISM). Long-period comets spend most of their orbital
periods outside the heliopause, and for the purposes of computing the drag from the ISM
on comet nuclei, it will be assumed they spend all their time there.

The drag acceleration exerted on the nucleus is

2 2
7T-}ch(D Nism Mism Y
2M.

Frag = (3.59)

where n;g,, and m;g,, are the number density and mass of the interstellar medium particles,
and (' is the drag coefficient of the nucleus, of order unity for spheres in high Reynolds
number i.e. low viscosity, fluids (Streeter and Wylie 1985). The local interstellar medium
has s, ~ 0.2 em™> and mys, ~ 1072 kg (Baranov 1986).

The drag force is always opposite to the comet’s direction of motion, and thus the use of

Gauss’s equations becomes quite complicated. Nonetheless, the effect of drag on Keplerian
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orbit is well-understood (e.g. Roy 1978), and the resulting change in 1/a per orbit is

ks

TR2C pnispm Mism (1 + ecos u)3/2
A(l/a) = o / T ooy (3.60a)
R 2 M -1 n;
~ 4x1071¢ ( < ) ( < ) (77%) AU 3.60b
X Tkm/ \10'Z kg 0.2 e ? ’ (3.60)

where u is the eccentric anomaly, and e = 0.99997 has been assumed e.g. « = 50 000 AU
and ¢ = 1.5 AU. This result is independent of the semimajor axis, but small in any case.

The change in perihelion distance for this same comet is

7T-]%QC(Dniswﬂnismaq 7 1+ ecosu 1/2
Ag ~ ——F¢ 1 - ree e d 61
1 M, /( + cosu) (1—ecosu) b (3.61a)
R 2 M -1 n;
~ —2x107H ( < ) ( < ) ( e ) AU. 3.61b
1 km 102 kg 0.2 cm™3 ( )

Both the change in energy and angular momentum due to drag by the ISM are negligible,

and will be ignored.

3.8 Comet lifetimes

Continued loss of volatiles ultimately transforms comet nuclei into inert bodies, containing
only the leftover refractory elements of their initial inventories. Given a perihelion distance
of 1 AU, a typical comet’s volatiles might be depleted after a thousand orbits (Weissman
1980).

There is evidence that spent comets may either remain a single solid body, or break into

a collection of fragments:

¢ Some regular meteor showers have been associated with the orbits of comets e.g. the

n-Aquarids and Orionids with P/Halley.

o A few asteroids have elliptical orbits strongly resembling those of Jupiter-family
comets e.g. 1992 XA which has a perihelion distance of 1.8 AU and an aphelion
distance of 5.1 AU (Kresak 1977; Marsden and Williams 1994).

Whether or not a dead comet breaks up probably depends on various factors, including its

internal cohesiveness and the patterns of thermal/gravitational stress to which it is subject.
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Comets may also be destroyed or become unbound from the Sun before their volatiles
are exhausted. Approximately 50% of comets entering the planetary system on near-para-
bolic orbits will be transferred to hyperbolic orbits by perturbations from the giant planets
(especially Jupiter) after their first perihelion passage; a further fraction will be lost on
each subsequent perihelion passage, as the comets diffuse through the available energy
space (Gambler’s Ruin, § 3.1.2).

The nucleus may also break into one or more large pieces before complete loss of volatiles
occurs. After such a splitting event, a comet is often not observed at its next expected
return. A comet stands a roughly 10% chance of being disrupted on its first close perihelion
passage; the probability drops to less than 1% per perihelion passage for short-period comets
(Weissman 1980; Kresdk 1985).

A splitting probability p ~ 0.1 per revolution yields a half-life m,,, against splitting of
My, =—1n2/In(l - p) = 7. (3.62)

Thus, splitting may significantly reduce a comet’s lifetime.

Comets may be destroyed by collision with the Sun or a planet, but this is unlikely. If
the collision probability is simply taken to be the ratio of the planet’s cross-section to the
area of a sphere of the same radius as its orbit, then the probability of a comet passing
within the Roche limit of the Sun or a planet is only of order 10~7 per perihelion passage

(Weissman 1980).

3.9 The Oort cloud

The existence of the Oort cloud is now generally accepted (see Lyttleton 1974 for a dis-
senting viewpoint) based primarily on the observed distribution of 1/a (Figure 2.3), but
the mechanism of its formation, as well as its present characteristics, remain the subject of
debate.

The Oort cloud may either be primordial i.e. formed from the solar nebula, or have
been captured or produced by the Solar System at a later time. In the latter case, the OQort
cloud may have a survival time short compared with the age of the Solar System. However,
the production of cometary bodies within the Solar System after the dissipation of the solar
nebula almost certainly can be ruled out for lack of a viable mechanism, though the origin

of comets from the breakup of a planet in the present-day asteroid belt has been postulated
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(van Flandern 1978). It has also been postulated that a non-primordial Oort cloud could be
captured from a passing molecular cloud (Clube and Napier 1984; Yabushita and Hasegawa
1978), but it remains unclear whether comet nuclei exist in such clouds. In addition, the
Solar System has a very low capture cross-section for interstellar comets, owing to the high
encounter velocities involved.

If the Qort cloud is primordial, its formation through tn situ accretion seems unlikely:
the condensation of cometary bodies from the solar nebula at Qort cloud distances is dif-
ficult to explain due to the low density of matter expected there (Op.i'k 1973), though
radiation pressure (Hills 1982) or wind-powered shells (Bailey 1987) have been proposed
as mechanisms by which the required density enhancements could be produced. The most
widely accepted model of the origin of the Oort cloud holds that comet nuclei are planetes-
imals that accreted in or near the planetary region (7 < 50 AU) at the same time as the
planets. The growing planets, especially Uranus and Neptune, would have scattered some
planetesimals from their initial near-circular orbits onto highly elliptical ones (Safronov
1972; Tremaine 1993). Those proto-comets finding themselves on orbits with large semi-
major axes (a 2 3000 AU) could have their perihelia rapidly increased by the Galactic
tide. The removal of their perihelia from the planetary system effectively decouples the
planetesimals from the planets, and at this point the comets are said to have reached the
Oort cloud.

As cometary isotope abundances are consistent with solar values (Krankowsky et al.
1986; Eberhardt et al. 1986), the current understanding of the Solar System and its
formation is consistent with a primordial origin for the Oort cloud (Ferndndez 1985 offers a
more complete review of the primordial vs. captured question). The question of the origin
of the Qort cloud is only of secondary interest here except insofar as it affects the steady-
state nature of the Qort cloud; on the basis of the cloud’s likely primordial origin, it will be
assumed that the Qort cloud is in a quasi-steady state i.e. the cloud’s dynamical evolution
time scale is comparable to the age of the Solar System.

The present distribution of comets in the Qort cloud cannot be observed directly, but
Duncan et al. (1987) have derived a theoretical distribution based on the assumption that
these comets formed in the outer planetary region and were scattered out into the Qort cloud
through the combined perturbations of the tide and planets. They found the cloud’s inner

edge to be near 3000 AU, with a space number density of comets roughly proportional to
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r=3% from 3000 to 50 000 AU. This power law is consistent with Bailey’s (1986) analytical
treatment of the Qort cloud (l.c. Equation 103). Hills (1980) first pointed out that the
cloud might extend further inwards than indicated by the minimum semi-major axis in the
spike; thus the inner region (a < 2 x 10* AU) is often referred to as the Hills’ cloud.

Though the orbits of the comets would have initially been near the ecliptic, the inclina-
tions of orbits with semimajor axes greater than about 2000 AU are randomised by passing
stars on a time scale of 10 yr. This mixing results in the Qort cloud comets occupying a
spherical rather than a flattened distribution.

External influences strip comets with large orbits from the Solar System, thus truncating
the Oort cloud at some distance from the Sun. The last closed Hill’s surface provides
a useful measure of the maximum possible size of the Qort cloud. Antonov and Latyshev
(1972) calculated the Hill’s or zero-velocity surface for a comet moving in the field of
the Sun and the Galaxy. On such a surface, the Jacobi integral W (§ 4.4.3) is constant.
Expressed in the Galactic frame, W is

. M,
W =2A(A - B)#? 4+ (B* — A% — 21Gp)3* + G = (3.63)
T

where A and B are the Qort constants. A particle having zero velocity relative to the
Sun inside a closed Hill’s surface cannot leave the enclosed volume, in the absence of other
perturbations. The last closed surface is at W = 2(GMg)?/3[4A(A — B)]'/2. Substituting

this value into Equation 3.63 and solving yields semiaxes for the Hill’s surface

F A~ 1.41 pc~ 290 000 AU, (3.64a)
§ ~ 0.94pc~ 190 000 AU, (3.64b)
Z &~ 0.63 pc~ 130 000 AU. (3.64c)

The last closed Hill’s surface is triaxial and resembles a prolate ellipsoid. In this work,
the outer boundary of the Qort cloud is taken to be simply spherical, and at an aphelion
distance of 100 000 AU (a = 50 000 AU for comets with e ~ 1) rather than 130 000 AU.
The prolate nature of the cloud and the exact location of the boundary is unlikely to be
relevant here, due to the rapid drop off in comet number density with r.

The steep 773 radial density profile deduced by Duncan et al. (1987) provides an
answer to the question of why the aphelion directions of Qort cloud comets are crowded at

mid-Galactic latitudes. The ability of the tide to fill the loss cylinder at smaller distances
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than passing stars (¢f. Equation 3.31b to 3.47) allows it to reach into regions of higher
comet density, and makes the tide the dominant injector of Qort cloud comets. Heisler and
Tremaine (1986) have shown that the flux due to the tide exceeds that due to passing stars
by a factor of 1.5 to 2. The tide’s maximum injection efficiency is at mid-Galactic latitudes,
a signature which can be seen in Figure 2.11b.

In the absence of a recent close encounter with a star or a molecular cloud, the loss
cylinder is filled only at distances beyond 25 000 AU, yet the inner edge of the Oort cloud
may be as close to the planetary system as 3000 AU. Comets in this inner region never
become visible even if their perihelia are evolving inwards under the tide, because they hit
the Jupiter barrier. These comets may, however, provide a source from which the outer
Oort cloud is replenished. Encounters with stars and molecular clouds may scatter some
of the comets in this inner Qort cloud into more loosely bound orbits, “pumping” them up
into the outer Oort cloud, and may also give rise to occasional rare comet showers.

The population of the Oort cloud is expected to be eroded over time scales comparable
to the age of the Solar System, as comets are ejected into interstellar space or captured
into smaller orbits. Between 40% (Duncan et al. 1987) and 80% (Weissman 1985) of the
original Oort cloud may have been lost over the lifetime of the Solar System, leaving 10'?
comets totalling 10Mg in the present-day comet cloud (Weissman 1991). These numbers
are poorly known, and estimates of the current Qort cloud population range from 10!

(Opik 1973) to 105 (Marsden 1977) objects.

3.10 Problems in long-period comet dynamics

3.10.1 The fading problem

The energy kick received by a visible comet (4x10™* AU~!, Equation 3.8) is larger than the
width of the main spike in the 1/a distribution of long-period comets (Figure 2.3). From
this, it has been concluded that the spike consists of dynamically new comets, and that
older comets, diffusing in energy space over many perihelion passages, populate the tail.
The spike will be taken here to be the region where the original inverse semimajor axis
of the comets is less than 10™* AU~'. This value is chosen because of the width of the
spike in the observed distribution (Figure 2.3b). All remaining LP comets are considered

to be part of the tail.
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Define ¥4 to be the ratio of the number of long-period comets in the spike to the total

number,

N(a>10 000 AU
gy, = V> N ), (3.65)

Then 1/W, is an estimate of a comet’s life expectancy in perihelion passages. A more precise
measure of comet life expectancy is 1/T, where Ty is the ratio of dynamically new to the

total number of LP comets,

N(m=1)

’rlz N ’

(3.66)

where m is the number of apparitions a comet has made. Theory and observations can
be compared through these quantities: let the prime ’ symbol denote the relevant quantity
derived from observations e.g. ¥/ is the ratio of the number in the spike to the total number
for the observed sample, and let =y = ¥y /W¥]. If =; = 1, then observations and theory match
on this point.

The value of ¥} computed from the observed sample is 81/246 = 0.33 + 0.04, where
comets with perihelion beyond 3 AU have been excluded, and the quoted error is based on
Poissonian (/n) noise. Note that the definition of the spike includes the seventeen comets
with original 1/a < 0 in Figure 2.3, on the assumption that they are coming from the Oort
cloud, rather than interstellar space. The outright exclusion of the comets on hyperbolic
original orbits yields a value of ¥} = 64/229 = 0.28 £ 0.04.

The observations provide a value of ¥] & 0.33; the Gambler’s Ruin problem predicts
Uy ~ 1/m ~1/80 = 0.0125 (Equation 3.11); that is =y ~ 0.038. Thus, the Gambler’s Ruin
implies that only 1 in 25 of the perihelion passages expected to be made by older LP comets
are observed. Why this large discrepancy?

Observations and theory have proved difficult to reconcile on this point. Though more
sophisticated analytical treatments than the Gambler’s Ruin narrow the gap significantly,
the problem persists (e.g. Kendall 1961). Experimental results show the same discrep-
ancy: for example, Everhart (1979) found Z; ~ 0.2, using a straightforward Monte Carlo
simulation that included Jupiter, Saturn and passing stars.

The gap between theory and observation is known as the fading problem, since it can
be resolved if dynamically new comets fade drastically in brightness after their first perihe-
lion passage near the Sun. This fading makes them less likely to be observed at subsequent

perihelion passages, thus reducing their apparent lifetimes 1/¥y, and thus increasing = .
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Weissman (1980), using a Monte Carlo scheme similar to Everhart’s (1979), was able to
increase =; to unity, but not without adding such a fading law.

The standard explanation proposed for such fading goes along the following lines: comets
in the Qort cloud may never have approached the Sun to within more than a few tens of
astronomical units since their condensation from the solar nebula, and thus may contain
particularly volatile ices (e.g. CO, CO3) that cannot survive the comet’s first perihelion
passage close to the Sun. These volatiles create a large bright coma for the new comet,
but are substantially or completely depleted in the process. When the comet subsequently
returns (assuming it has avoided ejection and the other loss mechanisms), it will be much
fainter and may escape detection. The decrease in brightness is required to be largest over
the comet’s first few perihelion passages, levelling off as the most volatile components of the
comet’s inventory are lost. Thus, the fading problem may “simply” be caused by selection
effects.

However, a comet’s failure to reappear at its next perihelion passage could be the result
of other, possibly unsuspected, loss mechanisms. Any phenomena which results in a decrease
in the life span of LP comets would tend to increase =y. The reduction in brightness of
the comet due to a depletion of readily vapourised volatiles will be referred to as standard
fading. Determining whether or not standard fading is required to solve the fading problem,
or if some other dynamical mechanism is involved is a central goal of this research. Some

key points pertaining to the fading problem are listed below.

Pre- and post-perihelion brightnesses The evidence against the fading hypothesis in-
cludes the lack of observed large decreases in brightness as LP comets pass perihelion,
decreases which might be expected if their volatile inventory is being exhausted (Fes-
tou 1986). Though no collection of Oort cloud comet light curves seems available in
the literature, those few published show brightness variations typically no larger than

those of dynamically older comets (Whipple 1978; Roettger et al. 1990).

Short-period comet fading The reduction in brightness of comets over many perihelion
passages remains controversial, even for SP comets. Sekanina (1969) claims P/Encke
has faded by 0.03 magnitudes per orbit over the last century, but Kresak (1974,
1977) has argued that this is an artifact of instrumental and selection effects, and

that random variations in a comet’s brightness dominate any secular trend. In either
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case, the brightnesses of SP comets have not been observed to change drastically and

permanently over a few orbits, except for occasional splittings.

Splitting The physical break-up of the nucleus may provide a comet sink, but a half-life of
My, &~ 1/Wy ~ 2 or a splitting probability p ~ 0.3 would be required to produce the
required tail-spike ratio (see Equation 3.62). Such a high rate of splitting would not
allow comets to survive long enough to diffuse in 1/a up to the large values seen in
the tail of Figure 2.3. However, dynamically young comets have higher splitting rates
than older ones. Weissman (1980) showed that, over the period 1846 to 1980, long-
period comets had a 0.045 chance per perihelion passage of splitting, the short-period
comets only 0.008. In addition, the probability was higher for new comets (0.1) than
older LP comets (0.02).

The cause of splitting is not well understood: though some are caused by passages near
the giant planets, many are not associated with such encounters. Studies of cometary
outbursts, during which the comet may brighten by up to a factor of 100 for of order
a week, show that impacts by “interplanetary boulders” and chemical and/or phase
changes in the nucleus are not capable of fully explaining the distribution of events
(Hughes 1975). The splitting events appear not or only weakly correlated with the
ecliptic plane, asteroid belt and cometary perihelion points (Pittich 1971) but rather
are randomly distributed. Splitting events are, however, more likely to occur post-
perihelion by a factor of 2 or so, though better observational coverage at this time

may be a factor (Smoluchowski 1986).

Cratering rates If comets do fade drastically rather than being ejected or otherwise de-
stroyed, then their cores may still be present in the Solar System, but be too faint
to be observed. These dead comets should, however, contribute to the cratering
rate. Shoemaker (1983) compared the cratering rate determined from number counts
of impact basins on the Earth’s surface to that expected from the observed flux of
potential impactors, and found them to be consistent within a factor of two. Both
rates are difficult to compute and are based on the extrapolation of relatively poorly
determined data, but there is no evidence from cratering rate studies for an additional

source of Earth-impacting objects.
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3.10.2 The ratio of prograde to retrograde comets

In the Gambler’s Ruin problem, the lifetime m is proportional to the initial distance to the
short-period barrier 7;, (see Equation 3.11). A more careful determination of the energy
kicks imparted by the planets reveals that retrograde comets receive smaller A(1/a) on
average, and hence should have lifetimes three times longer on average.

If the lifetime of retrograde comets is three times that of prograde comets, the obser-
vations should reflect this fact through a ratio of retrograde to prograde of three to one in
the absence of other important comet loss mechanisms. But the observations, plotted in

Figure 2.7, show no such bias. Why is this the case?

3.10.3 The clustering of aphelion directions

A number of researchers (Tyror 1957; Oja 1975; Liist 1984), have reported that the
aphelion directions of LP comets are clustered in specific directions on the sky. However,
due to the presence of strong selection effects the results are not compelling. There is a clear
concentration towards mid-Galactic latitudes (Figure 2.11b), an effect which is expected
since the Galactic tide is most efficient when the Sun-comet line is at 45° to the plane of
the Galaxy.

However, even comets with semimajor axes greater than 36 000 AU show concentrations
at mid-Galactic latitudes (Ferndndez and Ip 1991), shown in Figure 3.2. At these distances,
stellar perturbations should also be able to fill the loss cylinder (Equation 3.47), so the
distribution of aphelion directions should be isotropic. The x? test indicates only a 107
chance of the Galactic latitudes being drawn from a spherically symmetric distribution.
However, the sample size is small, and thus the concentration at mid-latitudes may be a

result of sampling noise.

3.10.4 The source of short-period comets

Some LP comets may survive long enough to diffuse into short-period orbits. The incli-
nations of Halley-type orbits are, at first glance, consistent with a spherically symmetric
source (see Figure 2.1): is this source the Oort cloud?

The Jupiter family of comets have inclinations which are clearly not uniformly dis-

tributed, but rather concentrated in the ecliptic. Though Everhart (1972) showed that
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Figure 3.2: The distribution of Galactic latitudes of the aphelion directions of the 58 long-
period comets in Marsden and Williams (1993) with original semimajor axes greater than
36 000 AU. The heavy line indicates the distribution expected for a spherically symmetric
distribution of aphelion directions.

Jupiter is most efficient at capturing the lowest inclination comets from a spherical source,
the capture rate is still too low by a factor of 10° to account for the number of Jupiter-family
comets seen today (Joss 1973). The orbital elements of the Jupiter-family comets are most
consistent with capture from a low-inclination belt of material at 30 to 50 AU (Whipple
1972; Fernandez and Ip 1983; Quinn et al. 1990). Kuiper proposed in 1951 that material
might remain in this region as leftovers from the formation of the planets, so this ring is
commonly known as the Kuiper belt. Though the existence of the Kuiper belt has been
confirmed observationally e.g. Jewitt and Luu (1995), some fraction of the SP comets are
almost certainly dynamically very old Qort cloud comets. Is the Qort cloud’s contribution

to the population of short-period comets important?
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3.10.5 Hyperbolic comets

Some comets appear to be approaching the Solar System on weakly hyperbolic orbits (Fig-
ure 2.3) and treatments of non-gravitational forces are unable to fully explain this phe-
nomena. Are there perhaps unexplored dynamical mechanisms which might explain such

orbits?

3.11 The present state of the field

Most research on comet dynamics to date has been limited to analytical approximations and
Monte Carlo simulations, which may not capture all the dynamically important physics.

Analytical investigations of cometary behaviour can be performed through perturba-
tional and averaging techniques. These methods treat a simple two-body problem with an
additional, necessarily weak, perturbation. For example, the effects of the Galactic tide
(Heisler and Tremaine 1986; Torbett 1986; Matese and Whitman 1989) and of a single
planet (Quinn et al. 1990) on a comet’s evolution have been examined over restricted re-
gions of phase space. These methods usually examine only a single facet of comet evolution,
and break down if the interactions are too strong.

Monte Carlo methods allow long time scale investigations to be made relatively cheaply,
by evolving comets within a phase space with fewer dimensions than the full problem. The
simulation advances in fixed discrete time steps: at each one, the comets are redistributed
throughout the phase space based on pre-computed transition probabilities determined
by averaging over the omitted dimensions. However, Monte Carlo methods require sig-
nificant simplifications of the problem and may prove too coarse-grained to reveal all the
dynamics of interest (see Froeschlé and Rickman 1988 for a review).

Weissman (1978; 1979; 1980) has completed the most extensive Monte Carlo inves-
tigation of long-period comets dynamics to date. His model included the planets, non-
gravitational forces, the effects of passing stars, fading and splitting. However, his simula-
tions had some restrictions: they did not include the tide, the initial semimajor axis was
always 25 000 AU, the effects of the planets were represented by a Gaussian distribution of
energy kicks and comets were run for only 1000 returns.

His model can produce Z; ~ 0.66 to 1, with reasonable agreement between the incli-

nation and intrinsic perihelion distributions. His models include ad hoc assumptions e.g.
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some fraction of indestructible comets, increased fading for comets with small perihelia, and
a fixed disruption probability for new and old comets, but none that contradict cometary
physics as now understood.

Weissman had to add very strong fading (28% of his sample of comets fade) to his
simulations in order to match observations. Because his Monte Carlo simulations were fairly
coarse-grained and there is little or no other evidence for strong fading, the possibility that
the “fading” required is simply an unmodelled facet of the dynamics remains strong.

The most direct approach to the study of cometary dynamics is the numerical inte-
gration of the comets’ equations of motion, including all significant perturbations. Until
recently, computational restrictions have placed severe limitations on the sophistication and
time scale of possible investigations. For example, Dvorak and Kribbel (1990) numerically
integrated the trajectories of five Halley-type comets in the presence of the Sun, Jupiter and
Saturn for 10° years (~ 10 000 orbits). Manara and Valsecchi (1991) used similar methods
to follow 100 short-period comets for 1000 revolutions in low inclination orbits in the outer
Solar System.

As technological development has eased computational restrictions, direct integrations
of cometary dynamics have increased in complexity and length. Levison and Duncan (1994)
numerically integrated the known SP comets under the influence of all the planets except
Mercury and Pluto for 107 years. However, the research presented here represents the most

sophisticated direct integration of the long-period comets yet published.



Chapter 4

Algorithm

The purpose of this research is to examine the dynamical processes important in the evo-
lution of long-period comets, and to investigate the discrepancies between the observed
distribution of orbital elements and simple theoretical models. To accomplish this, a model
has been created to simulate the important dynamical effects influencing a long-period
comet’s trajectory as it travels from the Qort cloud to its destruction or departure from the
Solar System.

The model is embodied by a computer code called LOCI which has the following basic

framework:

e Fach comet is represented by a massless test particle. The test particles are followed
independently, one at a time; thus interactions between comets are neglected. Fach
comet is started in the Oort cloud, and its evolution is followed analytically until it
approaches the Sun close enough for planetary perturbations to become important.
The comet is subsequently followed by numerically integrating its equations of motion,

expressed in regularised coordinates (§ 4.1.2), until lost from the Solar System.

e The model Solar System in which the test particles evolve consists of the Sun, and
four planets representing Jupiter, Saturn, Uranus and Neptune. Their physical char-
acteristics are listed in Table 4.1. The terrestrial planets and Pluto are omitted for

the following reasons:

1. The orbit-averaged quadrupole moments of their orbits Q MpRz, are each at

least two orders of magnitude less than that of any giant planet (Equation 3.16

58
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| Name | Mg/M, r, (AU) R, (km) |
Jupiter | 1047.355 5.202803 71492
Saturn 3498.5 9.53884 60268
Uranus 22869 19.1819 25559
Neptune 19314 30.0578 25269

Table 4.1: The values of the reciprocal masses (Mg /M,), orbital (r,) and physical (R,)
radii used for the giant planets (Newhall et al. 1983; Lindal 1992; U.S. Naval Observatory
1992).

and column 5 of Table 3.1), and thus the smallest planets’ influence on cometary

perihelia is negligible compared to that of the giant planets.

2. The energy perturbations imparted by the smallest planets are unimportant: if
the comet’s perihelion distance is within the planets” orbit, A(1/a) < M,/R,
(Equation 3.5b) and the perturbation is dominated by Jupiter and Saturn (col-
umn 4 of Table 3.1).

e The planets’ orbits are modelled as circular and coplanar. There is no reason to
expect that the small eccentricities and inclinations of the planets play significant
roles in long-period comet dynamics. Mutual planetary perturbations are ignored. It
should be noted that the planets are represented consistently throughout the numerical
integration. No further approximations (e.g. putting the planets’ mass into the Sun

when the comets are far outside the planetary system) are made.

e The model includes the dominant component of the Galactic tidal field, as described
by Equation 3.23. The Solar System’s orbit about the Galactic centre is taken to be
circular, and in the Galactic plane. Deviations from this idealised orbit are ignored,
though they may result in some temporal variation in the tidally-induced cometary
flux, if there is a large amount of dark matter with small (< 50 pc) scale height in
our Galaxy (Matese et al. 1995). The Galactic centre and poles are oriented so as to

match their current positions relative to the ecliptic.

e The model does not account for encounters with passing stars. In the absence of close
stellar encounters, the transfer of comets from the Oort cloud to the loss cylinder
is dominated by the Galactic tide, because the tide fills the loss cylinder at smaller

semimajor axis than passing stars (page 50). The omission of stellar encounters has the
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considerable benefit of yielding a deterministic model, in which the comet’s evolution

is completely determined by the system’s initial conditions.

¢ The model includes the effects of non-gravitational forces of arbitrary magnitude and
direction. These parameters can be varied to observe their effects on the simulation

output.

e The model also contains provisions for investigating hypothetical phenomena, such as

a circumsolar disk or a solar companion.

4.0.1 Comparison with observations

The sample of known comets includes objects of varied and unknown dynamical ages, ob-
served to varying degrees of completeness over a relatively indefinite period. This is in
sharp contrast to the data available from simulations, where dynamical ages are known and
selection effects are non-existent. Thus, a basis for comparing the two sets must first be
constructed.

Let O be the set of comets for which Marsden and Williams (1993) calculated original
orbital elements, and which have perihelion distances less than 3 AU. It will be assumed that
the distributions of orbital elements of O are free of selection effects, except in the perihelion
distance ¢q. With this exception, O is representative of a complete sample of long-period
comets passing within 3 AU of the Sun over some fixed, though unknown, interval of time.
This assertion assumes that the flux of LP comets has not varied significantly in rate or
functional form over the observation interval (< 200 yr), and is based on the fact that no LP
comet has a period short enough to have made more than one appearance in the observed
sample.

Consider the expected flux of LP comets into the loss cylinder. This flux can be derived
(§ 4.2.2), and constitutes the probability distribution from which the simulations’ initial
conditions are chosen. Any sample of such initial conditions represents the LP comets
injected into the entrance surface over some fixed period of time. Let & be the sample of all
apparitions i.e. visible perihelion passages, performed by the comets represented by such
a set of initial conditions. Then comparisons between the model and observations can be
made by directly contrasting § and O.

That O and § are directly comparable is due to our choice of the fluz into the entrance
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surface as the initial conditions for the simulations, as well as the steady-state distribution
of LP comets. In the Solar System there are comets of all ages, but given a steady-state, one
comet “dies” e.g. is ejected, destroyed, etc., for every one that arrives from the Qort cloud.
This continuous distribution of ages is reproduced by the simulations by following individual
objects throughout their entire lifetimes. As the life-long evolution of the ensemble of
simulated comets is statistically equivalent to a snap-shot of the steady-state distribution,

S and O are directly comparable with each other.

4.1 Numerics

4.1.1 The integration algorithm

LOCT’s primary integration algorithm is the Bulirsch-Stoer method. The implementation
used is bsstep() from Press et al. (1986). The routine bsstep() has automatic step-size
control, achieved by monitoring the local truncation error i.e. the error due to the omission
of higher order terms by the integrator. A fourth-order Runge-Kutta-Fehlberg algorithm, a
Runge-Kutta variant designed for efficient step-size control (Burden and Faires 1989), was

used for testing the Bulirsch-Stoer routine.

4.1.2 Regularisation

Integrating the equations of motion of a comet on a highly elliptical orbit is difficult in
Cartesian coordinates, due to the very small step sizes required to maintain accuracy near
perihelion. The Kustaanheimo—Stiefel or K-S transformation replaces the six Carte-
sian coordinates of position ¥ = {z,y,z} and velocity ¢ = {&,y, 2}, with ten regularised
coordinates. It also replaces the independent variable, the physical time ¢, with the ficti-
tious time s, where dt = rds. The advantage of the regularised coordinates is that the
unperturbed (two-body) equations of motion become those of a harmonic oscillator: thus
the acceleration does not blow up as r goes to zero, and the ensuing small step-sizes and
numerical difficulties are avoided. Regularised coordinates are used in all the simulations

discussed here.

'The distinction between the Kustaanheimo-Stiefel transformation and the Kolmogorov-Smirnov test,
though usually clear from the context, will be made by using the abbreviations K-S and KS respectively.
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Eight of the regularised coordinates represent the particle’s phase space position @ =
{uy, ug, us, ugy and velocity @ = {u},ul, ul, u}}T. The ninth regularised coordinate is the
negative of the orbital energy h of the particle, given by

GMy — 2|
|al?

h —V =

——|v

_GM@ 1 |2
o 2

v, (4.1)

where V' represents any potentials besides the Sun’s. The tenth coordinate is the physical
time t. Both h and ¢ are dependent variables and must be integrated along the particle’s
trajectory in the same manner as the eight position and velocity coordinates.

The regularised position and velocity are obtained from the Cartesian coordinates by
means of the K-S transformation (see Stiefel and Scheifele 1971 for a fuller exposition of the
K-S formalism). Because the regularised space has two more dimensions than Cartesian
space, the K-S transformation is not one-to-one; each position in physical space corresponds
to a one-dimensional manifold in K-S space, as do the velocities.

A requirement of K-S regularisation is that the frame origin must coincide with the
primary force centre. This fact dictates the reference frame in which the comet integration

can best be performed.

Reference frames

The equations of motion differ depending on the reference frame in which they are expressed.

Two frames prove useful:

1. The barycentric frame is an inertial frame. However, the barycentre does not coin-
cide with the primary force centre, the Sun. Regularisation requires the force centre
and frame origin to coincide if its superiority in handling highly eccentric orbits near

perihelion is to be effective.

2. The heliocentric frame is non-rotating and centred on the Sun. Its advantage is
that the origin and central force coincide, thus allowing regularisation’s benefits to be
fully exploited during cometary passages close to the Sun. Its primary disadvantage
is that it is a non-inertial frame: it suffers accelerations as the Sun orbits the Solar
System’s barycentre, and thus the indirect terms (Equation 3.4) are not identically

zero. These terms do not go to zero as r becomes large, and result in extremely small

"The prime symbol ’ here represents a derivative with respect to s, i.e. uj = dui /ds, etc.
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step-sizes at large distances. To understand why, consider a comet far outside the
planetary system, whose period 7 is large compared to those of the planets. On time
scales much less than 7, the comet is effectively travelling in a straight line relative to
the Solar System’s barycentre. But the Sun continues its orbit around the centre of
mass, a complicated motion which is reflected in the heliocentric frame by the comet
taking on a tortuous looping trajectory, like a telephone cord. This complicated path
results in very small step sizes in the integration algorithm, with corresponding slow

progress and numerical difficulties.

The two frames complement each other: the benefits of both can be obtained by per-
forming the integration in the heliocentric frame near perihelion, and switching to the
barycentric frame at large radii. Regularised coordinates are used in both frames; regular-
isation provides little benefit and some increase in complexity over Cartesian coordinates
in the barycentric frame, but its use eliminates the need for duplicate Cartesian and regu-
larised coordinate subroutines. The switch between the two frames is accomplished by the

model at a constant distance from the Sun, normally taken to be at 10 AU.

4.1.3 Error tolerances

The error in a single integration step is dictated by a set & of ten error limits
52{&m---,t‘/’u“gui,---,5u;175h,5t}, (4.2)

one for each of the regularised coordinates. The Bulirsch-Stoer routine compares its own
estimate of the local truncation error against £ in order to adjust the step-size, and to keep
the single-step error below those limits.

The value of the error limits is controlled by means of a single parameter ( called the tol-
erance, which is translated into an error limit through a process described in Appendix B.
The tolerance is typically chosen to be 107 for reasons described in § 4.4, with an upper

limit set by the machine precision of roughly 10~

4.1.4 Random numbers

A sequence of random numbers is required to initialise the simulations. In this research,

approximately 106 random numbers are required, ten for each simulated comet. Six are
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required for the six initial orbital elements, and four for the initial phases of the planets.
The model uses ran?2() from Press et al. (1992), modified for use with double precision
(64-bit) numbers, to produce the required values. This routine uses Bays-Durham shuffling

018

to avoid serial correlations and has a period of over 10*° calls.

4.1.5 Chaos

The motion of Halley’s comet has been shown to be chaotic (Chirikov and Vecheslavov
1986), as has that of comets on near-parabolic orbits with perihelia near the giant planets
(Petrosky 1986; Sagdeev and Zaslavsky 1987). It is likely that the motions of most comets
in these simulations will be chaotic as well. Thus, the numerically integrated trajectory
provided by LOCI is expected to diverge exponentially from the true one as a result of
truncation and roundoff errors (e.¢g. Miller 1964).

This problem is inherent in all N-body simulations: arbitrary precision mathematical
routines are becoming available, but remain much too slow. However, it is reasonable to
suppose that the simulated results still provide an accurate reflection of reality. The errors
introduced by finite precision arithmetic (roughly 1 in 10'® per step) are likely similar
in order of magnitude to those introduced into the real Solar System by such weak and
neglected effects as the non-uniform distribution of matter in the solar neighbourhood.

Thus, one may hope that, statistically, the simulations continue to reflect reality.

4.1.6 Time requirements

The question of where most of the CPU time is likely to be spent can be addressed as
follows: The probability of a comet being ejected from a simple Sun-planet system on the
mt" orbit is given by a power law (Equation 3.13). If the probability of a comet reaching an
end-state remains a power law under the addition of the tide and the other relevant physics,

and this power law has the form
p(m) o m?, (4.3)

where 7 is some constant, then the expectation value ™ of m is just

m= ij: m-p(m) ij: m7th (4.4)

Equation 4.4 diverges if ¥ > —2. A Sun-planet system has v = —3/2 (Equation 3.13), and

though the extra physics in the model is expected to increase the rate at which comets evolve
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and hence lower v, it seems likely that m will ultimately prove to diverge, i.e. that most
of the time will be spent following a few very long-lived comets. This problem is handled
by putting “on hold” any comets which prove to have very long lifetimes, and re-examining
them at a later date. However, such cases are relatively rare, and only a few dozen of the
hundreds of thousands of comets simulated here are not eventually integrated throughout

their full lifetimes.

4.1.7 Planetary encounters

Close encounters between comets and planets, including collisions, are of interest for de-
termining both current and past cratering rates. These simulations track such events. A
close encounter with a planet is defined here to be a passage through a planet’s sphere of
influence R;. The sphere of influence is defined to be surface around a planet at which the
perturbation of the planet on the two-body heliocentric orbit is equal to that of the Sun on
the two-body planetocentric orbit. If the planet’s mass is much less that that of the Sun,

this surface is roughly spherical and is given by

M 2/5
= (3) (4.5)

where 7, is the planet’s orbital radius. The Sun has no sphere of influence in this sense, so
a close encounter with the Sun is instead defined to be passage within 10 solar radii.

Each crossing from outside the sphere of influence to within is counted as one encounter:
the simulation does not check for multiple close approaches while the comet is within the
sphere of influence. However, it will be seen that captures, defined here to be a close
encounter with a planet during which the eccentricity relative to the planet at closest

approach is less than unity, are extremely rare events.

4.2 Initial conditions

In the absence of recent (¢ < 107 yr) stellar encounters, the injection of new long-period
comets from the Qort cloud is dominated by the Galactic tide. Equation 3.28¢ reveals that

a comet’s perihelion decreases under the tide’s influence when sin 20 > 0, that is when

O<@< /2 or T<®<37T/2. (4.6)
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Comets with & outside this region have increasing perihelia, and therefore are not of imme-
diate interest.

LOCI randomly selects the comets’ initial conditions from the flux of comets with
decreasing perihelia. The flux is measured at a phase space boundary called the entrance

surface.

4.2.1 The entrance surface

The entrance surface defines the angular momentum at which LOCI begins the simulation
of a comet. Taking the entrance surface Jg to be a cylinder i.e. a fixed perihelion distance,
proves too restrictive for our purposes, and thus Jg is permitted to be a function of comet’s
initial orbital elements.

There are two main criteria for the selection of an appropriate entrance surface. Firstly,
the corresponding perihelion distance gz should be far enough outside the planetary sys-
tem that the orbit-averaged approximation for the tide is valid for ¢ > ¢5. Secondly, ¢z
should be close enough to the planetary system that CPU cycles are not wasted by numer-
ically integrating the comets’ trajectories in the regions where they can be handled well
analytically.

To calculate Jz, consider the change in angular momentum per orbit AJ, given by
Equation 3.30. If Jg is taken to be a constant Z times AJ, then the orbit-averaged ap-
proximation is correct outside Jg, as long as Z 2 1. A value of 3 for Z will be used here.

The expression for Jg thus becomes, through FEquation 3.30

1 2
Jp(L) = 2207 ro

277
= G3Mée L, (4.7)

or, in terms of the entrance perihelion distance gz,

(4.8a)

qn(a)

1 (1 22 100W4p364a6) i
a - - - ar2 ?

M

4.2
3250%72'00(17 where e ~ 1. (4.8b)
M@

There are three restrictions on this expression:

1. The initial perihelion distance ¢z, must be sufficiently far outside the planetary system

that the typical energy perturbation per orbit is small. Equation 4.8b has no minimum
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Figure 4.1: The base 10 logarithm of the fractional root-mean-square change in energy,
((AE/E))'/2, per perihelion passage caused by the four giant planets, as a function of
perihelion distance g¢.

perihelion distance, so a lower limit gz_ on the perihelion distance must be imposed.
The exponential decrease of AE with r (see Equation 3.14) suggests that ¢z_ need
not be much greater than the size of the planetary system. The value of ¢gp_ was
chosen so that the root-mean-square of the fractional change in energy ((AE/E)%)'/?
after one orbit (aphelion to aphelion) in a model Solar System containing only the
Sun and the four giant planets, would be less than 0.1% for typical Oort cloud comets.
Figure 4.1 shows the distribution of A(1/a) in such a system as a function of ¢: all
orbits have an initial semimajor axis of 25 000 AU, and the values of cost, w and
were selected from uniform probability distributions. The energy change drops below

0.1% per orbit at about 60 AU; this distance is taken to be ¢5_.

The semimajor axis a— where Equation 4.8b is equal to ¢5_ is easily shown to be

M2\
~ © 1E
a— ~ (m), (49&)
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-2/7 1/7 —2/7
z qp— ( Po )
~ 24000 — AU. 4.9b
(3) (60 AU) 0.15 Mg pc™? ( )

2. It is clear from Table 3.2 that J is always less than L, which reflects the requirement

q < a. Equations 4.7 and 4.8a, b violate this condition at large L, as the analytical

treatment of the tide breaks down where AJ ~ J. The condition Jg < L is violated

where
M@ 1/3
—_ 4.1
a > (107?23,00)7 (4.10a)
2\ —1/3 -1/3
> 58000 (—) (p—O_S) AU. (4.10b)
3 0.15 My pc

This is outside but near the Qort cloud outer boundary chosen here, and which is given
by the maximum initial semimajor axis ay = 50 000 AU. Equation 4.10a provides a
restriction on our choice of Z, confining it to values of Z < 4.75 for our chosen value

of ay.

As the entrance surface expands towards larger semimajor axes, ¢; — a, and the frac-
tion of comets which evolve entirely within the entrance surface becomes important.
In fact, at ¢z = a, all comets are already inside (or just on) the entrance surface.
The assumed uniform distribution in angular momentum assumed implies that at any
given semimajor axis, the fraction 9 of comets already inside the entrance cylinder

and which can cross the Jupiter barrier is Jg/L or, from Equation 4.7

V=2 L= 06— . 4.11
G3ME 3 50 000 AU 0.15 Mg pc=? ( )

Thus a substantial fraction of comets at the outer edge of the Oort cloud are missed,

but this fraction decreases rapidly with decreasing L. Integrating the phase-space
density (described later in § 4.2.2) of comets both inside and outside the entrance
surface shows that, for the afore-mentioned values, approximately 90% of comets
reside outside the entrance surface. Thus only a small fraction of comets are missed

through our choice of the entrance surface.

In a similar vein, the approximation e =~ 1 becomes invalid as gy — a. Equation 4.8a

yields a value for ¢ at the outer Qort cloud edge of approximately 10 000 AU,
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implying e = 0.8. Thus, the large eccentricity approximation remains accurate in this

limit under Z = 3.

3. Equations 3.26 and 3.27a,b reveal that not all cometary perihelia are eventually drawn
into the planetary system by the tide. Many comets reach a minimum perihelion
distance far outside the planetary system, and thus do not become subject to signif-
icant planetary perturbations. In the absence of stellar perturbations, such comets
remain in the Qort cloud, and never become visible. To avoid wasting CPU cycles
on such comets, the trajectories of comets whose initial conditions would result in a
tidally-induced minimum ¢ greater than 40 AU are not numerically integrated, but
terminated immediately. From numerical experiment it is found that approximately
five of every six comets entering our entrance surface have perihelia which will not
cross the ¢ = 40 AU boundary; thus the exclusion of such orbits nets a significant

savings in processor time.

The entrance surface as detailed above can be summarised as

(p— where a_ < a < a—
qg = i (4.12)
Zz%(f where a= < a < ay
©
subject to the condition Z < Z, where
4= 107r]\2/[,0®0af|3_7 (#.13)

and where a4 and a_ are the outer and inner limits of the Qort cloud respectively. Plugging

in the previously discussed numerical values, Equation 4.12 becomes

60 AU where 10 000 AU < a <24 000 AU
(4.14)

qp & 7
; 60 (L) AU where 24 000 AU < a < 50 000 AU
24 000 AU

noting that our choices of Z =3 and a4y = 50 000 AU satisfy 2 < Z; (Equation 4.13).

4.2.2 The flux of comets into the entrance surface

Let the phase space density of comets, expressed in the canonical system 7 of Table 3.2, be
given by g(L, J, Jz, Q,0, f). The phase space density may in principle be a function of all
the coordinates and momenta. However, if the Qort cloud is collisionless, and in a quasi-

steady state, Jeans theorem states that ¢ is a function only of the integrals of motion. If no
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perturbations are present, the integrals of motion include the energy and the components
of the angular momentum.

The Oort cloud is certainly collisionless, with a two-body relaxation time of over 1026
years (Binney and Tremaine 1987, Equation 4-9). For a quasi-steady state in which L, J
and J; are integrals requires firstly that any perturbing forces be weak, and secondly that

the loss cylinder be small.

1. The requirement that the perturbing forces be weak is fulfilled if the tidal forces are
weak, as the tide is the dominant perturber of the Oort cloud. The ratio of the tidal

to the solar force (¢f. Equations 3.2 and 3.23), given by

o 2 3
li“de _ A polz|r < AT por ‘ (4.15)
F, Mg Mg
is less than unity where
M 1/3
r< ( 2 ) ~ 0.8 pc ~ 1.7 x 10° AU, (4.16)
4T po

Thus, for comets with ¢ < 85 000 AU, the assumption of weak tidal forces is valid.
The next strongest perturbing forces are those of the planets, but they are important
only near the loss cylinder. As the entrance surface ¢z is chosen to be everywhere well
outside the loss cylinder and the planetary system, the assumption of weak planetary

perturbations is valid outside ¢z.

2. The loss cylinder must be small because losses are irreversible and detract from the
steady-state. The cross-sectional area O, of the loss cylinder J. = rv.. (Equation 3.20)
is

; (4.17)

O.=7mv, =7 p

9 (J*)z N 217G Mg q.

An upper limit to the bound transverse velocity v;s, possible at any radius is the

parabolic velocity vy, = 2G' Mg /r, yielding a total cross-sectional area 0., = Tvl_ =

2nGMg/r. The ratio of the loss cylinder area to the total phase space area is

0, ¢ _3 ( G ) ( r )‘1
~—a ] 4.1
O 1 0" \10 a0/ \toooo av) (4.18)

indicating that the loss cylinder is indeed small.
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Having ascertained that the distribution of Oort cloud orbits outside and near the en-
trance surface is collisionless and in a quasi-steady state, Jeans theorem now assures us that
the distribution function g can be a function only of L,.J, and J;. The Qort cloud phase
space density ¢ used in these simulations is based on the results of Duncan et al. (1987),
who determined the Qort cloud’s number density n to be a function only of radius r, and

to be of the form
n(r) o re (4.19)

where o = —3.5+0.5, within a range of » from 3000 to 50 000 AU. Integrating Iiquation 4.19
over r yields the number of comets N(r) within a given shell with its inner edge located

3000 AU from the Sun,
N(r)= / drrir® dr oc P13, (4.20)
3000 AU

The Oort cloud being in a quasi-steady state, r can be replaced by its time-average (r) =

a(2 + €%)/2, yielding

N(a) o« a*t? where 4500 AU < a < 75000 AU. (4.21a)

N(L) o« L**¢ (4.21b)

Duncan et al. (1987) also found cometary inclinations to be randomised for ¢ > 5000 AU,
indicating that g is not a function of the inclination ¢, and hence J;, at large radii. It will be
assumed here that the angular momenta are randomised, and hence that g is not a function
of J. This last assumption rests on the mixing of the Qort cloud by passing stars, which is
also presumed to replenish any regions of phase space depleted by the actions of the tide
and the loss cylinder.

Taking g(1) < L? where 3 is some constant, the total number of comets can be expressed

in terms of L as

L L J L
N(L) = /df/dQO/dwo/dLo/dJ_/]ng = 87r30/g(L)L2dL x LP+3, (4.22)

Comparison of Equations 4.21b and 4.22 shows that § + 3 = 2a 4+ 6, and hence that

g o< L?@*3, The final form chosen for the phase space density is

g(L) = gol**t? (a = —3.5,10 000 AU< a < 50 000 AU), (4.23)
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where ¢g is a constant factor related to the total number of comets in the cloud. The inner
edge of the Qort cloud was chosen to be a— = 10 000 AU instead of 3000 to 5000 AU
to conserve CPU time by neglecting comets which cannot pass the Jupiter barrier, as our
interest here is restricted to comets that can become visible. The outer edge of the Oort
cloud is taken to be at ay = 50 000 AU.
Let @(L,JE,Jg,Q,&J,f) dL dJ;dQdodf be the average flux per unit time of comets
crossing into the entrance surface Jg at a given point, then
Jgp—Jr
(L, Jg, J:, 00, f) = % / g(L,J, J:,Q,0, f)dJ], (4.24)
Jg
where 7 is the comet orbital period and J is the usual time derivative of the angular
momentum and here represents the phase-space velocity normal to the entrance surface,
positive outwards. Note that Equation 4.24 holds whether or not the entrance surface is
“filled”, i.e. whether or not Jr ~ Jg.
Substituting Equation 3.28b and Equation 4.23 into Equation 4.24 yields the flux ® into

the entrance surface

57 pogo L2 TP

GM2 JZ

(L, Jg, J:&) = (JE — J2)(L* — J%)sin 26. (4.25)

The sign of Equation 4.25 is determined by sin 2&. Since only the flux ¢nto the surface is

of interest, the quantity ® is defined to be

¢ where & < 0, that is where 0 < @ < 7/20r 7 < @ < 37/2
by = (4.26)
0 otherwise

such that ® g is non-zero only where the tide is moving cometary perihelia inwards.

In these simulations, the comets’ initial elements are drawn at random from ®z. A
practical implementation of this selection process requires the cumulative probability dis-
tribution P(w) of comets drawn into the entrance surface by the tide, as a function of each
relevant variable w. If P(w) is known, one can generate an appropriately distributed set of
w’s by solving the equation w = P7Y(£), where £ € [0,1] is a uniform random deviate and

P~!is the inverse transform of P, mapping [0, 1] — w. P(w) is related to ® through

oo 00 00

Plw) = /wdw/ / /@E(w,w,y,z)dxdydz (4.27)

—00 —00 —0O0

where w, x, 7y and z are the canonical variables, and it has been assumed that ® is separable.



CHAPTER 4. ALGORITHM 73

Combining Equations 4.26 and 4.27 and converting to orbital elements, the expressions

for the cumulative probabilities are found to be

P(Q) = % (0<Q<2r)  (4.28)
(1 = cos 20) 0<o< i)
R % (F<wo<T)
P(&) = (4.28b)
1+ (1 — cos20) (r <& < 2L
1 (3r <& < 2m)
P@) = %(z - %sin %) O0<i<m)  (4.28)
P(p) = % (0<pu<2r)  (4.284)

Note that the mean anomaly g is chosen from a uniform random distribution. The orbit-
averaged approximation, by its very nature, tells us nothing about the role of p or the
true anomaly f in the dynamics. The flux into the entrance cylinder could in principle be a
function of f, but our choice of initial conditions should be insensitive to this fact unless the
comet can cross the entrance cylinder in less than one orbit i.e. AJ ~ Jg. Our definition
of Jp = ZAJ with Z > 1 specifically precludes this possibility, so g may be chosen at
random.

The cumulative probability function of the semimajor axis is more complicated, its

calculation being left to Appendix C. Between the inner edge of the Oort cloud a_ and a—,

1/2
Pa) = % [a1/2 — a4 2q,_ (a2 = aZ'?)] (4.28¢)

and where a— < a < ag

52 po
2MaP,

P(a) = Pla=) +

at —at 107%po 2 2 a10 — gl
5 = — ( M, z =1, (4.28f)

where P, is a constant such that P(ay) = 1. The eccentricity e is determined by our choice

of ¢ and a,

e=1-1, (4.28¢)
a

These seven equations (4.28a through g) are used by LOCI to choose the comet’s initial

orbital elements.
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4.3 The end-states of comets

A comet’s dynamical lifetime is finite: any of a number of processes may transfer it to an
unbound orbit or destroy it outright. A comet is said to have reached an end-state if its
orbital parameters allow it to be classified into one of nine categories, listed below. Entering
an end-state may indicate the loss or destruction of a comet or simply an intermediate
stopping point, from which the simulation can subsequently be restarted. The nine end-

states are:

Collision : The distance between the comet and a Solar System member i.e. the Sun or one
of the giant planets, is less than that object’s physical radius. Simply comparing the
planet-comet distance to the planets’ radii at each time step is insufficient to detect
all collisions: the integrator’s finite step-size could result in the integration “stepping
over” the planet, and failing to record a collision. Collision detection is ensured
by calculating the Keplerian i.e. two-body, orbit of the comet around the nearest
planet, and using the pericentric distance of this orbit as the minimum planet-comet

separation.

Ejection : The comet is leaving the Solar System on an orbit which is unbound i.e.
parabolic or hyperbolic with respect to the Solar System’s barycentre. The simulation
is not terminated until the comet is at least 10> AU from the Sun, to allow for the
possibility that subsequent perturbations will result in the comet losing energy and

returning to a “bound” state.

Escape : Though still bound to the barycentre in the two-body sense i.e. ¢ < 1, the comet
has ventured beyond the last closed Hill’s surface (Equations 3.64a, b and c), and is
considered stripped from the Solar System by the action of passing stars, molecular

clouds, etc. The distinction between ESCAPE and EJECTION is somewhat arbitrary.

Exceeded age of Solar System : The comet lifespan has exceeded the present age of
the Solar System, taken to be 5 x 10 yr. Such a comet would, given time, reach
one of the other end-states, but has not yet had time to become part of the observed

sample.

Exceeded time limit : The comet has completed more than 5000 orbits without entering

one of the other end-states. The simulation is terminated and saved, and will be re-
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examined at alater date. This is merely a safeguard that prevents extremely long-lived

comets from consuming large amounts of CPU time, as discussed in § 4.1.6.

Faded The comet is considered to have faded through loss of volatiles, splitting or other
mechanisms, and is no longer bright enough to be observed, even if its orbit should
carry it close to the Sun. The probability of a comet fading is largely unknown, and
the determination of this fading function is a primary goal of this research. The
fading end-state is not allowed as an end-state in any simulations unless explicitly

mentioned in the accompanying text.

Perihelion too large : The comet’s perihelion ¢ has evolved beyond some limit, usually
taken to be 40 AU, and is moving outwards under the influence of the tide i.e. sin 2@ <
0. Such a comet is unlikely to become visible in the near-future. Though the comet’s
perihelion may begin to decrease once again, these “new” orbital parameters should
already be represented within the flux of comets into the entrance surface, and thus

need not be considered further.

Short-Period The comet’s orbital period has decreased below 200 yr: it has become a
short-period comet. The possibility exists that such a comet will diffuse back out to the
LP regime, but the small number of comets which reach this end-state (see Tables 5.1

and 5.3 later) make the consideration of a return from this end-state unnecessary.

Visible The comet has passed within 3 AU of the Sun. Such comets continue to evolve
after their first apparition, however, it will be seen in § 5.1 that the first appari-
tion provides a useful intermediate stopping point for the simulations. Though some
comets do become visible with perihelia greater than 3 AU, the observed sample is

almost certainly not complete beyond this point.

4.4 Model implementation and testing

The model was implemented as a computer code written in ANSI C, with all floating-
point values in double (64 bits ~ 15 digits) precision. The primary testing platform was
a Silicon Graphics IRIS 4D/25S; the primary simulation platforms were two DEC Alpha
AXP 2100 4/200s.
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4.4.1 Integration tolerance

Testing was accomplished by examining each segment of included physics e.g. planets, non-
gravitational forces, etec. in isolation, and comparing these restricted simulations with known
analytical results. First, however, a set of criteria is needed to choose the tolerance (, while
balancing speed and accuracy. The full simulation has no conserved quantities suitable for
determining the tolerance, so ( was chosen such that the typical fractional error per orbit
is less than 1077 for the relevant conserved quantities in each of the restricted simulations,
described below. After experimentation, the value of the tolerance { was chosen to be
102, The typical errors, described in the sections below, are summarised in Table 4.2. The
fractional energy change per orbit for a typical LP comet in the complete model is of order

unity, so an integration tolerance of one part in 107 is more than sufficient for this problem.

4.4.2 The two-body problem

Consider the Sun and a single test particle. This simple system tests the implementation
and benefits of regularising the coordinates. A hundred particles were run on orbits with
a =10 AU and ¢ = 0.01 AU (e = 0.9999999). The other elements were chosen randomly
from a spherically symmetric distribution and the particle trajectories were integrated for
10° orbits (~ 10'3 yr).

The angular elements (7, €, w) and the angular momentum both showed a roughly
linear secular trend in error growth with orbit number, with a fractional change of roughly
1072 orbit='. A certain amount of scatter was also present, with a fractional root-mean-
square (RMS) value per orbit of 1075,

The errors in orbital energy showed no net growth, but did show a fractional scatter of
about 1% about the correct value. However, this scatter was not due to error in the regu-
larised energy coordinate h (§ 4.1.2), which was perfectly conserved, but to slight roundoff
errors in the transformation from the regularised coordinates to Cartesian coordinates to
orbital elements. Also, |E| is small to begin with, only 1073 AU~!, so this “large” error is
not a concern.

When the particles’ equations of motion are expressed in Cartesian coordinates, a much
lower integration accuracy is achieved. Given the same initial conditions, the angular ele-

ments are typically conserved to only 1in 10° over 1000 orbits, both the energy and angular
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| Test | a (AU) ¢ (AU) AE/E AJ/J AW/W |
Two-body | 100 000 0.01 10-%  10°% —
Jupiter 00 0-5.2 — — 107°
Tide 47000 ~ 10000  — 10712 —
NG 10 000 0.1 10°8% 107 —
Disk 10 000 0.1 10-7 10710 —

Table 4.2: Typical per-orbit errors for different test scenarios. Initial semimajor axes a and
perihelion distances ¢ are shown on the left. The errors are in the orbital energy (AE/FE),
angular momentum (AJ/J) and Jacobi constant (AW/W).

momentum drift by factors of ten or more, and particles frequently reach unbound orbits.
The regularised coordinates are thus to be preferred for the integration of high-eccentricity

orbits.

4.4.3 The planets

In this section, the gravitational influences of the Sun and Jupiter alone on a test particle
will be considered. Collisions are ignored, Jupiter’s orbit is taken to be circular, and the
only allowed end-state is ejection. This simplified system will be termed the Sun-Jupiter

model or a Sun-planet model if an arbitrary planet is to be considered.

Precession

The planets perturb comets in ways other than a simple energy kick. Quinn et al. (1990)
showed that the planets produce a precession of the comets’ orbits, which can be pictured
as a trajectory in g—w space. This precession is due to the quadrupole moment of the
planet’s time-averaged orbit. A comparison of the results obtained with LOCI with those
of Quinn et al. under the same initial conditions is shown in Figure 4.2.

The phase-space trajectories show the same general behaviour, and the differences ob-
served are expected. Quinn et al. orbit-averaged the system’s Hamiltonian, and thus their
results lack the realistic stochasticity present in our integration. As well, quantities which
are integrals of the motion of the averaged Hamiltonian are not strictly conserved under
the unaveraged Hamiltonian. Figure 4.2a reflects this fact through the slow wandering of
trajectories away from their averaged ideals e.g. two of the trajectories in Figure 4.2a cross
the ¢ = 0.4 line due to drift in the z-component of the angular momentum. Though the

existence of the above-mentioned differences between LOCI’s and the orbit-averaged results
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Figure 4.2: Evolution in ¢-w space of a test particle in a Sun-Jupiter system: (a) LOCI’s
integration and (b) orbit-averaged results from Quinn et al. (1990). The arrows in (a)
indicate the direction of evolution with time.

are due to the more realistic treatment used, the quantitative correctness of these deviations

remains unverified by this test.

Lifetime against ejection

The Gambler’s Ruin problem (§ 3.1.2) predicts that, of an initial sample of parabolic orbits,
the probability of a particle remaining bound to a Sun-planet system at the m!” perihelion
passage is proportional to m~1/? (Equation 3.12). LOCTI’s duplication of this result appears
in Figure 4.3: the straight line indicates the least-squares best fit, the slope of which matches
the expected result to within 0.5%. The initial cometary perihelia are uniformly distributed

inside Jupiter’s orbit.

Jacobi’s integral

The circular restricted three-body problem deals with a massless particle in a Sun-
planet system. The only known integral of motion of this system is Jacobi’s integral W.
Expressed in a non-rotating barycentric coordinate system with the xz-axis increasing along

the Sun-Jupiter line, and the y-axis perpendicular to  and in the orbital plane, Jacobi’s
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1000

100

Slope: —0.20012 +£0.0021

Figure 4.3: Number N of test particles remaining in the Sun-Jupiter system as a function of
orbit number m for a set of 1000 initially parabolic comets. The particles’ initial perihelia
were distributed linearly in ¢ inside Jupiter’s orbit. The straight line is a least-squares fit
to the points.

integral can be expressed as

W =0 +4r(yi — 29) /Ty — 2G (— + — (4.29)

where 7,,, is Jupiter’s orbital period, and v* = % + §% + 2 is the test particle’s velocity.

Consider the 1000 test particles in the random walk described in the previous section.
Most particles are ejected by the one thousandth orbit, but twenty remain. These survivors
displays errors of ((AW/W)?)1/2 ~ 1072, or 107 per orbit.

The error in the Jacobi integral is large compared to, say, the energy error in the
two-body problem (§ 4.4.2). The difficulty arises from close planetary encounters: the
coordinates are regularised about the Sun, not the planet, and the large accelerations which
occur during encounters degrade the simulation’s accuracy, despite the reductions in step-
size. Though one could switch to a coordinate system regularised about the planet in
question during close approaches, the added complexity has been judged excessive for our

purposes. The Jacobi error is the exception to the rule that the integrals of motion should
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be constant within 107 per orbit (§ 4.4.1).

The distribution of energy perturbations

The energy perturbations imparted to parabolic comets making a single perihelion passage
through a Sun-planet system were examined numerically by Everhart (1968). Figure 4.4
shows a comparison of our results for a Sun-Jupiter system with Everhart’s functional fit.
The points are LOCT’s results with /n error bars, the solid curve is Everhart’s result. The

initial conditions for the 10* comets used in our simulation were

e Parabolic orbits, started 10° AU from the Sun,

o Perihelion distances distributed uniformly between 0.9 and 1.1 times Jupiter’s orbital

radius,

e Angular elements (¢,Q,w) chosen from a spherically symmetric distribution.

The initial conditions for Everhart’s result were: spherically symmetric angular elements and
perihelia at Jupiter’s orbit. The distributions show some slight differences, but these are to
be expected. Everhart’s function is chosen empirically to match the observed distribution’s
shape, rather than from any consideration of the physics, and because the shape of the
distribution depends strongly on inclination, it would be surprising if an empirical function
could accurately represent all the phase space in question.

In fact, the function shown in Figure 4.4 is not the function Everhart claims as rep-
resentative of the distribution averaged over all inclinations, but rather the sum of the 14
separate fits he produced, each for a small range of inclinations between 0 and 7. Everhart’s
all-inclinations function differs markedly from our results and from the sum of his separate
determinations, especially for small perturbations (|JA(1/a)] < 0.0002 AU™!). The cause of
this discrepancy seems to be that the empirical function Everhart chose, though providing a
reasonable match when fitted to the distribution associated with a small inclination range,

it is rather poorly designed to match the sum of these distributions.

4.4.4 The Galactic tide

Heisler and Tremaine (1986) analytically derived the orbit-averaged evolution of a comet
moving under the Galactic tide. The comet moves along a trajectory in K—& space, where

K = J/L = V1 —¢? and @ is the usual argument of perihelion relative to the Galactic
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Figure 4.4: The A(1/a) distribution for parabolic comets making a single orbit with peri-

helion near Jupiter’s orbit, at two different magnifications. The heavy line is a composite
of Everhart’s (1968) empirical fits.

frame. The allowed curves are parametrised by K; = K cos?, the component of K along
the Galactic Z-axis. Figure 4.5a displays LOCI’s results for K; = 0.585; Figure 4.5b those
of Heisler and Tremaine (1986). The data in Figure 4.5a, which is sampled about once
per orbit, shows some scatter around the analytical trajectory, because our model does not
ignore the high-frequency components that have been averaged out of Heisler and Tremaine’s
result.

The quantities Jz, K; and L are all conserved in the orbit-averaged approximation, but
only J; is an integral of the unaveraged motion. Our results display a net error in J; of less
than 1 part in 1012 per orbit over the 500 to 5000 orbits required to travel from & = 7/2 and
back again along the curves plotted in Figure 4.5. The RMS error per orbit was roughly
1 in 10, the source of this error again being the accumulated error in the transformation
of coordinates from regularised to Cartesian to orbital elements to J;, and is thus not of

concern.

4.4.5 Non-gravitational forces

Non-gravitational forces can be handled by K-S regularisation despite the fact that they

are not conservative and thus cannot be represented by a potential. The accuracy of the
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Figure 4.5: Orbital evolution in K—& space under the dominant component of the Galactic
tide: (¢) LOCT’s results, and (b) analytical treatment by Heisler and Tremaine (1986). The
curves labelled a,b,d, f and ¢ in (b) correspond to the curves with C' = 1.4,1.2,1.01,0.75
and 0.42 in (a) respectively.

NG module of the simulation was evaluated by comparing its results with a parallel but
independent! integration of Gauss’s equations (Equations A.19a-f).

The test orbits had semimajor axes of 10 000 AU, perihelion distances of 0.1 AU and
random, spherically symmetric angular elements. The test duration was 1000 orbits. Each
of the three NG parameters, radial, tangential and normal, was tested individually, with
values of £107% AU day~2.

The two methods showed differences less than 1 in 10'? on all elements on which the
NG forces in question should have no effect e.g. semimajor axis in the case Ay = Ay = 0.
Otherwise, the methods typically differed by 10~® rad orbit=! in the angular coordinates.
The fractional differences in the energy and angular momentum were typically 1 in 10° and

1in 10%, or 10~® and 10~ per orbit, respectively.

t“Independent” here means that, though all differential equations are integrated by the same routines,
the simulation and the parallel integration cannot see each others coordinate values.
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4.4.6 Massive circumsolar disk

The effects of a hypothetical disk of material orbiting the Sun at distances of 100 to 1000 AU
were modelled through the addition of a Miyamoto-Nagai disk potential, described in § 3.6.
The test case had ag = 1000 AU, by = 100 AU and My = 1073M;), with the test particle
orbits having ¢ = 10 000 AU, ¢ = 0.1 AU and spherically symmetric angular elements. The
test particles were followed for 1000 orbits. The z-component of the angular momentum
J., is an integral of the motion, and was conserved to better than 1 in 10'° per orbit. The
Keplerian orbital energy (x 1/a) is not conserved in the presence of the disk potential, but
the total energy (Keplerian + disk potential) is: in the simulations it varied by only 1 in
1019 per orbit as well.

A more comprehensive test involved the co-integration of Gauss’s equations, as was done
for the NG forces. In this case, the two schemes typically differed by 10~® rad orbit=' in the
angular coordinates. The fractional differences in the angular momentum and the Keplerian

010

energy were 1 in 107 and 1 in 10'° per orbit respectively.
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Results

The dynamical evolution of an Qort cloud comet can be conveniently divided into two
separate stages for our purposes. The first is the comet’s sojourn in the outer reaches of
the Solar System before first becoming visible, visibility taken here to mean passage within
3 AU of the Sun. The second stage encompasses the remaining evolution up to the point
where the comet is ejected or otherwise permanently excluded from the sample of observable
comets.

Let the set of those LP comets which are making their first visible perihelion passage be

th visible apparition, the V;, comets. The

called the V; comets, and those making their m
union of all visible LP comets will be called the dynamically evolved visible LP comets. The
lifetime of a comet m, can be measured by the number of perihelion passages since (and
including) its first apparition. The number of visible perihelion passages a comet makes in
its lifetime is denoted m,. The comet’s lifetime in terms of physical time ¢, is also useful,

but is not clearly defined in all cases e.g. the exact moment of ejection may be difficult to

determine.

5.0.1 Original elements

The original elements of observed comets are computed by integrating their orbits backwards
from perihelion, and are typically quoted at distances of 60 to 100 AU from the Sun.
However, hypothetical structures with radii of 100 to 1000 AU are introduced into some
of our simulations, and complicated artifacts might be introduced into the elements if they

are calculated near a massive perturber. To avoid this possibility, the original elements

84
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of our simulations are measured at aphelion instead. Adjustments must thus be made to
the simulated distributions of orbital elements in order to compare them with the observed
distributions, but these adjustments are usually small. The original inverse semimajor axis
is affected somewhat by the comet’s climb out of the Galactic potential well (Equation 3.24),

but the resulting change in 1/a is only of order

47 poz? Z )
50 000 AU

2
A(l/a) ~ ~5x 1077 ( AUH (5.1)

©

which is small and can be ignored. However, the shift in energy produced by a disk or

Planet X may be more pronounced, of order

2M %2><10_4< M )( "X )_1 AU,
TXM® 001M® 100 AU

2M, 4 ( My ) ( ay )—1 B
~2x10 AU-!
aqgivic 001M® 100 AU ’

A(1/a) ~ (5.2)

where the companion has mass My and orbital radius ryx, and the disk has a potential
described by Equation 3.52. The numerical values in Equation 5.2 correspond to the max-
imum change in 1/a among the simulations to be described here. In most cases, the effect
is smaller and will be neglected.

It is interesting to note that that the mean excess velocity of observed hyperbolic comets,
roughly equivalent to 1/a ~ 107™* AU™L, is not well explained by the presence of such “dark
matter”. A shift of 107 AU™! in inverse semimajor axis would pull the outer edge of the
Oort cloud inside 10* AU, and thus preclude the filling of the loss cylinder, either by the
tide or passing stars (Equations 3.47 and 3.31b). Nevertheless, a few “high dark-matter”

simulations will be performed for completeness.

5.1 The newly visible comets

The newly visible or V; comets constitute the injection spectrum from which the observed LP
distribution has evolved. The Vj set can be used as a starting point for any investigation of
phenomena that only affect the comet after its first apparition e.g. non-gravitational forces,
fading. The elements of the V; comets are here measured in the barycentric frame at the
aphelion immediately preceding their first apparition.

The set of V; comets produced in the course of this research has 1368 members, and was
obtained from a set of 125 495 initial conditions within the Qort cloud. Of these 1368 new

comets, 1340 first became visible while still Oort cloud members ¢.e. when a > 10 000 AU.
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‘ Fnd-state ‘ Ejection Escape FExc. Limit Large ¢ Short pd. Visible ‘ Total ‘
Number 3803 4 57 15023 31 1368 | 20286
Fraction 0.1875  0.0002 0.0028  0.7406 0.0015 0.0674 | 1.0000
Minimum ¢, 6.80 34.4 17.2 7.46 11.7 7.14 6.8
Median 1, 28.7 56.7 152 35.2 29.3 26.8 33.3
Maximum ¢, 342 108 480 1182 72.4 147 1182
Minimum m,, 1 13 5000 1 6 1 1
Median m, 8 14 5000 5 387 5 6
Maximum m,, 4799 28 5000 4872 3432 2937 5000

Table 5.1: The distribution of end-states of the 20 286 Qort cloud comets with minimum
perihelia under the tide of less than 40 AU. The minimum, median and maximum lifetimes
m, and t, are shown in in orbital periods and millions of years, respectively. No comets
suffered collisions or survived for the lifetime of the Solar System.

The Vi comets were produced over twenty-seven separate runs on a DEC Alpha, requiring
over thirteen weeks of real time and roughly eight weeks of CPU time at a tolerance { =
1072, On average, a new Qort cloud comet was started every 40 seconds, and a visible
comet produced every 3800 seconds.

Of the 125 495 Oort cloud comets simulated, 105 209 were determined to have minimum
perihelion distances under the Galactic tide (Equations 3.26 and 3.27a,b) greater than
40 AU, too far outside the planetary system to suffer appreciable planetary perturbations
(Figure 4.1). These simulations were terminated immediately, and counted as part of the
PERIHELION TOO LARGE end-state. The remaining 20 286 were integrated numerically, and
of these only 1in 15 became visible. Table 5.1 shows the distribution of these 20 286 comets
among the various end-states.

During this pre-visibility stage of LP comet dynamical evolution, there were 694 close
encounters with the giant planets by 341 individual comets, distributed as shown in Ta-
ble 5.2. There were no captures or collisions, though some comets did pass within the
planets’ satellite families.

Only 57 of the 20 286 comets which were numerically integrated triggered the EXCEEDED
TimE LiMIT flag (see § 4.3), set at 5000 revolutions. These comets constitute only 0.05% of
all initial conditions and are not included in the discussions to follow, but will be addressed

again in § 5.1.1.
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‘ Planet ‘ Jupiter Saturn Uranus Neptune ‘ Total ‘
Number of comets 60 145 71 67 341
Number of encounters 210 317 109 93 694
Encounters/comet 3.5 2.19 1.53 1.39 | 2.04
Collisions 0 0 0 0 0
Captures 0 0 0 0 0
R;(R,) 674 907 2030 3510 —
Min. distance (R;) 0.023 0.043 0.074 0.049 | 0.023
Min. distance (R,) 16.0 38.7 150 167 | 16.0
Outer satellite (R,) 326 216 23 222 —

Table 5.2: Planetary close encounter data for the 20 286 initial conditions which had initial
perihelia within 40 AU of the Sun. Encounters for the 57 comets in the EXCEEDED TIME
LIMIT end-state are included only up to their 5000%" orbit. The size of planet’s sphere of
influence R; (Equation 4.5) and that of the orbit of the planet’s outermost satellite are also
given.

Perihelion distance

The distribution of perihelion distances of the Vi comets is shown in Figure 5.1a. The
distribution is sloped slightly upwards towards larger ¢g. This is to be expected: a full
loss cylinder should have a flat distribution in ¢, but empty or partially full loss cylinders
will have a preponderance of orbits at larger perihelia. This conclusion is strengthened by

an analysis of Figure 5.1b, which plots first apparition perihelion distance versus original

q (AU)

q(AV)

(a) (0)

Figure 5.1: The V; comets: (a) their number distribution versus perihelion distance ¢, and

(b) their first apparition perihelion distance ¢ versus original semimajor axis ag.
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semimajor axis, and which confirms the filling of the loss cylinder at ¢ 2 25 000 AU
(Equation 3.31b).
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Figure 5.2: Distribution of orbital energies for the V; comets: (a) at the aphelion before
their first apparition i.e. original energies and (b) at the aphelion immediately following
first apparition. The energies of unbound orbits are measured at r = 10° AU.

Orbital energy

The distribution of V; orbital energies is shown in Figure 5.2, both at the aphelion before
the comets become visible and at the aphelion immediately after their first apparition. The
cutoff at 2 x 10> AU~! in Figure 5.2 is artificial, a result of our choice of the QOort cloud’s
outer edge at 50 000 AU. Note the concentration of original orbits at very small but positive
energies. In fact, all but 28 (~ 2 %) are in the region of the spike (1/a < 10™* AU™!). The
orbits within the spike have a mean 1/a &~ 3.341x 107 AU~L. This result is in good accord
with Heisler’s (1990) Monte Carlo simulations, which indicated that, outside of showers,
the energy distribution of new comets is expected to peak at 3.55 x 107> AU™!. Heisler’s
simulations also included passing stars, indicating that our omission of these perturbers
does not strongly affect the distribution of original semimajor axes.

The post-perihelion energy distribution (Figure 5.2b) is much broader, due to the plane-
tary perturbations discussed in § 3.1. The distribution is highly symmetric about zero, with

a median 1/a of 5.0 x 107 AU™!; its full width at half maximum is 6.24+0.3 x 107* AU~
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in reasonable agreement with the expected size of planetary perturbations (Equation 3.8).

200 N
|- %Y

150 [~

100 [~

6x104

Figure 5.3: Distribution of original semimajor axes a of the 1368 V; comets. The curve is
an analytical approximation to the expected distribution, derived in Appendix C.

Despite the decrease in comet number density with radius in the Qort cloud, comets
are injected primarily from its outer portion. The distribution of original semimajor axes
is shown in Figure 5.3. The median original semimajor axis is roughly 32 000 AU, and the
distribution displays a double-peaked shape, with one peak near 27 500 and a smaller one
at 45 000 AU. An analytical approximation to the expected flux is shown by the curve; it
is valid only where the loss cylinder is full, and is derived in Appendix C.

Our choice of the edge of the Oort cloud at 50 000 AU is the cause of the sharp decrease
in simulated comets beyond this point in Figure 5.3. The sharp drop-off at semimajor axes
smaller than about 27 500 AU is a result of the emptying of the loss cylinder as semimajor
axis decreases (§ 3.2.1). The position and steepness of this drop-off supports our choice
of the inner boundary of the Oort cloud at 10 000 AU, rather than closer in: Qort cloud
comets on orbits smaller than about 20 000 AU are unable to enter the visibility cylinder
in appreciable quantities, and thus their exclusion from our simulated Qort cloud should

not bias the results.
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The nature of the smaller peak at 45 000 AU is unclear: if the sample is split into two
parts, it appears only in one half, and thus may be a statistical fluke despite its relatively
large size. It will assumed to be unimportant for two reasons. Firstly, only a few percent
of the Vi comets are involved; and secondly, the subsequent planet-dominated evolution of
the V; comets is relatively insensitive to the comets’ original semimajor axis, as all OQort

cloud comets approach the Sun on essentially parabolic orbits.

Angular elements

The aphelion directions of the Vi comets, measured at the aphelion passage immediately
preceding their first apparition, are shown in Figure 5.4. The most striking feature is the
concentration towards mid-Galactic latitudes, a result of the Galactic tide. However, the
real distribution is expected to be much clumpier, due to the injection of comets by passing
stars.

The inclinations, longitudes of the ascending nodes, and arguments of perihelion in the
ecliptic and Galactic frames are shown in Figures 5.5, 5.6 and 5.7. The peak in the cos?
distribution near zero is expected: the flux ® is proportional to (J& — J2)/JE = sin?7
(Equation 4.25). Thus the flux is expected to increase towards high Galactic inclination i.e.
i~ 7/2. The peaks in Figure 5.7b are also expected: the regions where sin 20 > 0 are the
regions where the perihelia are moving inwards under the tide. The distributions of cosz,

Q, @ and w are relatively uniform, expected because the Galactic tide is independent of

these quantities.

5.1.1 The longest-lived comets

Only a small fraction of comets survive for more than 500 orbits after their initial apparition,
but this remnant’s extremely long lifetimes make it difficult to follow their evolution to
completion, as noted in § 4.1.6.

The number of comets remaining in the simulations as a function of orbit number is
shown in Figure 5.8a. The amount of CPU time needed to follow all remaining comets for
the previous 500 orbits is shown in Figure 5.8b. As the number of orbits increases, neither
the number of comets remaining nor the CPU time approach zero rapidly, if at all. Thus,
for all practical simulation lengths, some number of comets will always remain. These long-

lived comets are not necessarily the oldest in terms of physical time, though they tend to
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Figure 5.4: Equal area plots of the aphelion directions of the Vi comets, in the (a) eclip-
tic and (b) Galactic frames, measured at the aphelion immediately preceding their first
apparition.
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Figure 5.7: Distribution of the arguments of perihelion for the V; comets: (a) at perihelion
in the ecliptic frame, and (b) at the previous aphelion in the Galactic frame.

be. The finite age of the Solar System provides no relief, as the dynamically oldest comets
in our simulations are significantly less than 5 billion years old (Column 4 of Table 5.1). As
it seems impossible to follow all comets to completion, it becomes necessary to arbitrarily
terminate the simulations at some point, chosen here to be at their 5000"" orbit.

The longest-lived comets may provide clues to particularly stable regions in our Solar
System, in terms of survival for large number of perihelion passages rather than for long
times. The perihelion distances and semimajor axes of these comets on their 5000%" orbit
are indicated in Figure 5.9. These comets tend to be on small orbits, with semimajor axes
less than 1000 AU, and there is an excess (39/57, 68%) of prograde comets, unexpected
due to the shorter diffusion times of prograde comets (§ 3.10.2). These comets’ periods
are typically much longer than the planets’, and only a few comets are near mean motion

resonance.

5.2 Dynamically evolved long-period comets

Given a set of Vi comets, the next logical step is to evolve them forward in time. The
set of all apparitions made by the LP comets throughout their evolution consitutes the

dynamically evolved LP comets.
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Figure 5.8: Number of (a) long-period comets remaining in the Solar System , and (b) CPU
seconds required to simulate all surviving comets for the previous 500 orbits, both plotted
as a function of age m measured in perihelion passages since their to initial apparition.
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Figure 5.9: Perihelion distance ¢ versus semimajor axis a for the 57 comets which survived
5000 orbits after their initialisation within the Qort cloud.
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5.2.1 Element distribution parameters

It is useful to define a few simple parameters which describe the distributions of various

orbital elements.

e The ratio ¥; of the number of comets in the spike (@ > 10* AU) to the total number

of long-period comets was introduced in § 3.10.1.

e The inverse semimajor axis range available to LP comets runs from zero (unbound)
t0 0.029 AU~ (short-period). Let the ratio of the number of comets in the inner half
of this range (0.0145 to 0.029 AU™!) to the total number be ¥y, providing a measure

of the “tail” of the energy distribution.
o Let the ratio of prograde comets to the total number be Ws.

For each of these parameters, the ratio of the theoretical value ¥,, to the observed (indicated
by a prime) value ¥/ will be called Z,,. The following values of ¥’ are adopted to be used

for the determination of =:

U, = 81/246 = 0.329 + 0.042,
U, = 18/246 = 0.073 £ 0.018,

S
o~
1

127/246 = 0.516 £ 0.056.

These numbers are based on those comets in Marsden and Williams catalogue with perihe-

lion distances less than 3 AU. The error estimates are based on Poisson noise.

5.2.2 Evolved long-period comets

The simulation that evolves the V; comets throughout their lifetimes, but which does not
include any perturbers except for the giant planets and the tide will be called the standard
case. The distribution of end-states for this case is shown in Table 5.3. The VISIBLE end-
state is disabled, as it is in all further simulations described in this chapter, and all comets
are evolved until destroyed or lost. The mean comet lifetime is 45.3 orbits per comet, a
factor of two less than for a simple diffusion process (§ 3.1.2) but significantly less than
required to solve the fading problem (§ 3.10.1). The standard case has =; = 0.086, =3 =

3.93 and =3 = 0.59, and fails to match the observations. The maximum allowed number
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‘ End-state ‘ Ejection Large ¢ Short pd. ‘ Total ‘
Number 1223 109 36 | 1368
Fraction 0.894 0.080 0.026 | 1.000
Minimum ¢, 0.296 2.61 0.014 | 0.014
Median 1, 1.33 4.62 0.67 | 1.40
Maximum ¢, 31.7 71.0 7.94 71.0
Minimum m,, 1 1 13 1
Median m, 1 2 330 1
Maximum m,, 5832 2158 4277 | 5832

Table 5.3: The distribution of end-states of the V; comets, simulated from initial apparition
until all are either lost or destroyed. The minimum, median and maximum lifetimes ¢, of
these comets are measured from their first apparition. Of the 61 864 subsequent perihelion
passages, 45% (28 004) are made by the 12 comets which survive for 1000 or more orbits
after their first apparition. No comets escape, suffer collisions with the planets or Sun, or
survive for the age of the Solar System.

of orbital periods before the EXCEEDED TIME LIMIT end-state (§ 4.3) is invoked is 10 000
orbits for the standard case simulations, but no comets reach this end-state.

The planets are the dominant perturbers of dynamically older comets, and ejection is the
most common end-state: 89% of Vi comets meet this fate. The details of close encounters
between comets and the giant planets after initial visibility are detailed in Table 5.4. Perhaps
most surprising is the high frequency of multiple encounters with a giant planet by a single
comet. This does not indicate a capture by the planet but typically arises when a very
distant encounter — often near the comet’s perihelion and which leaves the comet’s orbit
relatively undisturbed — is followed by one or more subsequent encounters, in many cases
resulting in the ultimate ejection of the comet.

About 8% (109/1368) of comets move back out to large perihelion distances. Most of
these remain members of the Qort cloud: the median 1/a of these comets is 4 x 107° AU™!
(a = 25000 AU). Only 38 have @ < 10 000 AU, with the smallest orbit having a semimajor
axis of about 1000 AU.

Poissonian, v/ N error-bars are no longer appropriate for histograms of the number distri-
butions, as the individual apparitions are no longer uncorrelated: one comet may contribute
hundreds or thousands of perihelion passages. The appropriate error bars in this case are
bootstrap estimators, and subsequent figures show the one standard deviation uncertainties

estimated by this method (Efron 1982; Press et al. 1992).
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‘ Planet ‘ Sun Jupiter Saturn Uranus Neptune ‘ Total ‘
Number of comets 7 28 12 2 3 52
Number of encounters 16 43 16 4 3 82
Encounters/comet 2.3 1.5 1.3 2.0 1.0 1.6
Collisions 0 0 0 0 0 0
Captures — 0 0 0 0 0
Min. distance (R;) — 0.018 0.086 0.17 0.16 | 0.018
Min. distance (R,) 1.61 12.5 77.9 335 553 | 12.5
Outer satellite (R,) — 326 216 23 222 —

Table 5.4: Planetary close encounter data for the dynamically evolved long-period comets.
The distance to each planet’s outermost satellite is given in the last row.

Perihelion distance

The perihelion distribution of the dynamically evolved visible comets is shown in Figure 5.10.
The structure visible is partly due to the strongly correlated contributions of very long lived
comets: of the 61 864 visible perihelion passages, over 45% (28 004) are made by the 12
comets which survive for 1000 or more orbits after their first apparition. Comparison
with the observed distribution (Figure 2.5) reveals some superficial similarities, but the
strong observational selection in favour of objects near the Sun or the Farth makes drawing
conclusions difficult.

Let the total number of comets with perihelia inside ¢ be N. Then a linear least-
squares fit to the simulated distribution yields d N/dq roughly proportional to 1+ ¢ for ¢ <
3 AU, similar to Everhart’s (1967b) earlier estimate of the intrinsic perihelion distribution.
However, the simulations could arguably be consistent with any number of slowly varying
functions of perihelion over 0 < ¢ < 3 AU, possibly including dN/dq x ¢'/2, as proposed
by Kresak and Pittich (1978). The estimates of the intrinsic perihelion distribution of LP
comets published by Everhart and by Kresiak and Pittich are indicated on Figure 5.10 by

the solid and dashed curves.

Orbital energy

The original energy distribution of the visible comets is shown in Figure 5.11 at two different
magnifications, for all 61 864 perihelion passages and for all 52 303 visible passages. The
fraction ¥y of comets in the spike obtained from these simulations is 1473/52303 = 0.028,
all perihelion passages with 3 AU of the Sun being deemed observed. Thus the simulations

produce 35 visible LP comets for each comet in the spike, whereas the observed sample has
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Figure 5.10: Distribution of perihelion distances ¢ for the dynamically evolved LP comet
population. Error bars are bootstrap-based one ¢ estimates. The curves are Everhart’s
(1967b, dashed lines) and Kresak and Pittich’s (1982, solid line) estimates of the intrinsic

perihelion distribution.

them in only a 3 to 1 ratio (Figure 2.3).

This disagreement is at the heart of the fading problem: how can the loss of 95% of the
dynamically older long-period comets be explained? This question will be addressed in the
upcoming sections of this chapter.

These simulations allow us to estimate the contamination of the spike by dynamically
older comets. There are 1368 V; comets, of which 1340 have a > 10* AU, but a total of
1475 apparitions are made by comets with @ > 10* AU. Thus roughly 7% of comets in the
spike are not dynamically new, and 2% of comets coming from the Oort cloud do not make
their first appearance within the spike. However, these numbers ignore the possibility of
significant reductions in the brightness of LP comets over time, and are thus only upper

limits (§ 5.5).
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Angular elements

The inclination distributions, in the ecliptic and Galactic frames, are shown in Figure 5.12.
There is a noticeable excess of comets in ecliptic retrograde orbits: the fraction on prograde
orbits is 15875/52303 ~ 0.3. This is inconsistent with observations as Marsden’s comets have
a ratio near a half (Figure 2.7a). The simulated Galactic inclinations are consistent with
a flat distribution, as expected from theory, but whether or not the observed distribution

(Figure 2.7b) is flat is less clear.

5000

6000
4000

4000

Figure 5.12: Distribution of the cosine of the inclination for the visible LP comets, (@) taken
at perihelion in the ecliptic frame, and (b) at the previous aphelion in the Galactic frame.

Figure 5.13 shows the distribution of the longitude of the ascending node, and Fig-
ure 5.14, that of the argument of perihelion. The planets, the dominant perturbers, are not
expected to produce strong signatures in these angular elements, and our results seem mod-
erately consistent with this expectation. There are a few peaks in the figures, particularly
in Q and @, which may be statistically significant. These bumps are the result of several
(~ 10) long-lived comets clustered together in the phase space in question, but whether this
is chance or a systematic effect is unclear.

The standard model provides only a poor fit to the observed distributions, in particular
as regards the orbital energies and inclinations. Assuming that our simulations correctly

portray the intended physics, the next question is: how do our simulations differ from
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reality? Before going on to examine this question, we will consider the implications of these

simulations regarding the population of the Oort cloud.

5.2.3 The current Oort cloud population

The flux into the entrance surface (Equations C.8a,b) can be integrated over all semimajor
axes (or all L) in order to relate the constant gy to the total number of simulated comets

No
at Ly
ts/q)E(a,qE) da = t, / @E(L,JE) dL = Ny. (5.3)
a_ L_

where t; is the length of real time represented by our simulation. Equation 5.3 can easily be
integrated numerically to yield Ny = 1.21 x 10~ %qt, for the usual values of the parameters
in question. For the 125 495 comets in our Oort cloud simulation (§ 5.1), this implies
go = 1.04 x 105 ¢ yr. The value of t; depends on Ny and the total number of comets in
the Oort cloud.

Before calculating the value of ¢4, consider first the total number of Oort cloud comets.
As the Qort cloud is assumed to be in a steady-state, r can be replaced in Equation 4.19
by its time average (r) « a. Then the total number Ny, of comets in the Oort can be

obtained through

a4 27 27 27 Ly L J
Nyt = / noa®dra’da = / df / i / i / dr / dJ / gLV 4., (5.4a)
a_ 0 0 0 L 0 -
= 4ﬂzgo(a:1/2 - a;l/z) (5.4b)
t _1
~ 2.3 x 10M (—) . 5.4
X 1 year (5.4c)
where a@ = —3.5 has been assumed, and from which the numerical value for the density
coefficient can also be obtained
T t -1
= —go = 1.63 x 10" (—) . 5.5
1o 290 % 1 year ( )

If one knows the number N, of long-period comets crossing within 3 AU per unit time
in our Solar System, the value of ¢{; and hence the total number of comets in the Qort
cloud can be estimated from Equation 5.4c. If the number of simulated comets which enter

the visibility cylinder is N, (1368 for our simulations), then t5 & N,/N,,. The time-scale
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over which Marsden and Williams (1993) catalogue is complete, if any, is unclear, but rough
estimates of comet fluxes can be made. Everhart (1967b) estimated that 8000 comets passed
within 4 AU of the Sun within a 127 year period, implying roughly 60 yr=! . Kresik and
Pittich (1978) deduced 25 yr=! within Jupiter’s orbit. Taking 10 yr=! within 3 AU as an
estimate and assuming one in three of these is dynamically new (Festou et al. 1993b) yields

3-1368
s R ——— A~ 410 yr. (5.6)
10 yr
This value implies an Qort cloud population of roughly 5 x 10'! comets between 10 000
and 50 000 AU (Equation 5.4c). However, this method becomes an increasingly poor probe

of the Qort cloud’s population as distances become large and the visible flux falls to zero

(Figure 5.3).

5.2.4 The original Oort cloud population

About 20% of Oort cloud comets crossing the entrance surface are removed from the cloud
(§ 5.1). The flux of comets across the entrance surface is proportional to the total number
of comets in the cloud (Equations 5.3 and 5.4a), thus both decay exponentially with time,
ignoring other loss mechanisms. Roughly 20 000 comets are removed during the 400 years
corresponding to these simulations, implying that approximately 3 x 10! objects have been
lost since the Solar System’s formation. As these figures ignore other loss mechanisms,
particularly stripping by passing stars, they likely to be much too low. Nevertheless, it

seems likely that the Oort cloud originally had at least twice its current population.

5.2.5 Discovery probability function

The previous simulations assumed that all comets passing within 3 AU of the Sun would
be detected by astronomers; however, the strong bias in the observed distribution towards
comets near either the Sun or the Earth (Figure 2.5) indicates that this is unlikely to be
true.

Everhart (1967a) examined the LP comets which became part of the observed sample
and concluded that comets which have the same excess magnitude 5y have equal a pri-

ori chances of being discovered. The excess magnitude is defined by
So = /(Han—H) O(Ho—H) dl, (5.7)
0
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where 7 is the comet’s period, H is its visual magnitude at the Farth (Equation 1.8), H,,
is some lower limiting magnitude, and O(z) is a step function which is unity where 2 > 0
and zero where < 0. Comets with large values of 5 are bright and visible for a relatively
long time, and thus more likely to be observed.

Everhart found that the discovery probability p; increases roughly linearly with 5.

Here a form for pg(.Sp) of

S0/80 mag-weeks if Sy < 80 magnitude-weeks
pa(So0) = (5.8)
1 if 59 > 80 magnitude-weeks

will be adopted. The excess magnitude depends sensitively on the position of the Earth,
but for simplicity the Earth will be taken to be at its “average” position i.e. at the Sun, for

these calculations. In this case, Equation 1.8 becomes
H ~ Hyo+ (54 2.5n)logy,, (5.9)

recalling that » must be measured in AU. The values of n, Hy and H,, are taken to be 4,
7 and 13 respectively (Everhart 1967a,b). These values imply that the excess magnitude
becomes non-zero at ¢ < 2.5 AU.

Given the previous assumptions, the excess magnitude is simply a function of ¢q. The
trajectories of LP comets near the Sun approximate parabolas, and thus r ~ 2¢/(14 cos f)
will be adopted. The excess magnitude is then

/[Hm — Ho — (54 2.5n)logyo ] O(Han— H) dt, (5.10)
0

50

4

fan
12¢%/2 2 — 5log;0[2¢/(1 + cos f)]
- / af, (5.11)

(2GMg) (1 + cos f)?

an

where f,, is the true anomaly at which the comet’s visual magnitude exceeds the limit H,,,

given by
Hog—Han
fon = os™ (24 10775 — 1) | ~ |cos™ (0.8¢ = 1) (5.12)

A plot of 5y versus ¢ appears in Figure 5.15. The excess magnitude is 80 magnitude-

weeks at ¢ &~ 1.5 AU, and drops to zero at ¢ = 2.5 AU, with a roughly linear relationship
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Figure 5.15: The simplified excess magnitude Sy versus perihelion distance ¢, as expressed
in Equation 5.11.

between these two points. As an approximation, the discovery probability is taken to be

0 if ¢ > 2.5 AU,
pa(q) = 2.5—(q/1 AU) if1.5<¢<2.5 AU (5.13)
1 if < 1.5 AU

The application of this discovery probability to our simulations is shown in Figure 5.16.
This addition changes the agreement with observations very little, as the other orbital
elements are only weakly correlated with perihelion. In some simulations where this is
not the case, the comet discovery probability proves to be important, but it does little to

improve the standard model.

5.2.6 Short-period comets

Before going on to consider other possible dynamical effects, let’s consider first those short-
period comets which originate at the Qort cloud. During the standard simulations, only 68

Oort cloud comets eventually become short-period comets, 36 of them after having made
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Figure 5.16: Distribution of (a) original orbital energies 1/a and (b) perihelion distances ¢
for the visible long-period comets, subject to the discovery probability function given by
Equation 5.13.

one or more apparitions as LP comets. Only 34 of these have perihelia less than 3 AU i.e.
are visible, on their first perihelion passage as SP comets.

The aphelion directions of all 68 of these SP comets are shown in Figure 5.17. Though
small numbers make the data relatively noisy, there may be some concentration of comets
in the ecliptic plane.

The distributions of inverse semimajor axis, perihelion distance and inclination are
shown in Figure 5.18. None of the SP comets arrive directly from the Oort cloud. The
one with the largest orbit at the previous aphelion has a semimajor axis of only 1850 AU,
and was on its sixth orbit since crossing the entrance surface. The perihelion distribution
tends to increase towards the Sun, but the error bars are too large to draw any firm con-
clusions from this trend. There is a distinct concentration of orbits near zero inclination,
as expected from studies of captures of comets by Jupiter from spherical sources (Everhart
1972), but much less than that of short-period comets in our Solar System (Figure 2.1).
The prograde fraction is 44/68 ~ 0.65.

In § 5.2.3, the standard case simulations are found to correspond to approximately 400
years of real time (Equation 5.6). The standard model thus implies that 68/400 ~ 0.17

short-period comets per year arrive (indirectly) from the Oort cloud, though this number
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Figure 5.17: Short-period comet aphelion directions (standard case) on an ecliptic equal-
area map. Aphelion directions are measured on the aphelion previous to their first perihelion
passage as a short-period comet.

is really an upper limit as fading has not yet been considered. As an average of five new
SP comets are discovered each year (Festou et al. 1993a), one deduces that the Oort cloud
must contribute less than 3% of the population of SP comets, and another source for these
comets is required. Our results thus are consistent with the the primary source of SP comets

being the Kuiper belt.

5.2.7 Planetary encounter rates

The length of time represented by these simulations will be shown to be roughly 400 yr
(§ 5.2.3), and from this the rate of close encounters between the LP comets and the giant
planets can be calculated. A total of 253 encounters by 88 objects were recorded for Jupiter,
333 by 157 for Saturn, 111 by 73 for Uranus and 96 by 70 for Neptune. These numbers
translate to total rates of 0.6, 0.8, 0.3 and 0.2 comets per year passing through the spheres
of influence (Equation 4.5) of Jupiter through Neptune respectively.

If these numbers are naively taken to represent a uniform flux F across the sphere of
influence, the rate n of impacts between LP comets and the giant planets can be deduced

to be

_ Mp 4/ Rp ’
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where r, and R, are the planets’ orbital and physical radii, and M, their mass. The
resulting collision rates are 2 x 1076, 107, 7 x 107%, 2 x 10~® per year for Jupiter through
Neptune respectively. It should be noted that Comet Shoemaker-Levy 9, which collided
with Jupiter in July of 1994, was not a LP comet when captured by that giant planet but

rather a SP Jupiter-family comet (Benner and McKinnon 1995).

5.3 Non-gravitational forces

In the previous simulations, only the Galactic tide and giant planets were included. The
expected effects of outgassing forces on the dynamics of comets were detailed in § 3.3. Non-
gravitational forces are specified by two parameters (§ 3.3). The radial component Ay is
always positive, as the outgassing force always accelerates the comet away from the Sun.
The tangential component Aj is generally less than Ay (|Az] = 0.1]44| will typically be

adopted here), and may be of either sign depending on the comet’s rotation.

5.3.1 Two simple cases

2 and

Consider two simple cases, each with non-gravitational forces 4; = 1078 AU day~
|A2| = 0.1A;. In the first case, A5 will be taken to be positive, and in the second, negative.
These choices imply a constant rotation vector for the nucleus, which is unlikely, but test
the cases in which the NG forces are maximally efficient.

In the first case, 47 = 107% AU day=? and Ay = +107? AU day~2. The distributions of
orbital elements produced are shown in Figure 5.19, and are characterised by the parameters
=1 = 0.13,=5 = 2.85 and =5 = 0.68. The orbital energy and perihelion distance are expected
to decrease secularly under the NG forces (Equations 3.35a and 3.35b). Thus the NG forces
act to unbind comets, both by reducing 1/a and by drawing the comets’ perihelia inwards
to where the NG forces are more effective. This results in an increase in =y to 0.13 from
0.09 in the standard case, insufficient to produce a match with observations.

There is only a 3% increase in the number of comets ejected over the standard case,
but there is a significant reduction in comet lifetimes, to a mean of 36.1 from 47.7 orbits.
This is due to a decrease in the lifetime of ejected comets to 22.2 orbits from 29.7. The

perihelion distribution (Figure 5.19) shows a strong erosion of the comet population at small

perihelion distances. This indicates that even modest non-gravitational forces likely play a
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Figure 5.19: Distribution of the (a) original inverse semimajor axis 1/a, and (b) the peri-
helion distance g for the visible LP comets under non-gravitational forces characterised by

A; = 1078 AU day=? and Ay = 1072 AU day~2.

significant role in shaping the perihelion distribution of the LP comets.

The second case, with A; = 107% AU day=2, A; = =107 AU day~? is identical to
the previous one, except for A, being of the opposite sign. In this case, the NG forces act
to increase the perihelion distance and 1/a of comets (Equations 3.35a and 3.35b), tending
to circularise their orbits. The increase in 1/a causes comets to evolve into more tightly
bound, and hence long-lived orbits (average lifetime: 51.0 orbits). There is also an increase
in short-period comet production: 102 versus 68 in the standard case. The distribution
parameters are =; = 0.08, =3 = 5.07 and =3 = 0.77, which show no improvement over the
standard case.

The perihelion distribution shows little or no erosion near the Sun, as there is no pref-
erential unbinding of comets with small q. The distribution does not increase noticeably
towards larger perihelion, despite the secular increase in ¢, presumably because the rate of

increase of perihelion is quite small.

5.3.2 More realistic non-gravitational forces

Neither of the two simple cases presented above match the observed distributions particu-

larly well. But realistically, Oort cloud comet nuclei are likely to have randomly oriented
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Figure 5.20: Distribution of the (a) original inverse semimajor axis 1/a, and (b) the
perihelion distance ¢ for the LP comets, under non-gravitational forces characterised by

A; = 1078 AU day~? and Ay = —1072 AU day~2.

axes of rotation, with a corresponding random value of A;. While a complete investigation of

the available parameter space is beyond this project, the inadequacy of NG forces to resolve

the fading problem completely can be demonstrated with only a few sample simulations.
It will be assumed that the value of Ay is always ten times that of | A3|. Two distributions

of the sign of A; will be considered:

1. Half the comets have positive values of A5, half negative, and the sign of A5 is constant
throughout a comet’s lifetime. This corresponds to the axis of rotation of the nucleus

remaining essentially unchanged throughout the comet’s dynamical lifetime.

2. The sign of A, is randomised after each perihelion passage, with a 50% chance of
being either positive or negative. This corresponds to a rapid changing of the axis of

rotation due to precession of the nucleus.

Eight different simulations were performed: four values of Ay are examined from 107
to 107° AU day~?2, in factor of ten increments, and each is run for both distributions
of Ay discussed above. The sets containing the weakest NG forces i.e. Ay = 1079 and
10~% AU, are reasonably consistent with the NG forces calculated for known LP comets

(Marsden et al. 1973). The two largest values for Ay are probably unrealistic: in the
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strongest case, the A(1/a) due to NG forces over one orbit exceeds that due to the planets
by a factor of 100. Nonetheless, these experiments provide useful test cases.

There are a number of biases introduced into the simulations when very strong NG forces
are introduced. Firstly, NG forces may become non-negligible for comets with ¢ > 3 AU,
which is not accounted for in our simulations. Secondly, though some NG perturbations av-
erage to zero over a full orbit, their effects over fractions of an orbit may become dynamically
important for very large NG forces e.g. Equation 3.37a.

Figure 5.21 illustrates the results of the simulations including the more realistic NG
forces, and Table 5.5 lists some associated quantities. It is found that increasing the NG
forces does decrease the number of dynamically older LP comets in the system, (i.e. in-
creasing =i, decreasing Z3), but also erodes the population of comets at small perihelion
distances. Note that even excessive NG forces cannot bring the distribution of inverse semi-
major axes into line with observations and result in an extreme depletion of comets with
small perihelia, in contradiction with observations (Figure 2.5). The failure of the NG forces

can be summarised as follows:

o Perturbations due to radial NG forces average to zero over a full orbit and thus have
no long-term effect on LP comet evolution, assuming outgassing is symmetrical about

perihelion.

o Positive values of the tangential acceleration Ay reduce the tail of the population,
resulting in an increase in =; towards unity and improving the match with observa-
tions, but erode the population at small perihelia, an effect which is not seen in the

observed sample.

o Negative values of Ay preserve a reasonable perihelion distribution, but increase the
number of comets in the tail of the energy distribution, thus reducing =; and degrading

the match of the 1/a distribution.

Though one might be able to concoct a mixture of NG forces which will result in a better
match with the observations, non-gravitational forces seem unable to decisively resolve the

fading problem.
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Figure 5.22: Distributions of the inverse semimajor axis 1/a and perihelion distances ¢ for
the LP comets, when a discovery probability (Equation 5.13) is applied. The simulations

are otherwise identical to those in Figure 5.21.



CHAPTER 5. RESULTS 115

‘ Ay Ay ‘ Total Spike  Tail Prograde = =9 =3 m
0.0 0.0 52303 1473 15004 15875 0.09 3.93 0.59 454
1.0 0.1 35370 1457 7368 12381 0.13 2.85 0.68 36.1
1.0 —0.1 | 57819 1462 19364 21110 0.03 4.59 0.71 51.0
1.0  £0.1% | 44383 1461 13705 19021 0.10 4.23 0.83 384
10 +1% | 45899 1425 16628 18504 0.09 4.96 0.78 425
100 £10* | 30660 1341 11296 11012 0.13 5.05 0.70 33.1

1000  £100% | 13248 995 5432 5872 0.23 5.62 0.86 14.4
1.0 +0.1° | 49642 1450 13203 16387 0.09 3.64 0.64 46.7
10 +1° | 45202 1448 13631 17311 0.10 4.13 0.74 414
100 +10° | 25774 1364 4969 11452 0.16 2.64 0.86 27.7

1000 4+100° | 9878 1035 1536 5042 0.32 2.13 0.99 13.2

Table 5.5: The parameters of the visible LP comet orbits under different non-gravitational
forces. “Total” is the total number of apparitions i.e. ¢ < 3 AU, “Spike” is the number of
these with original semimajor axes greater than 10* AU, and “Prograde” the number with
ecliptic inclinations less than 90°. The lifetime in orbits m includes all perihelion passages,
regardless of ¢, after the initial apparition. The superscript ¢ indicates that half the sample
have positive Ay, half negative; ” indicates A, has a random sign assigned for each perihelion
passage.

‘ Ay Ay ‘ Total Spike Tail Prograde = =9 =3  Undisc. ‘
0.0 0.0 33365 957 10008 10140 0.09 4.11 0.59 0.36
1.0 0.1 15010 941 2247 5422 0.19 2.05 0.70 0.57
1.0 —0.1 | 38126 945 14121 15132 0.08 5.07 0.77 0.34
1.0  £0.1¢ | 27617 944 9256 11223 0.10 4.59 0.79 0.38
10 +1% | 24606 908 9946 11281 0.11 5.54 0.89 0.46
100 £10* | 10789 843 4659 4326 0.24 5.92 0.78 0.65
1000  £100% | 1943 508 668 821 0.80 4.71 0.82 0.85
1.0 +0.1° | 30469 934 8193 11407 0.09 3.68 0.73 0.38
10 +1° | 21310 931 4316 10438 0.13 2.77 0.95 0.53
100 +10° | 8859 860 1551 4215 0.30 2.40 0.92 0.66
1000 +100° | 1252 545 175 669 1.32 191 1.03 0.87

Table 5.6: The parameters of the LP comets, for the same conditions as in Table 5.5, but
with the inclusion of the discovery probability as given by Equation 5.13. The rightmost col-
umn lists the fraction of comets with ¢ < 3 AU that go undiscovered under this probability
function.

5.3.3 Discovery probability function

The application of a discovery probability to these simulations is shown in Figure 5.22: the
non-gravitational forces are identical to those in Figure 5.21, but apparitions are given a
weight proportional to their discovery probability (Equation 5.13).

The addition of the discovery probability to the simulations improves the match with

the observations to some degree: =y, =5 and =3 all tend towards unity as one moves down
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Table 5.6. However, unrealistically strong NG forces are still required to match the inverse
semimajor axis distribution, and result in an unacceptable perihelion distribution. Thus it
seems that NG forces are unable to solve the fading problem, though they likely contribute
to the shaping of both the 1/a and ¢ distributions.

5.4 Other scenarios

The fading problem refers to the discrepancy between theory and observations in the number
of comets with semimajor axes between a hundred and a few thousand AU (see Figure 5.9).
Thus, the presence of a (possibly unsuspected) mechanism which preferentially removes
such comets could explain the discrepancy. Such a removal mechanism might arise from
structures with size scales comparable to those of the orbits which they are to affect most

strongly. Some real and hypothetical structures with hundred AU size scales include:
1. The heliopause, where the solar wind meets the interstellar medium,

2. A massive circumsolar disk, perhaps related to the 10 to 100 kilometer sized objects
that have been discovered in the Kuiper belt beyond Neptune (Jewitt and Luu 1993;
Cochran et al. 1995).

3. A massive solar companion object at 100 to 1000 AU.

The existence of the heliopause is well established (e.g. Kurth et al. 1984; Linsky
and Wood 1995); however, it will be shown that its dynamical influence is small and no
simulations were performed to examine its effects on LP comets (§ 5.4.3).

The two other hypotheses are more controversial. Though little if any evidence supports
the existence of undiscovered disks or planetary objects in our Solar System, they cannot
yvet be excluded, and long-period comets may prove to be the most sensitive tools we have
for constraining their properties. For this reason, these two scenarios will be examined here.

In order to reduce the computational cost of these investigations, the V; comets are used
as a starting point i.e. the effect of the disk or companion is ignored previous to the comet’s
first visible apparition. More precisely, V7 comets are restarted at the aphelion previous
to their initial apparition, in order to correctly calculate any perturbations occurring on
the inbound leg immediately preceding their first apparition. Though the addition of the

perturbations due to a disk or companion only after comets become visible is unrealistic,
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it provides a first look at whether or not these features act in the right direction to resolve

the fading problem.

5.4.1 Massive circumsolar disk

A circumsolar disk is represented by means of a Miyamoto-Nagai potential (Equation 3.52)
centred on the Solar System’s centre of mass. The disk looks like a point mass at distances
Tem from the centre of mass which are large compared with the disk’s characteristic radius
a4, thus it might be expected to influence the dynamical lifetimes of comets with a < aq
most strongly.

Comets coming in from the Oort cloud, falling through the disk’s potential, are subject to
an “apparent” decrease in their original inverse semimajor axis. This offset, 2 x 107 AU™!
for a 0.01 Mg disk with radius 100 AU and less for larger or less massive disks (Equation 5.2)
is omitted from the figures to follow. The original inverse semi-major axes are measured at
aphelion, as discussed in § 5.0.1.

Three disk masses were examined, 10, 1 and 0.1 Jupiter masses. The results are displayed
in Figures 5.23 and 5.24, with a discovery probability given by Equation 5.13 used in the
latter. In § 3.6, it was noted that disk masses above one Jupiter mass violate various
dynamical and observational constraints and that the upper limits might be even lower;
thus our chosen disks include some of unrealistically high mass. Two disk shapes were
investigated, both with axis ratios of az/b; = 10. The first had a characteristic size a; =
100 AU corresponding to a Kuiper belt-like disk, the second had ay = 1000 AU, similar in
size to the § Pictoris disk.

The evolution of comets with perihelia outside the planetary system is more complicated
in the presence of a disk. Of most concern here is the validity of the PERIHELION To0O
LARGE end-state (§ 4.3). This end-state assumes that comets with perihelia at 40 AU and
with sin 2@ > 0 are unlikely to become visible (§ 4.3). This assumption is only correct if
the torque is dominated by the Galactic tide, and this may not be the case when a disk is
present. However, to keep the simulation times reasonable it was necessary to retain the
PERIEELION T0OO LARGE end-state’s threshold at 40 AU. The a posteriori justification
is that, in simulations which include disks, this end-state is similarly populated (in fact
ordinarily a bit underpopulated) relative to the standard case (Table 5.7), indicating that

this shortcut is not grossly affecting the simulation results.
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The threshold for the EXCEEDED TiME LIMIT end-state (§ 4.3) was again set at 10 000
orbits. Only one comet reached this state, in the simulation with the largest and most
massive disk. It was on a high-inclination, large perihelion orbit (¢ = 220 AU, ¢ =59 AU,
i = 93°). Upon re-examination, it was found to be ejected 1095 orbits later, after con-
tributing 11 visible perihelion passages. These apparitions are included in all the relevant
figures.

The disk applies a torque to the comets, resulting in a change in perihelion distance. As
with the Galactic tide, the disk torque can produce an oscillatory motion of the cometary
perihelion, the frequency of which increases with increasing disk mass. This effect ordinarily
results in an increase in the comet’s average lifetime, as the risk of ejection is much reduced
when the comet’s perihelion is outside Saturn’s orbit, but also significantly reduces the
number of apparitions comets make in a given number of perihelion passages.

The net effect of the disks is shown in Figure 5.23. The perihelion distribution of visible
comets is not strongly affected, remaining more or less flat. The disk does decrease the
perihelion distance of some comets sufficiently to collide with the Sun. The number of such
incidents is noted in Table 5.8.

The values of the = parameters for this model are also listed in Table 5.8. The values of
= are far smaller than unity even for the most massive disks, and it is clear from Figure 5.23
that the simulated 1/a distributions remain much broader than the observations, though

with some improvement as disk mass is increased.

| My aq by | Number Oort Min. 1/a  Med. 1/a  Max. 1/a |
0 — 109 71 21x107° 3.2x107° 9.0x 1071
0.1 100 10 100 66 1.9x10™° 4.2x10™° 3.1x107°
0.1 1000 100 104 67 2.0x107° 4.6x107° 1.0x 1073
1 100 10 105 64 1.5x107° 4.0x107° 1.4 x107?
1 1000 100 87 65 1.5x107° 4.1x107°% 23x1073
10 100 10 109 52 1.8x107° 44x107° 1.5x107?
10 1000 100 255 59 1.4 x107° 3.0x107™> 3.9x 1073

Table 5.7: Characteristics of the inverse semimajor axis distributions for the PERIHELION
Too LARGE end-state, when the Solar System contains a massive circumsolar disk. “Num-
ber” is the number of comets which entered this end-state and “Oort” the number with
semimajor axes greater than 10 000 AU. Units of 1/a are AU™L. The standard case (no
disk) is indicated on the first line, and all simulations start from the set of 1368 V; comets.
My, aqg and by are the parameters of the disk, measured in Jupiter masses and AU (Equa-
tion 3.52).
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Figure 5.23: Distribution of the inverse semimajor axis 1/a and perihelion distance ¢ for
the visible LP comets when the Solar System contains a massive circumsolar disk. All
simulations have disk axis ratios a;/bgy = 10. The simulations on the left have characteristic
disk widths ag = 100 AU, those on the right a; = 1000 AU. The disk masses increase from
the top down, with values of 0.1, 1 and 10 Jupiter masses. The bottom line of graphs is for
comparison, and includes the standard case (left side) and the observations (right side). The
lower rightmost graph includes Fverhart’s and Kresdk’s estimates of the intrinsic perihelion

distribution (§ 2.3.2), shown as the dashed and solid curves respectively.
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Figure 5.24: Distributions of the inverse semimajor axis 1/a and perihelion distance ¢ for

the visible LP comets when the Solar System contains a massive circumsolar disk and the
discovery probability function is given by Equation 5.13. The disk characteristics are the
same as in Figure 5.23.
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‘ My aq by ‘ Total Spike Tail Prograde = =9 =3 m  Rg ‘
0.1 100 10 | 38947 1486 8382 15178 0.12 2.95 0.75 604 0
0.1 1000 100 | 42106 1496 9122 16957 0.11 2.97 0.78 33.7 1
1 100 10 | 37676 1459 12027 11888 0.12 4.37 0.61 60.8 2
1 1000 100 | 39138 1458 9944 16141 0.11 3.48 0.80 44.7 1
10 100 10 | 26445 1416 8881 6813 0.16 4.60 0.50 626 5
10 1000 100 | 16636 1324 3020 7555 0.24 249 0.88 66.9 3
0.17 100 10 | 24535 968 6086 8589 0.12 3.40 0.68 604 0
0.14 1000 100 | 26335 969 5261 11950 0.11 2.74 0.88 33.7 1
14 100 10 | 27655 947 9514 8712 0.10 4.71 0.61 60.8 2
14 1000 100 | 25200 947 7070 9881 0.11 3.84 0.76 44.7 1
104 100 10 | 18769 939 7104 4103 0.15 5.18 042 626 5
10¢ 1000 100 | 10600 910 1541 4650 0.26 1.99 0.85 66.9 3

Table 5.8: Parameters of the distributions of the visible long-period comets when the Solar
System contains a circumsolar disk. The units of My are Jupiter masses, those of ag and
bg, AU. The rightmost column indicates the number of comets which collided with the Sun.
The superscript ¢ indicates that the discovery probability from Equation 5.13 has been
applied. The definitions of the other columns are the same as in Table 5.5.

My 0.1 Mjyyp 1 My 10 M jyp

aq 100 AU | 1000 AU | 100 AU | 1000 AU | 100 AU [ 1000 AU
Number of objects 40 39 66 43 50 41
Number of encounters 51 76 111 88 82 65
Encounters/object 1.3 1.9 1.7 2.0 1.6 1.6
Collisions 0 1 2 1 5 3
Captures 0 0 0 0 0 0

Table 5.9: Planetary close encounter data for the dynamically evolved long-period comets
under a massive disk. All collisions listed are with the Sun; however, close encounters with
the Sun are not included in this table.

Increasing the disk mass also tends to improve =, and =3 for the 1000 AU disk, though
it acts in the opposite direction for the smaller disk. There is no set of disk parameters
that comes close to producing a match with observations. More massive disks might be
able to do better, but these would violate even more strongly the mass constraints on such
an object (§ 3.6). Thus, it seems unlikely that the fading problem is the result of a massive

circumsolar disk.

5.4.2 Massive solar companion

A massive, unseen companion to the Sun such as a Planet X or Nemesis object can be
modelled as a fifth planet. For simplicity, only circular orbits lying in the ecliptic plane

are considered. The companion was added to the simulations at the aphelion immediately
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preceding the comets’ first visible apparition, as was done for the disk (§ 5.4).

Companions of 0.1, 1 and 10 Jupiter masses were simulated, on orbits with radii of 100
and 1000 AU. The orbital periods of these objects are 1000 and 31 600 years respectively.
The companion masses used are based on Figure 5 in Tremaine (1990), and chosen so that
the companion would not violate, or violate only weakly, the constraints on its mass arising
from considerations of the properties of Oort cloud comets and the planets. Note that, as in
the previous section, the original semimajor axes of the comets are measured at aphelion,
and thus do not include the energy offset caused by their fall through the companion’s
gravitational potential (Equation 5.2).

Nine comets reached the EXCEEDED TIME LIMIT end-state, here set at 10 000 orbits,
many more than in the standard case where it was not reached at all. Of these nine, five
survived for another 10 000 orbits without becoming visible; these will be neglected. The
other four do eventually become visible, contributing a total of 335 apparitions, which are
included in the following figures.

The simulation results are presented in Figure 5.25, and in Figure 5.26 with the addition
of a discovery probability (Equation 5.13). The perihelion distribution takes on a variety of
forms, from those concentrated at smaller (< 1 AU) distances to those concentrated further
out. There is no clear trend with mass or companion orbit size. The large error bars seen
on some of the histogram bars indicate a noisy distribution i.e. one where a few individual
comets contribute a significant fraction of the total number of apparitions. In particular,
the perihelion distribution for the 1000 AU-10 Jupiter mass disk shows a sharp spike in
the smallest bin, but with an error bar roughly two-thirds its height. This is due to a single
comet becoming “trapped” for a long time in high-inclination orbit, and does not seem to
be indicative of a real clustering of objects in that vicinity.

The = parameters for this model are listed in Table 5.10. As the companion mass is
increased, the fraction of prograde to retrograde comets improves, especially in the case
of the larger companion orbit. The companion also reduces the height of the tail of the
1/a distribution, = increasing slightly with disk mass but remaining below unity. The
number of dynamically oldest comets remains high without any clear trend with increasing
mass. Overall, the presence of a companion produces little improvement in the match with
observations, thus we conclude that the fading problem is unlikely to arise due to such a

companion object, at least of the type examined here.
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Figure 5.25: Distribution of the inverse semimajor axis 1/a and perihelion distance ¢ for
the visible LP comets when the Solar System contains a massive solar companion. The
simulations on the left have companion semimajor axes ax = 100 AU, those on the right
ax = 1000 AU. The companion masses increase from the top down, with values of 0.1,
1 and 10 Jupiter masses. The bottom line of graphs is for comparison, and includes the
standard case (left side) and the observations (right side). The lower rightmost graph
includes Everhart’s and Kresdk’s estimates of the intrinsic perihelion distribution (§ 2.3.2),
shown as the dashed and solid curves respectively.
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Figure 5.26: Distribution of the inverse semimajor axis 1/a and perihelion distance ¢ for
the visible LP comets when the Solar System contains a massive solar companion and the
discovery probability function is of the form of Equation 5.13. Conditions are otherwise
identical to those in Figure 5.25.
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‘ Mx ax ‘ Total Spike  Tail Prograde = =9 =3 m Rq ‘
0.1 100 | 40662 1451 9111 14074 0.11 3.07 0.67 43.1 1
0.1 1000 | 49420 1490 10057 13550 0.09 2.79 053 444 1
1 100 | 38397 1473 7465 9379 0.12 2.66 047 854 4
1 1000 | 35940 1438 9338 13544 0.12 3.56 0.73 68.1 1
10 100 | 14877 1379 3365 5846 0.28 3.10 0.76 66.0 4
10 1000 | 28600 1400 8183 15489 0.15 3.92 1.06 146.3 2
0.19 100 | 25300 944 6762 8893 0.11 3.66 0.68 43.1 1
0.17 1000 | 31376 975 6206 8623 0.09 2.71 053 444 1
14 100 | 27918 963 4764 6047 0.10 2.34 042 854 4
141000 | 24740 943 6713 8281 0.12 3.72 0.65 68.1 1
104 100 | 9749 928 2197 4059 0.29 3.09 0.81 66.0 4
104 1000 | 22177 1030 6052 12649 0.14 3.74 1.11 146.3 2
Table 5.10: Parameters of the visible long-period comets when the Solar System contains

a massive solar companion. The companion’s mass My is in Jupiter masses, the size of
its orbit ax in AU. The rightmost column indicates the number of comets which collided
with the Sun. The superscript ¢ indicates that the discovery probability (Equation 5.13)
has been applied. The other columns are the same as in Table 5.5.

My 0.1 My, \ L My, \ 10 My,

ax 100 AU 1000 AU 100 AU 1000 AU 100 AU 1000 AU
Number of objects 52 38 55 39 38 49
Number of encounters 88 64 127 64 80 109
Encounters/object 1.7 1.7 2.3 1.6 2.1 2.2
Collisions 1 1 4 1 4 2
Captures 0 0 0 0 0 0

Table 5.11: Planetary close encounter data for simulations including a solar companion.
Close encounters with the Sun and the companion are excluded. All collisions occurred
with the Sun.

5.4.3 Heliopause

The outflowing solar wind encounters the interstellar medium at the heliopause. Shocks form
both inside and outside this interface as the low-density, high-velocity solar wind meets the
higher density but slower moving ISM. These shocks heat the gas to temperatures of up
to 100 000 K throughout a shell roughly 25 AU thick. This shell is located approximately
100 AU from the Sun in the upstream direction (Hall et al. 1993). Both the radio and
ultraviolet signatures of these shocks have been detected (Kurth et al. 1984; Linsky and
Wood 1995), and the heliopause’s existence is well-established.

If the shocks associated with the heliopause produced conditions which significantly

eroded comet nuclei, they could significantly reduce the lifetime of LP comets. However, a
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first glance seems to indicate that there is neither enough mass nor energy in these structures
to do so. The density at the boundary is not expected to exceed that of the ISM, and the gas
velocity is not expected to exceed that of the solar wind (Steinolfson et al. 1994; Baranov
and Zaitsev 1995); thus the plasma density remains low, and the conditions of drag do not
appreciably differ from those discussed in § 3.7.2.

The gas temperature at the heliopause is roughly 10° K, exceeding that of the interstellar
medium by roughly two orders of magnitude. An upper limit to the amount of heat Fj
deposited in the nucleus through direct contact with this hot medium can be set by assuming
complete transfer to the comet of all the kinetic energy in any molecule coming striking the
nucleus. Then F} is just the energy flux due to gas thermal motions multiplied by the time

the comet is in the heated region,

E, = 47rszgnkT%, (5.15a)
v

4

GM@T)’Lg

R. 2 n wy, - 1/2 T 3/2
5% 108 — J, (5.15
% (1 km) (1 cm_3) (25 AU) <5OAU) (105 K) » (5.15¢)

where R, is the comet’s radius, n is the gas number density, m, is the gas molecular mass,

here assumed to be protons, T' is the gas temperature, v, ~ 4/2kT"/m, is the gas thermal

1/2
A7 R2nwy,(KT)*/ (L) : (5.15b)

4

velocity, wy, is the width of the heated zone, rj is its distance from the Sun, and » is the
comet’s velocity there. The latent heat of sublimation £ for H,O is about 50 kJ mol™!

(Keller 1990), and the deposition of Ej, thus results in the release of a mass M of gas such

that
E, N
M = w) (5.16a)
C
~ 200 K 5.16b
(5 % 105 J) \ 50 kJ mol-1 & (5.16b)

where N4 is Avogadro’s number. The loss of this small amount of material is unlikely to
significantly affect the nucleus.

Other possibilities remain: the shocked gas emits UV photons which might deposit sig-
nificant energy in the nucleus; however the photon energy density is unlikely to exceed the
thermal energy density by the several orders of magnitude required. More speculative pos-

sibilities include thermal and/or acoustic shocks to the nucleus during its passage through
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this region. However, it seems most likely that the heliopause has little or no effect on the

evolution of long-period comets.

5.5 Fading

In the previous sections, a number of dynamical mechanisms were explored with a view to
resolving the fading problem. However, none of them are capable of bringing the simulations
into agreement with observations. These mechanisms share a common defect: the tail
of the simulated inverse semimajor axis distribution is overpopulated relative to that of
the observed distribution. Since the comets diffuse in 1/a after leaving the Oort cloud
(§ 3.1.2), the overpopulation of the tail appears to be a result of longer comet lifetimes
in the simulations than in reality. Thus one is led to consider fading i.e. the physical
degradation of the nucleus either into an increasingly faint object through loss of volatiles,
or through its breakup into less easily detectable pieces.

Our interest here lies not in attempting to model in detail the physical processes by
which comet nuclei fade over time, but rather in determining the mathematical relationship
between a comet’s brightness and its age, the fading function. The distributions of all
the orbital elements, ecliptic and Galactic, are available to help with this construction.
However, only the 1/a, i, 7 and & distributions display significant changes over the first
several apparitions; the others change more slowly or not at all.

The ecliptic and Galactic inclination are closely related, but the relationship of ¢ to the
planets, the dominant perturbers of visible long-period comets, is clearer and thus only
the ecliptic inclination will be used here to constrain the fading function. Though our
assumption that the Galactic tide is the dominant injector of comets (§ 3.9) is correct, the
contribution of passing stars is likely to heavily contaminate the observed distribution of
these elements. Thus, & is likely to be of little usefulness in the determination of the fading
function. The inverse semimajor axis and the ecliptic inclination will serve as our primary
fading benchmarks, through the values of Z1, =2 and =3 (§ 5.2.1).

As it seems likely that non-gravitational forces play a role in determining the orbital
distribution of evolved LP comets, their contribution, along with that of the discovery
probability function, will be investigated. The set of NG parameters chosen as typical for our

purposes has the following characteristics: A; = 1077 AU day~2, A, = £107% AU day~2,
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Az = 0, with a random sign for A, at each perihelion passage. Simulations containing
these NG forces will be referred to as the standard NG case, and were investigated earlier

(§ 5.3.2).

5.5.1 Determining the fading function directly

The most direct approach to the construction of the fading function would be to break
down the simulated data set into individual distributions, one for each perihelion passage
ie. {V1,Vo,V3,...,V;, ...}, and then use a fitting procedure to determine the fractional
amount «; of each distribution required such that the union of them matches the observed
distributions, subject to the restriction that a;y; < «;. Unfortunately, this problem is
poorly conditioned. The inclination and inverse semimajor axis distributions change only
slowly after the first few apparitions, creating a degeneracy i.e. V,, = V,,11 when n > 1.
The only feature reliably extracted via the direct approach is the need for a fairly rapid
fading (~ 50%) over the first few orbits. The numerical complications associated with the
direct approach lead us instead to experiment with a few simple fading laws with clear

physical bases.

5.5.2 One parameter fading functions

Consider a number of simple, one-parameter fading functions. In each case a weight func-
tion ¢, ranging between one (no fading) and zero (completely faded), is applied to each
apparition. This weight function represents the probability that any given apparition will
be observed. Let m be the number of perihelion passages and m’ be the number of appari-
tions since a comet’s first apparition, inclusive, and let ¢ be the time in Myr since the first

apparition. The fading functions examined here are:
A) Constant lifetime Each comet is assigned a fixed lifetime, measured either in

1. apparitions my; ¢(m’ < my,) = 1, otherwise ¢ = 0,
2. perihelion passages m,; ¢(m < m,) = 1, otherwise ¢ = 0,
3. time t,; ¢(t < t,) = 1, otherwise ¢ = 0.

B) Constant fading probability Comets are assigned a fixed probability A of fading,

measured either
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m’'—1
”

1. per apparition; ¢ = (1 — )
2. per perihelion passage; ¢ = (1 — A\)™~ 1

3. per million years; ¢ = e~t/t=,

Note that there is no fading previous to the first visible perihelion passage. For time-

based fading, the equivalent exponential decay has be used, where the decay time

t, =—1/InA.
C) Power law The fraction of comets remaining goes like a power law based on either

1. number of apparitions; ¢ = (m’)™",

2. perihelion passages; ¢ = m™",

where & is constant and greater than zero. Note that this implies that the comets’ life-
times m, are distributed such that m, o d¢/dm o« m="=1. If lifetime is proportional
to comet mass, as might be expected if each apparition releases an approximately equal
amount of volatiles, then the comet mass M has a differential number distribution

such that
dN oc M~""tam. (5.17)

To determine the effects of each of these fading functions, the three quantities =; are
plotted as a function of the associated parameter. If all three are unity for a particular
value of the parameter, then the fading function provides a good match to our observed

sample, at least in terms of 1/a and 1.

Fading by orbit number

The fading laws based on apparition and orbit number will be considered together as they
produce very similar results, shown in Figures 5.27 to 5.32.

The first two of these figures display the = parameters assuming long-period comets
have constant lifetimes (models A1 and A2). The spike/total ratio =; matches observations
at m or m’ &~ 10, but the tail/total ratio =5 is too low at that point. Given a longer lifetime,
the number in the tail increases, matching the observed tail at m & 100, but Z; is now
too low. The prograde/total ratio =3 is typically near but below unity. The match with

observations (Figure 5.33) is poor.
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Figure 5.29: The values of Z; given a fixed fading probability A per apparition (model B1).
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(model B2). The graphs on the right include a discovery probability, those on the left do
not. The upper two graphs are based on the standard case, the lower two on the standard
NG case.
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Figures 5.29 and 5.30 display the behaviour of the parameters =; given a fixed fading
probability A (models B1 and B2). This fading law does not allow for a simultaneous
matching of the requirements on both the spike and tail, and must be considered unlikely.

In Figures 5.31 and 5.32, the effects of a power-law lifetime are shown (models C1 and
C2). Though the match is not perfect (note in particular that the prograde fraction =3
remains too low for all k explored), it is better than in the previous two cases. A value of K
of 0.6 £0.1 seems to provide the best match. The distributions of orbital elements under this
fading law are shown in Figure 5.34. For comparison, the observed distributions are shown
in Figure 5.33. The C models can provide a reasonable match with observations: a prograde
to retrograde ratio is near unity, and a perihelion distribution decreasing somewhat towards
the Sun.

If the C models represent reality correctly, then some information about the LP comets’
mass distribution may be extracted. If comets give up approximately the same amount
of mass per apparition and mass is proportional to lifetime, then the differential mass
distribution of the LP comets goes roughly like M~'¢ (Equation 5.17). The actual mass
distribution of LP comet nuclei is difficult to obtain owing to the obscuring effects of the
coma, but is estimated at M 25 for the brightest LP comets, and at M 7 for the fainter
ones (Weissman 1983). Measurements of the sizes of main-belt asteroids imply differential
mass distributions proportional to M2 at large (X 100 km) diameters (Hughes and Harris
1994). There is also evidence for shallower slopes (M ~!25) at smaller sizes, but these
measurements still only include diameters greater than 20 km (Cellino et al. 1991). Thus
it seems that a x = 0.6 + 0.1 fading law is not inconsistent with our knowledge of the size

distributions of small objects in the Solar System.

Fading based on time since first apparition

A cometary lifetime t, measured in physical time since first apparition seems a priori less
likely than one based on the number of apparitions. Such a lifetime might be expected if
the first apparition removes a protective layer, possibly of insulating refractory material,
from the nucleus and thus “starts the clock” on some kind of time-based decay process.

A constant lifetime ¢, (model A3, Figure 5.35) provides a remarkably good match with
observations, if ¢, ~ 10° yr. This scenario works because one hundred thousand years

provides enough time for the relatively few comets captured directly into tight orbits (a <
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100 AU) to fill out the tail, while not providing enough time for those on larger (a ~
1000 AU) orbits to return as frequently and fill out the middle part of the 1/a distribution.
Even =3, typically too low when the fading function is based on orbit number, here reaches
unity near the lifetime in question. The orbital element distributions for this case are shown
in Figure 5.37. Neither the perihelion nor inclination distributions match observations very
well.

The time-based exponential decay law (model B3), shown in Figure 5.36, provides only
fairly poor matches when NG forces are excluded, but is improved by their inclusion. The
orbital elements distributions for the case ¢, = 0.09 Myr is shown in Figure 5.38. The
inclination distribution shows an excess of prograde comets, and the perihelion distribution
is concentrated towards smaller values of q. This fading law provides a fair but far from

ideal match.

Bailey’s fading law

One other fading law, proposed by Bailey (1984), will be considered here, though it has
no free parameters. Bailey derived a fading function by using an analytical treatment
to calculate the expected 1/a distribution. The resulting fading law has a per-revolution

probability pg of a comet fading completely and permanently given by
pa ~ 0.3[1 + (250/a)3~%/? (5.18)

where a is measured in AU. Note that this fading law depends solely on the size of the orbit.
Though not derived from physical principles, the mechanism proposed a posteriori to explain
this fading law is “thermal shock”: comets with large aphelia have lower temperatures T’
as they approach perihelion than those with shorter periods. The thermal diffusivity of
the nucleus is proportional to its thermal conductivity (which goes like T7!) and inversely
proportional to the specific heat (which goes like T7), and thus is a strongly decreasing
function of temperature. The resulting deeper and more rapid heating is proposed to disrupt
the nucleus, possibly by mechanisms similar to those which produce cometary outbursts and
splittings (§ 3.10.1).

The results of the application of this fading function to the simulations are listed in
Table 5.12. The best match is provided when standard NG forces are included but not a

discovery probability; however, the perihelion distribution shows a sharp spike at ¢ & 3 AU
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‘ NG forces? Discovery? ‘ =1 = =3 ‘
No No 1.04+£0.17 1.924+0.72 1.00+£0.14
No Yes 1.05+0.15 1.76+0.65 0.95+0.13
Yes No 1.09+0.16 0.99+0.45 1.06+0.13
Yes Yes 0.94+£0.14 1.51£0.57 1.04£0.14

Table 5.12: Parameters =; under Bailey’s (1984) fading function, for cases which may
include NG forces and a discovery probability.

which is not present in the observations or the expected intrinsic distribution. The case
which includes both NG forces and a discovery probability is barely consistent (within the
error bars) with the observations, but provides a more reasonable perihelion distribution.
The orbital element distributions for this case are shown in Figure 5.39. The match with
observations (Figure 5.33) is good except for the perihelion distribution, which increases
near the Sun. There is also a small excess of comets on retrograde orbits. Bailey’s fading

law provides a good, but not ideal match with observations.

Summary

The best overall match by the one-parameter fading laws considered is provided by the
power law model based on apparition or perihelion passage number (models C1 and C2),
which alone provide a good match to the perihelion distribution (Figure 5.34). Fair matches
are provided by a time-based exponential decay (B3) with decay constant ¢, =~ 0.09 Myr,
a constant lifetime ¢, = 0.1 Myr (A3), and Bailey’s fading law, whereas the other models

produce only poor matches or can be ruled out entirely.

5.5.3 Two parameter fading functions

Though the available function space becomes increasingly large, a few two-parameter fading
functions will be examined here. Fading laws based on orbit number will not be considered

due to the similarity of the results for apparition number and orbit number.

D) Two populations Let the Oort cloud consist of two populations of comets, distin-
guished by their internal strength. The first and more fragile set of objects have
a finite lifetime while the other objects, comprising a fraction f; of the total, are

unaffected by fading. The fragile population’s lifetimes are either

1. a fixed number of apparitions m,; ¢(m’ < m,) = 1, otherwise ¢ = f3,
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2. a fixed time ¢, from first apparition; ¢(¢ < ¢,) = 1, otherwise ¢ = f5.

Such a fading law might be appropriate if the Qort cloud contains both relatively

weak “snowy” nuclei and stronger “icy” nuclei.

E) Fixed fading probability plus survivors In this case, one portion of the LP comets
population has a fixed fading probability A while some fraction f; survive indefinitely.

The fading functions are based either on

1. apparition number m’; ¢ = (1 — fz)/\m/—1 + fa,

2. time ¢ since first apparition; ¢ = (1 — fz)et/tm + fo.
This is a more sophisticated treatment of the two population model.

F) Power law variant The fading function is a variant of the one-parameter power law,

and is based either on

1. apparition number m’; ¢ = [(m' + 3)/(1 + )],

2. time ¢ in Myr since first apparition; ¢ = [(t + 5)/58] 7",

where k and g are positive constants. Note that ¢ is constructed so as to be unity at

t=0orm' = 1.

Fading based on apparition number

The results of model D1 are shown in Figure 5.40. The fit is generally worse than the one-
parameter case (A1) shown by the heavy line, because the prograde fraction =3 is lower when
some fraction of comets are allowed to live indefinitely. The best match among the families
of curves with both NG forces and a discovery probability occurs near m, = 6 orbits, for a
survival fraction of roughly 0.04. This case corresponds to roughly 96% of Oort cloud comets
being fragile with lifetimes against disruption or fading of approximately six orbits, while
the remaining 4% are longer-lived, perhaps more similar in nature to the fading-resistant
SP comets. The orbital element distributions for this scenario are in Figure 5.43, and
match observations (Figure 5.33) well. Weissman (1978) also found that a two-population
Monte Carlo model, in which a large fraction (85%) of LP comets had significant fading
probabilities while the reminder survived indefinitely, matched the observations best. Note

that the observed splitting probability for dynamically new Qort cloud comets of 0.1 per
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orbit results in a half-life of seven orbits (Equation 3.62), suggesting splitting may be the
source of fading if there is indeed a “fragile” population of Qort cloud comets.

The fading law involving a fixed fading probability for one segment of the population,
and an indefinite lifetime against fading for the rest (model E1) produces results as shown
in Figure 5.41. The match is usually no better than the no survivor case (B1), shown by
the heavy line, and typically gets worse as the survival fraction f; increases.

The two-parameter power law (model F'1), displayed in Figure 5.42, ordinarily does no
better than its one-parameter counterpart. Though the prograde fraction =5 shows little
variation, the intersection of the =y and =5 curves is typically below the value of one required
to match observations when g > 0. Though an eventual return to near unity as kK — o0
is not excluded by these figures, the extremely rapid fading required in such a case seems
unlikely.

The two-parameter fading models based on apparition number typically do no better
job of matching the observed distribution than one-parameter models, with the exception
of model D1, which can provide a good match to observations when most comets have short

(~ 6 orbits) lifetimes, while a small fraction (~ 4%) live indefinitely.

Fading based on time since first apparition

When the two-population fading model is based on the time since first apparition (model D2,
Figure 5.44), the fit is typically only slightly better than the corresponding one-parameter
model. The normalised tail to total ratio =5 provides the most stringent restriction on the
survival fraction. Only a small fraction, roughly 1%, of comets could survive indefinitely
and still produce a match, as long as the remaining comets have a lifetime against fading
t, ~ 10° yr. The distributions of orbital elements for this case are displayed in Figure 5.47.
The perihelion distance and inclination distributions are very similar to those of the one-
parameter (A3) model (Figure 5.37), and match the observations only poorly.

The case of exponential decay with time plus a small fraction of non-fading comets
produces the results displayed in Figure 5.45 (model E2). Only a very small fraction (< 2%)
can survive in either of the four cases if a match is to be obtained, and the best match
appears to remain with the case of no survivors (model B3).

Figure 5.46 displays the effects of model F'2. The intersection of =; and =5 occurs above

unity for all curves in the families plotted, approaching it more closely as & increases. The
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value of =3 also remains close to unity, particularly in the case which includes NG forces and
a discovery probability. Thus, the best matches are provided as k — oo, but the increasing

steepness of this fading law makes it an unlikely candidate.

5.5.4 Summary

The two-parameter fading laws examined here typically do only slightly better than the one-
parameter laws at matching the observed distributions, if at all. The best one-parameter
fading functions, based on the values of the =; parameters and an examination of the
orbital elements distributions, are C1 and C2 (power law based on apparition/orbit number,
k = 0.6). The best match among the two-parameter families is obtained from model D1 (two
populations, 96% of comets live only 6 orbits, the remainder indefinitely). In particular,
C1, C2 and D1 can provide good matches to the perihelion distributions, particularly in

regards to the decrease in numbers observed at ¢ close to the Sun.



Chapter 6

Conclusions

The dynamical evolution of long-period comets has been simulated from its beginning in
the Oort cloud to its end with the comets’ loss or destruction. A numerical integration
algorithm was used to follow each comet’s trajectory individually, under the influence of
the giant planets and the dominant component of the Galactic tide, though the effects of
passing stars were ignored. Additional simulations studied the effects of outgassing reaction
forces, a hypothetical circumsolar disk or solar companion and the disruption or fading of
the nucleus. Solar wind and radiation pressure, the heliopause, molecular clouds and drag
were also examined but proved to be either negligible or inapplicable. Various conclusions
can be drawn from this research:

The concentration of aphelion directions of the observed long-period comets at mid-
Galactic latitudes (Figure 2.11b) is due to the action of the Galactic tide, and is not simply
an artifact of statistical noise. It may be possible to use the observed distribution of the
Galactic argument of perihelion & to estimate the relative comet injection rates of the tide
and passing stars, as injection due to the tide should be restricted to the range sin 2& > 0
while that due to stars will be uniform over ©. However, the observed sample of dynamically
new long-period comets is too small to disentangle these components as yet.

The current Qort cloud contains roughly 5 x 10! objects orbiting between 10 000 and
50 000 AU from the Sun (§ 5.2.3), assuming the Oort cloud is in a near steady-state, with
a number density proportional to r=3°, and that the flux of dynamically new long-period
comets through a sphere of radius 3 AU around the Sun is currently 10 yr~!. As many as

3% 10! Oort comets may have entered the loss cylinder since the Solar System’s formation,

157



CHAPTER 6. CONCLUSIONS 158

indicating that the original Oort cloud had over 10'? members, and probably more.

All but a small fraction of comets in the Oort spike are making their first apparition. In
the absence of fading, roughly 7% of observed comets with 1/a < 10™* AU™! have made
one or more previous apparitions; similarly, 2% of comets originating in the Oort cloud do
not make their first visible perihelion passage within the spike, but on more tightly bound
orbits (§ 5.2.2). As these numbers ignore the effects of fading, they provide only upper
limits and the actual fractions are likely to be much lower.

The Oort cloud provides only a small fraction of the short-period comets, up to 3%
if fading is ignored. Thus another source or sources must be providing the bulk of the
short-period comets.

Long-period comets pass through each giant planet’s sphere of influence at a rate of
approximately one every few years (§ 5.2.7). Collision rates may be as high as once per
million years for Jupiter and Saturn, dropping to roughly once per few hundred million
years for Uranus and Neptune.

The purely dynamical lifetimes of simulated long-period comets are too long to repro-
duce the observed distributions of these comets, with discrepancies in particular in the
original inverse semimajor axis and inclination distributions. Thus the “fading problem” is
not simply a result of incomplete theoretical treatments, but represents a real gap in our
understanding of the evolution of long-period comets, and possibly in our knowledge of the
inventory of the Solar System.

The observed prograde fraction ¥5 of long-period comets is near 0.5, as is that of the
dynamically new (V7) comets simulated here. However, U3 is expected to decrease as the
comet population ages due to preferential ejection of prograde comets by the giant planets;
in the standard model, ¥3 is 0.3 (§ 5.2.2). The prograde fraction thus provides a measure
of the age of the long-period comet population. The observed value of near 0.5 implies that
long-period comet lifetimes are much shorter than their dynamical lifetimes, and indicates
that a fast-acting fading mechanism of some kind is at work.

Non-gravitational forces play a significant role in shaping the distributions of the long-
period comet orbital elements, in particular by shortening their lifetimes against ejection and
by sculpting the distribution at small perihelia. NG forces reduce the dynamical lifetimes
of comets but are too small by roughly two orders of magnitude to resolve the fading the

problem of themselves.
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The fading problem probably does not reflect the presence of a massive circumsolar
disk or solar companion object, at least as far as can be determined from the somewhat
simplified treatment given these features here. Low mass disks and companions are unable
to produce orbital element distributions which match observations, while at higher masses,
these features prevent the filling of the loss cylinder (§ 5.0.1).

No clear explanation for the existence of the observed visible comets on hyperbolic
original orbits is provided by this research. The excess velocities are small, corresponding
to roughly —10=* AU~!in inverse semimajor axis, but are larger than those produced by the
Galactic tide (~ =107 AU™!, Equation 5.1) or non-gravitational forces (~ —1075 AU,
Equation 3.36a) over a single comet orbit. A circumsolar disk or solar companion might
produce a change A(1/a) of this magnitude, but would strongly influence the Oort cloud
and prevent the filling of the loss cylinder (§ 5.0.1). Other effects, such as rapid variations in
outgassing or asymmetrical outgassing about perihelion might produce hyperbolic comets,
but such effects were not examined here.

The observed distributions of orbital elements can be matched by the addition of fading
to the simulations, though of a fairly restricted form: a large fraction of comets must fade
fairly quickly (< 10 orbits) while a smaller fraction must survive much longer times (2 1000
orbits). The fact that the cratering rate is near that expected from the current known
populations of comets and asteroids (§ 3.10.1) implies that fading results in the complete
disruption of the comet nucleus. This hypothesis is supported by the lack of observed sharp
decreases in the brightnesses of long-period comets as they pass perihelion, decreases which
might be expect if fading were due to a rapid loss of volatiles which left the comets inert
but intact (§ 3.8).

A one-parameter power law fading function (model C1 and C2) with exponent k = 0.6
provides a good match between our simulations and observations. This fading law might be
expected if each apparition results in the loss of approximately equal amounts of volatiles,
and the differential mass distribution of dynamically new long-period comets N (M )dM
M~16dM (§ 5.5.2).

A two-population fading model (D1) in which approximately 95% of comets survive for
roughly six orbits and the remainder indefinitely also provides good agreement with obser-
vations, and could be explained by a division of the Oort cloud population into objects with

low and high internal cohesiveness. Such a fading model would be roughly consistent with
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the observed splitting probabilities of dynamically new long-period comets, approximately
0.1 per orbit (Equation 3.62).

The fading problem remains partly unresolved. Though it seems likely to be associated
with the disruption of the nucleus rather than a dynamical effect, the exact nature of
this decay process remains unclear. The fading process is likely to be sensitive to the each
comet’s particular properties and to the pattern of thermal and other stresses to which they
are subject, and thus very difficult to predict. Future progress will likely require improved
observational data rather than more sophisticated theoretical treatments; in particular more
information on the physical characteristics of comet nuclei, as well as greater observational

coverage of their orbits, is needed.
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Celestial Mechanics

A.1 Orbital elements

The six standard elements of a two-body orbit are: semimajor axis a, eccentricity e, incli-
nation ¢, longitude of the ascending node 2, argument of perihelion w, and true anomaly
f (e.g. Roy 1978). The reader is assumed to be familiar with these elements, but a brief
sketch of the angular orbital elements is presented in Figure A.1.

The elements are usually measured in the heliocentric reference frame, but can also be
taken in the barycentric frame, in which case the centre of mass is the origin about which
the elements are computed instead of the Sun. The notation used here for the heliocentric

and barycentric elements is the same, with the context indicating which is being used.

A.2 Galactic elements

The angular orbital elements as measured in the Galactic frame are also of interest here
(§ 3.2.1). In this case, the Sun is at the origin, but the “vernal equinox” is directed instead
towards the Galactic centre, and the “ecliptic pole” is directed towards the Galactic pole.
The Galactic angular elements are denoted by a tilde i.e. 7, @ and &. The Galactic argument
of perihelion & should not be confused with the commonly-used symbol for the longitude

of perihelion, w = Q + w, as the longitude of perihelion will not be used here.
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Figure A.1: The inclination ¢, longitude of the ascending node 2, argument of perihelion w
and true anomaly f in the ecliptic frame. Adapted from Roy (1978).

A.3 Kepler’s third law

The orbital period 7 of a comet can easily be related toits semimajor axis a through Kepler’s

third law:

I 1/2
=2 1.1
= () (1)

where (7 is the gravitational constant, My is the mass of the Sun, and the mass of the

orbiting body has been assumed to be negligible. In the case where a is measured in AU,

Mg in solar masses and 7 in years, this expression reduces to

r=a’? (1.2)
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A.4 Radius in the orbit

The distance r of the orbiting body from the origin is given

a(l — e?)

_ ) A7
! 1+ecosf ( )
The true anomaly f can be determined from the time ¢ since perihelion passage by solving
the transcendental Kepler’s equation, but this equation will not be required for these

discussions.

A.5 Two-body energy

The energy per unit mass F of a particle on a bound orbit in a two-body system is simply
—GM/2a, where M is the total mass of the system and a is the semimajor axis measured
in the barycentric or centre of mass frame. For a massless (test) particle orbiting the Sun,
M = Mg, and the barycentric and heliocentric frame coincide. In this case, the inverse

semimajor axis 1/a provides an unambiguous measure of the test particle’s energy.

A.6 Energy in multi-body systems

If potentials other than that of the Sun are present, the semimajor axis a of a test particle’s
orbit may vary due to the perturbing presence of these other fields. In the presence of
massive planets, the Solar System’s heliocentric and barycentric frames no longer coincide,
owing to the accelerations imparted to the Sun by the planets. Nevertheless, a useful
“snapshot” of a test particle’s energy is provided by the osculating value of 1/a. The
osculating elements are those which would be measured if the particle were travelling with
its instantaneous position and velocity in a simple two-body system rather than a perturbed
one. For our purposes, if is convenient to measure 1/a in the barycentric frame: though its
accuracy as a measure of energy is degraded while the comets travel within the planetary
system, the barycentric 1/a reduces to the correct two-body value as the particle moves
towards infinity. For this reason the inverse semimajor axis of comets will be measured at

aphelion here.
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A.7 Gauss’ equations

If a particle orbiting the Sun is subject to a small perturbing force F;mt, Gauss’s planetary
equations can be used to deduce the resulting change in its orbital elements. A “small”
perturbing force is taken here to mean that the fractional change in any orbital element is
small over a single orbit.

Let the perturbing force be written as

—

Foers = Fréq + Faéy + F3és, (A.18)

where the three orthogonal unit vectors are: radial é; (positive outward from the Sun),
transverse é; (in the orbital plane, positive along the direction 90° ahead of the Sun-comet
line), and normal és (perpendicular to the orbital plane, parallel to é; x é3). Then, in terms

of these components, Gauss’s planetary equations are

da 4a’ 1z

e [W] [ Fresin f+ Fy(14 ecos f)], (A.19a)
% = [(1((1;7]\—/[;2)] v [ Fy sin f 4+ Fy (cosu + cos f)], (A.19b)
. e, a9
% - [GMiﬁni(;;r]lj/cz sin ¢’ (A.194)
ci—b: = [(16(21(;7_]‘;?] . [—Fl cos [ + Fy (%) sin f] — % cos 1, (A.19e)
% - ﬁjez)m (% + %) +2 %(1 — €)1/ 2 gin? % - ﬁ (A.190)

where u is the eccentric anomaly, such that cosu = (a — 7)/ae, and € is the mean longitude

at t = 0, i.e. the mean longitude ¢ is
tdu
(= | —=dt A.20
| Grar+e (A.20)

where dp/dt, the rate of change of the mean anomaly p, is just the mean Keplerian angular
velocity dp/dt = 27 /7.
The median eccentricity of Marsden’s (1993) comet catalogue is 0.66; for the 289 long-

period comets with computed original orbits, the median e is 0.9999. Thus, it is convenient
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to consider Gauss’s equations under the approximation e &~ 1, or equivalently, ¢/a < 1:

da

dt
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(A.21a)

(A.21b)
(A.21c)
(A.21d)
(A.2le)

(A.21f)

These equations will prove useful in determining the effects of outgassing and other pertur-

bations on comets.
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Error tolerances

The error tolerance ( is converted to an error limit for each individual regularised coordinate
through a combination of relative and absolute terms: the first is dependent on the
comet’s instantaneous orbit; the second is not.

Because the unperturbed regularised equations are those of a simple harmonic oscillator
(§ 4.1.2), the error limits for the position and velocity coordinates are taken simply to be
¢ times their instantaneous amplitudes. For the energy h and time ¢, the relative term is
based on the instantaneous values of h and and the period 7 respectively.

The absolute term is required to avoid excessively stringent error limits on coordinates
that happen to have near-zero amplitudes. The absolute terms are based on an arbitrary
Sun-centred reference orbit, usually taken to have ag = 10* AU, with corresponding regu-
larised energy hg. The error limit equations are shown in Equations B.la,b,c and d below,
with the relative term first, the absolute term second. The error tolerance for ¢ has no
absolute term as comets with small orbits are terminated in our simulations before their

period becomes too small.

2 2 1/2 1/2
Eu, = C(g“? +u§) + Cap j=1,2,3,4; (B.1a)
h 1/2 h 1/2
Eur = C<§u§+u;2) +C< 02%) j=1,2,3,4; (B.1b)
& = Ch+Cho, (B.1¢)
& = (T (B.1d)
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The Flux of Long-Period Comets

C.1 The flux across the entrance surface

The orbit-averaged inwards flux ® g per unit time due to the Galactic tide across any surface
of constant angular momentum J = Jg per unit L is the integral of Equation 4.24 over the
all other canonical coordinates,

JE JT

bu(L, J5)dL dL/df/TdQ/wa/dJ/ (L, J, 5, 0,8, )OI dJ,  (C.1)

.
where @(J) is a step function, unity when J < 0 and zero otherwise, which removes the
outwards flux from the integral. Using the independence of the orbit-averaged J on f and
Q, (Equation 3.28b) and assuming the phase space density is of the form g = goL?*+3
(Equation 4.23), we easily integrate over f and Q to get

JE JT
243
L,Jg)dL _ A gOL a i dJ dJ. 2
P( )dL

—Jg

Integrating this equation with respect to J simply yields

2 JE
®(L, Jp)dL = —dng L2a+3dL/dw / JO()ds. (C.3)
—Jg

The expression for J is given by Equation 3.28b. Upon substitution, Equation C.3 becomes

2 JE
&L, Jp)dl, = —47r2gOL2a+3dL/d@
0 g

57T,00 2
J3—J2

2_J2) sin 20 0(J) dJ5(C.4a)
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2T Jg
2 3 L2a—|—5
= OC’;T]‘Z;(;PO 7 (L2_J%3)dL/ sin 20 O(— sin 2@) d&)/(J?E—JZ?)ng, (C.4b)
® E 2 I

where the dependence of the sign of J on sin 2@ has been explicitly acknowledged. The

integrals over & and J; are easily done, yielding

_ 1607%gopo

d(1, dl, = L2t g (12 — J2)dI. )
(L.7p) st Ju(1? = J}) (C5)

The total flux across the entrance cylinder per unit L is the integral of Equation C.5
over the entrance cylinder, which is given by Equation 4.14, and which is here expressed in

our chosen canonical coordinates as

JEg_ where L_ < L < L_
Je(L) = (C.6)
ZEL™ where - < L < Ly

where L_ and Ly are the minimum and maximum values of L in the Oort cloud, corre-
sponding to the minimum and maximum semimajor axes a_ and ay, k = 107r2,00/G3M%
(Equation 4.7), and L_ is the point at which Jg_ = ZkL" i.e. L= = (Jg_/Zk)"/7 (Equa-
tion 4.9a).

Equation C.5 must be integrated along the path in L—J space corresponding to the
entrance cylinder, and may require an extra factor measuring the arclength along this path.
However, the flux is always parallel to J and so is reduced by a factor of the cosine of the
angle between J and the normal to the entrance cylinder. It easy to conclude that these

contributions cancel out, and deduce that

' 1607°90p0 ;2045 2 g2
(L, Jg)dl = ————L*TJp_(L* - J;_)dL, (C.7a)
3G M3
16073gopok Z
O3(L, Jp)dl = OUTIPORZ paagiaiy  zepizygg (C.7h)
3G M2

where the superscripts ¢ and o indicate the inner and outer regions of the entrance surface

respectively. This flux can be expressed in terms of the semimajor axis a« = L?/G Mg by

using the expression d = /G Mg /4ada,

7 80\/§ﬂ-3 o o o
by (a, qp)da = 3 gopoG +7/2M®+5/2q}5/_2a (a4 — 2qp_)da, (C.8a)

8007 N
@%(a,qE)da = 37T gopnga+7/2M®+3/2aa+13/2 (1

1007*p2 Z?
Mg

QG) da, (C.8b)
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Figure C.1: The flux &g of long-period comets into the entrance cylinder as a function of
semimajor axis a.

where the approximation J%_ a 2GMgqpz_ has been made in the inner region. The flux
is plotted in Figure C.1, assuming values of pg = 0.15 My pc™2, Z = 3, qz_ = 60 AU,
o = —3.5, and with gp normalised so that &5 = 1 at a_. This function is the basis for the

probability function used to compute comet initial elements (Equation 4.28f).

C.2 The flux into the visibility cylinder

The flux expected into the visibility cylinder can be deduced from the flux into the entrance
cylinder under the assumption that the tide remains the dominant perturber until the comet
reaches the visibility cylinder: this is true in the outer Oort cloud where the loss cylinder
is filled.

Consider Figure C.2, which shows a cross-section of the entrance and visibility cylinders
in J;—Jz5 space, where Jz5 = ,/J% + Jyg such that J? = ng + Jgg. The angular momenta .J,
and Jg are those at which the comet’s perihelion is within the visibility cylinder and the

entrance surface respectively.
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Figure C.2: Diagram of the entrance cylinder.

Since J; is conserved under the tide but J;; is not (§ 3.2.1), the evolution of an LP comet
is a horizontal trajectory in Figure C.2. The sequence of dots moving inwards from the right
side of the entrance cylinder represents the angular momentum values of a particular comet
at a series of perihelion passages. The flux into the visibility cylinder is just the fraction
of perihelion passages made within the entrance surface to that made within the visibility
cylinder.

The step size AJ is not generally constant from orbit to orbit, thus the flux into the
visibility cylinder is reduced by a factor Jz3(J,)/Jz3(JE) over that into the entrance surface.
Since J; must be small if the comet is to enter the visibility cylinder, it is easy to show
thatJzg(J,)/ Jz5(Jr) = J(J,)/J(JE). The flux into the visibility cylinder is also reduced
by a factor of J,/Jg due to the smaller cross-section of the visibility cylinder.

The visible flux is also reduced by the possibility that a comet passing through the visi-
bility cylinder will do so in less than one orbit. If AJ 2 J,, the comet’s angular momentum
could move through and out the other side of the visibility cylinder between perihelion

passages, and the comet would thus fail to become visible. Ignoring the dependence of this
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phenomenon on J;, the fraction of comets becoming visible is just the area of the visibility
cylinder divided by the rectangle 2J,AJ, where AJ = j(JU)T. Assumed that J, < Jg,
certainly true for Oort cloud comets, the probability of a comet passing within J, becoming
visible is 7.J2/2J,.J(J,)T.

Combining these three factors, one finds that the flux into the visibility cylinder ®, is

J(Jy) J,  wJ?

o, = A TN 4 C.9
T(J5) I8 200 d(1y) © (C.92)
2
- ™ (C.9b)
25 (Jp)7

Considering only the region where the loss cylinder is full (a 2 25 000 AU), the expres-
sions Jg = ZkL" (Equation C.6), JpT = kL7 (Equation 3.30), and J2? = 2G Mg, can

be used express Equation C.9b as

2 M2
%26%;# E:mée—g%zcﬁ 5 (C.10)
where the superscript ° indicates the flux in the region a¢ > a—. Using the expression
e = (L* - J%)/L?, the flux can be reduced to
d0(a,q,)da ~ 87?2‘(]0(]@(6?]\/1'@)°Y‘|'7/2a°y_1/2 da. (C.11)

Note that this expression does not depend on the characteristics of the entrance surface,
as would be hoped. It is also independent of pg, removing the possibility of measuring the
local matter density directly from the flux of visible comets.

For an Oort cloud with @ = —3.5, the flux into the visible cylinder from the outer cloud
will fall as a=*. This decrease is due in part to the increasing likelihood of a comet “jumping
over” the visibility cylinder between perihelion passages as AJ becomes large. The flux into
the visibility cylinder is plotted in Figure 5.3, along with a plot of the distribution of the

original inverse semimajor axes of the V3 comets.
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