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ABSTRACT OF THE DISSERTATIONThe Evolution of Long-Period CometsPaul Arnold WiegertDoctor of Philosophy in AstronomyUniversity of TorontoToronto, Canada 1996The observed distribution of long-period (> 200 yr) comet orbits has proved di�cultto reconcile with theory. Among the discrepancies is the \fading problem": the fraction ofcomets in the observed sample which are presumed to have made more than one perihelionpassage since leaving the Oort cloud is much smaller than that predicted by simple dy-namical models of the Solar System. This may indicate that the lifetime of the long-periodcomets is signi�cantly shorter than expected from purely dynamical considerations. Thisin turn points to the importance of comet losses through volatile depletion.We examine the evolution of long-period comets through a direct numerical integration,a more realistic approach than the Monte Carlo methods previously used to study thisproblem. Our model follows the individual trajectories of thousands of comets from theOort cloud to their �nal demise. The comets evolve within a model solar system consistingof the Sun, the four giant planets and the Galactic tide, and to which non-gravitationalforces and a solar companion object or circumsolar disk may be added. We also considerthe e�ects of the heliopause, solar wind and radiation pressure, and drag on the nucleus.None of these in
uences are capable of producing a distribution of long-period comet orbitsmatching observations. In particular, the comets' dynamical lifetimes are too long.We also investigate the e�ects of fading i.e. the reduction of comet brightness over timedue to volatile loss, which may lead to a shortening of comets' observable lifetimes. Anumber of simple fading laws are explored. One in which the fraction of comets remainingobservable goes like m�0:6�0:1, where m is the apparition number, provides a reasonablematch with observations, and may imply a di�erential power-law mass distribution dN /M�1:6 dM . A two-population model in which approximately 95% of comets live for only ashort time (� 6 orbits) and the remainder inde�nitely also matches observations reasonablywell, and could be explained physically by a division of the Oort cloud population on thebasis of their internal cohesiveness into fragile and robust objects.ii
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Chapter 1IntroductionHast thou ne'er seen the comet's 
aming 
ight?The illustrious stranger passing, terror shedsOn gazing nations from his �ery trainOf length enormous; takes his ample roundThrough depths of ether; coasts unnumber'd worldsOf more than solar glory; doubles wideHeaven's mighty cape; and then revisits earthFrom the long travel of a thousand years...|Edward Young,Night Thoughts,1741Comets are sources of much information about the origin of our Solar System. Theyprovide insight into the physical and chemical processes underlying stellar and planetaryformation because they are believed to contain the condensed remnants of the solar nebula inrelatively unprocessed form. As well, the present distribution of cometary orbital elementsmay re
ect the dynamics of the early stages of planetary formation. Comets also serve asprobes of the interplanetary medium and the solar wind.1.1 The nucleusAt the heart of the comet is the nucleus, a solid body typically a few kilometers in diameterand with a mass of 1013 kg � 10�12 Earth masses. Inferred densities range from 0.1 to1 g cm�3 (Mendis 1988), suggesting a volatile-rich and/or porous makeup. This is re
ectedin the generally accepted model of the comet nucleus, Whipple's (1950) dirty snowball,which depicts the nucleus as a single solid conglomerate of refractory (e.g. silicates) and1



CHAPTER 1. INTRODUCTION 2volatile (e.g. H2O, CO, CO2) materials. Interplanetary probes sent to meet comet P/Halleyyduring its 1986 perihelion passage returned pictures of the nucleus which con�rmed it wasa single solid object, and was releasing both gas and dust (A'Hearn 1988). The releasedmaterial is in
uenced by the solar wind, the interplanetary magnetic �eld and the Sun'sgravity to form the coma and tail associated with cometary apparitions.1.2 The gas comaThe nucleus becomes increasingly heated by sunlight if it approaches the Sun. The comet'svolatiles begin to sublimate, dragging solid particles along with them. This mixture of gasand dust is called the coma, the comet's bright, fuzzy head. A comet typically develops acoma (or becomes active) at a comet-Sun distance r between 3 and 5 AU, though signi�cantoutgassing from more distant bodies has been observed. For example, the minor planet 2060Chiron, which never approaches closer to the Sun than 8.5 AU, has been observed bothwith and without an attendant gas cloud (Meech and Belton 1990). Thus the distinctionbetween comets and asteroids, the latter traditionally characterised by a complete lack ofcoma and outgassing, may be to some degree arti�cial.Solid H2O sublimates appreciably in interplanetary space at r �< 4 AU (Delsemme1982; Spinrad 1987), in the region where coma production typically begins, and pointingto H2O as a possible constituent of the nucleus. This hypothesis is supported by spectro-scopic evidence, including the detection of water and its photolysis products (e.g. OH, H,H2O+, H3O+) in the coma. In fact, it is estimated that as much as 85% by mass of thecoma's gas phase is derived from H2O (Festou et al. 1993b). The detection of comaeat distances signi�cantly beyond 4 AU may be attributable to pockets of solid CO in thenucleus. This molecule's lower vapour pressure allows it to sublimate up to 60 AU from theSun (Delsemme 1982). The presence of CO in the nucleus has been inferred from the spec-troscopic detection of it in the coma and tail, though photolysis remains a possible source.One of its ions, CO+, dominates the visible emission of the comet's gas tail. Other, lessabundant volatiles that are seen directly or inferred to exist from their photolysis productsinclude NH3;CN;CO2; S2;CH4 and N2, among others (Mendis 1988).yThe pre�x \P/" indicates a periodic comet, de�ned to have an orbital period of less than 200 years or tohave con�rmed observations at more than one apparition, and \C/" indicates a comet which is not periodicin the above sense (Minor Planet Circulars 23803 & 23804).



CHAPTER 1. INTRODUCTION 3The coma can be divided into three concentric, overlapping layers (Whipple and Huebner1976):1. The innermost layer is the molecular or inner coma. Its size is determined by thesublimating molecules' lifetimes � against photo-dissociation in the solar radiation�eld. Jackson (1976) calculated � at 1 AU for the more abundant cometary volatiles:water is fairly typical with � � 2� 104 s. The neutral coma gases expand away fromthe nucleus at roughly constant velocity v � 0.3 km s�1. The resulting size of themolecular coma v� is 6000 km, consistent with observations. A typical gas productionrate Q of 1029 s�1 (A'Hearn and Festou 1990) yields a mass 
ux of 3000 kg s�1, anda mean number density of 106 cm�3, if we assume that the mean molecular mass ofthe coma is that of a water molecule.2. Outside the molecular coma is the radical coma, where the composition of theout
owing gas becomes dominated by radicals, molecular fragments produced fromtheir parents by photo-dissociation. This region is also called the visible coma, andproduces prominent 
uorescence lines, including those of CN, OH, NH, C3, C2 andNH2 (A'Hearn and Festou 1990; Festou et al. 1993b). The OH radical has a lifetime� � 2� 105 s at 1 AU (Whipple and Huebner 1976). The theoretical radius of theradical coma is thus roughly 105 km, consistent with the typical observed size of afew times 105 km.3. The exosphere is also called the hydrogen coma because it is visible primarily inLyman-� emission. This region extends out into the interplanetary medium, endingwhere the coma gases are swept away by the solar wind and radiation pressure.A neutral ground-state hydrogen atom of mass mH has an absorption cross-section �dominated by the Lyman-� transition. The acceleration _v imparted to the moleculeby radiation pressure is thus_v � �(L�)Fp(L�)=mH; (1.1a)where Fp(L�) is the momentum 
ux of the radiation �eld in the Lyman-� line. Theabsorption cross-section of hydrogen in L�, �(L�), is given by �e2f12=mHc (e.g. Spitzer1978) where f12 = 0:4162 is the Lyman-� transition's oscillator strength. The mo-mentum 
ux is related to the energy 
ux FE through Fp = FE=c. Equation 1.1a can



CHAPTER 1. INTRODUCTION 4thus be rewritten_v(r) � �e2f12m2Hc2 �R�r �2 FE(L�; R�); (1.1b)� 10�3 � r1 AU��2 m s�2; (1.1c)where R� is the radius of the Sun, and FE(L�; R�) is the Lyman-� energy 
ux atits surface, approximately 3 � 105 erg cm�2 s�1 (Noyes and Avrett 1987). Thedistance D from the nucleus at which the radiation-induced change in velocity iscomparable to the gases' initial velocity (D � v2= _v) constitutes the outer boundaryof the exosphere Dexo. The hydrogen atoms, having absorbed kinetic energy duringthe photo-breakup of their parent molecules, are now travelling with typical velocitiesof 10 km s�1 (A'Hearn and Festou 1990), putting the edge of the exosphere atDexo � 108 km from the nucleus. This simple theory is consistent with observations:Lyman-� emission has been detected out to a few tens of millions of kilometers fromsome comets (Whipple and Huebner 1976).The molecules' mean free paths are less than their distance from the nucleus inside thecollisional radius of the coma Dcoll, which de�nes the boundary between hydrodynamicand collisionless 
ow. The neutral coma gases are thought to expand freely away from thenucleus, thus their density n goes as 4�Q=vD2, ignoring dissociation which will add a factorof 2{3. The collisional radius such that n(Dcoll)Dcoll� � 1, where � is now the collisionalcross-section, implyingDcoll � 1�(Q=4�D2collv) = Q�4�v : (1.2)A typical value for � is 10�15 cm2 (A'Hearn and Festou 1990), from which a collisionalradius of a few times 104 km can be deduced, putting the collisional radius inside the visiblecoma.The total mass of the gaseous coma M is roughly QmDexo=v where m is the meanmolecular mass of the coma constituents, taken to be that of a water molecule. When1 AU from the Sun, the coma's total mass M � 1013 g, negligible next to that of thenucleus.



CHAPTER 1. INTRODUCTION 51.3 The dust comaAn active comet also produces a dust coma consisting of submicron to centimeter-sizedsolid particles eroded from the nucleus. This \dust" is dragged along by the expandinggases, decoupling from the gaseous coma at about 100 km. The dust's dynamics are thendominated by solar gravity, with radiation pressure and the Poynting-Robertson e�ect alsoplaying some role for the smaller components. The dust coma may have a radius of 105 kmat r = 1 AU (Gr�un and Jessberger 1990).The dust grains may consist of solid H2O or other volatiles, which continue to sublimate,or refractory materials, which are modi�ed only slowly (e.g. by solar wind and cosmic-raysputtering). The dust-to-gas mass ratio of comets is di�cult to determine, dependingcritically on the number of large (cm-sized) particles, but is estimated to be of order unity(Gr�un and Jessberger 1990). Thus, the mass of the dust coma is also small compared tothat of the nucleus.1.4 The tailThe 
ow of gas within the coma is complicated by the solar wind and the interplanetarymagnetic �eld. A bow shock forms ahead of the nucleus, near the point where solar andcometary mass 
ows _Msw and _Mcomet balance each other (Whipple and Huebner 1976).Given that_Mcomet � Qm (1.3a)_Msw � �D2nswmswvsw (1.3b)where nsw , msw and vsw are the number density, molecular mass and velocity of the solarwind's constituents respectively, then the bow shock is expected nearDbow � � Qm�nswvswmsw�1=2 : (1.4)At the Earth's orbit, nsw � 10 cm�3, vsw � 5�107 cm s�1 andmsw � 0:5mproton � 10�25 g(Lang 1992), implying that the bow shock is approximately half a million km ahead of thenucleus, in accord with more sophisticated calculations and spacecraft observations (Galeevet al. 1986).



CHAPTER 1. INTRODUCTION 6In 1957, Alfv�en theorised that interplanetary magnetic �eld lines would drape them-selves over the cometary ionosphere, a prediction which has been con�rmed by spacecraftmeasurements of P/Giacobini-Zinner and P/Halley. This draping arises because the mag-netic �eld lines are \frozen" in the solar plasma. The boundary between the solar andcometary plasmas is called the discontinuity surface or cometopause. The details ofthe comet ionosphere are too complex to treat here (see Festou et al. 1993b for a review),but one result of the ionospheric structures and magnetic �eld is to de
ect cometary plasmainto a gas tail pointing in the anti-sunward direction. This structure, also called a plasmaor type I tail, is visible in the spectral lines of its ions, primarily CO+, with contributionsfrom H2O+, N+2 , CO+2 , CH+ and OH+. Though not all comets develop detectable gas tails(Antrack et al. 1964), emission from CO+ has been detected over 108 km (� 1 AU) fromthe nucleus in the tails of the most spectacular comets (Brandt 1968; Saito 1990). Gastails may be 105 km wide, with CO+ densities reaching 102 to 103 cm�3 (Brandt 1968).At the surface of the nucleus, the solar gravitational acceleration exceeds the comet'sown gravity at heliocentric distances r �< 3 AU. Thus dust particles, once decoupled fromthe gas, orbit the Sun independently of the nucleus, with those particles of small (micronor less) size being strongly in
uenced by radiation pressure. The dust that comets shedcreates the dust coma and the dust or type II tail. Visible in scattered sunlight, this tailis typically curved and shorter than the gas tail, though dust has been detected up to 107km from the nucleus (Brandt 1968). Comets generally show both type I and type II tails,though comets which have displayed only one or neither are known.1.5 Jets and streamersIn general, the nucleus will be aspherical and inhomogeneous, and the sublimation ofvolatiles will be non-uniform. Evidence for asymmetric outgassing includes dust jets andstreamers, fountain-like structures commonly visible in the coma and indicative of strong,localised dust/gas release. Images of P/Halley taken by the Giotto spacecraft (e.g. Keller1990) reveal a highly irregular distribution of active regions across the comet's surface.Sublimation is thus likely to result in a net reaction force, commonly termed the non-gravitational (NG) force, which contributes to the comet's dynamical evolution (x 3.3).



CHAPTER 1. INTRODUCTION 71.6 Observing long-period cometsThe visual geometric albedo �V y of a comet nucleus is very low. The ESA Giotto spacecraftmeasured a value of 0.02 to 0.04 for �V for P/Halley (Mendis 1988). For comparison, C-typeasteroids occasionally have �V as low as 0.05, though some E-type asteroids have albedosas high as 0.5 (Morrison 1992). The planets have surface-averaged albedos ranging from0:1 (Mercury, the Moon) to 0.65 (Venus), with their satellites reaching greater extremes:as low as 0.03 to 0.05 for Jupiter V and VI (Amalthea, Himalia) with Saturn III (Tethys)reaching 0.9 (Weast et al. 1989).The very low albedo of the nucleus makes it di�cult to observe comets before theybecome active. A comet nucleus has an apparent visual magnitude mV given bymV = m� + 2:5 log (F�=F) ; (1.5)where m� = �26:7 is the Sun's apparent visual magnitude and F� and F are the visual
uxes received at the Earth from the Sun and the comet respectively. The 
ux receivedfrom the comet is the re
ected 
ux attenuated by the inverse-square law,F � 14�D2 "�V �R2cF� �r�r �2# = �VR2cF�4D2 �r�r �2 ; (1.6)where Rc is the radius of the nucleus, and r, r� and D are the Sun-comet, Sun-Earth andthe Earth-comet distances respectively. Substituting Equation 1.6 into Equation 1.5, andtaking D � r yieldsmV � m� + 2:5 log 4r4�VR2cr2�! : (1.7)A large, bare comet nucleus (Rc = 10 km, �V = 0:03), at Saturn's orbit (r � 10 AU)thus has a visual magnitude of +24. This value increases to +54 if the comet is movedto 104 AU. The Hubble Space Telescope WFPC2 camera can reach magnitudes of 27.5to 28 in the V and I bands with long exposures (e.g. Groth et al. 1994), and providesthe practical observational limit for the near-future. Thus, a comet is almost undetectablewith present technology unless it approaches the Sun closely enough to develop a coma. Itshould be noted however that larger bodies (� 100 km), possibly cometary in nature butyThe geometric albedo is de�ned as the ratio of the 
ux received to that expected from a perfectlyre
ecting, perfectly di�using disk of the same radius and distance, measured at zero phase angle (Hopkins1980).



CHAPTER 1. INTRODUCTION 8lacking comae, have been detected by the Hubble Space Telescope around 40 AU from theSun (Cochran et al. 1995).After coma production has begun, the comet's brightness increases rapidly. The visualmagnitude mV of active comets is traditionally described by the equationmV = H0 + 5 log10D + 2:5n log10 r; (1.8)where D and r are the Earth-comet and Sun-comet distances in AU. The parameter n,which usually ranges between 2 and 6, describes the comet's increase in brightness with r.The value of n is generally smaller for long-period comets than short-period ones, the lattertending to have brightness pro�les which vary more strongly with r. H0 is the comet'sabsolute magnitude, de�ned to be its apparent magnitude were it to be placed 1 AUfrom both the Sun and Earth. The observed distribution of H0 peaks at 7. The intrinsicdistribution, however, is expected to increase monotonically through values of 12 or more,though the faint end of the luminosity function is poorly known (Everhart 1967b).1.7 Research goalsThe goal of this research is to test our current understanding of the dynamical evolutionof long-period comets against the observed distribution of their orbits. Limited investiga-tions along these lines have prevously been done (e.g. Weissman 1980), revealing signi�cantdiscrepancies between the expected and observed orbital distributions. But until recently,restrictions in computing speed have prevented the numerical integration of a large ensem-ble of Oort cloud comets, thus it has been unclear whether the gap between theory andobservations is the result of over-simpli�cations in the models used to predict the comets'distribution, or a real gap in our understanding of the Solar System.Here, the results of the �rst large scale numerical integration of long-period comets arepresented. In Chapter 2, the observed sample of long-period comets is discussed. Thedistributions of orbital elements is used to support the hypothesis that the Solar Systemis likely surrounded by a spherical cloud of comets (the Oort cloud), and that the tidal�eld of the Galaxy is an important mechanism for perturbing comets in such a cloud ontoorbits which pass through the inner Solar System. In Chapter 3, the dynamics of long-period comets are detailed, and the importance of the Galactic tide and the giant planetsis demonstrated from theory. In Chapter 4, the algorithm used here to simulate comet



CHAPTER 1. INTRODUCTION 9trajectories is described, including testing and error control. In Chapter 5, the results ofthe simulations are detailed and the gap between theory and observations discussed, alongwith an examination of possible reasons behind the mismatch. In Chapter 6, conclusionsare presented, and an overview of future research possibilities is outlined.



Chapter 2Observations2.1 The catalogue of cometary orbitsMarsden and Williams' Catalogue of Cometary Orbits (1993) lists 1392 apparitions of 855individual comets, observed between 239 B.C. and 1993 A.D., though with poor complete-ness at early times. This compilation includes, where possible, the comet's osculating orinstantaneous elements with respect to the FK5=J2000:0 system. The orbital elements ofcomets are traditionally quoted at an osculation epoch at or near perihelion, but if thecomet's aphelion distance is large, the elements of the orbit on which the comet approachedthe planetary system, called the original elements, are also of interest. These are likely tobe di�erent from those measured at perihelion because of the gauntlet of planetary pertur-bations the comets must run. In this context, \original" will mean \corrected for planetaryperturbations during its most recent passage through the planetary system". The originalelements can be calculated from the orbit determined near perihelion by integrating thecomet's trajectory backwards until well outside the planetary system, and are tradition-ally quoted in the centre of mass frame. Marsden and Williams include such a list forthose comets with large aphelia for which orbits of su�cient accuracy are known. This listcontains a total of 289 objects, observed between 1811 and 1993 A.D.2.1.1 Orbital elements uncertaintiesMarsden and Williams do not provide error estimates for elements in their catalogue, but dosubdivide the orbits into classes: IA, IB, IIA and IIB in descending order of accuracy. These10



CHAPTER 2. OBSERVATIONS 11classes are based on the estimated error in the determination of orbital energy, the timespan during which the comet was observed and the number of planets whose perturbationswere taken into account. These classes are described in more detail in Marsden et al. (1973).The distribution of the 289 comets among these orbits is 76, 94, 72 and 47 respectively.2.2 Comet familiesComets can be grouped usefully on the basis of their orbital periods � ; the divisions of Carusiand Valsecchi (1992) will be used here, though there are others in the literature. Figure 2.1plots the values of the semimajor axis ay versus the cosine of the ecliptic inclination i forall comet apparitions. Note that a statistically uniform distribution of angular momentumvectors upon the celestial sphere, called a spherically symmetric or SS distribution, willhave a 
at distribution in cos i. The division of comets into families is based largely on theclustering seen in this plot.Short-period cometsThe short-period (or SP) comets are those on orbits with periods less than 200 years.A subset of this class, the Jupiter family, is comprised of those comets with � less than20 years. The designation \Jupiter-family" arises from the clustering of their apheliondistances Q around Jupiter's orbit, as shown in Figure 2.2, and the consequent domination oftheir dynamics by this giant planet. Marsden and Williams' catalogue records 640 perihelionpassages by members of the Jupiter family, all on prograde orbits lying near the ecliptic.Largely because of their low inclinations, these objects are believed to have been transferredrelatively recently into the planetary system from a ring of material beyond Neptune knownas the Kuiper belt (x 3.10.4).Also counted among the short-period comets are the Halley-type (20 yr < � < 200yr) comets, which have a wider distribution of inclinations (Figure 2.1). Over 41 of the 71apparitions of Halley family comets listed in Marsden and Williams (1993) have retrogradeorbits, though P/Halley (� = 76 yr, i = 162�) itself contributes 34 apparitions, dating backto 239 B.C. The upper boundary of the Halley family corresponds, through Kepler's thirdyThe orbital elements used here, along with some celestial mechanics results important to this project,are outlined in Appendix A.
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Figure 2.1: The cosine of the ecliptic orbital inclination i plotted against inverse semimajoraxis 1=a for all observed comet apparitions. The two vertical lines indicate the familyboundaries at orbital periods � of 20 and 200 years. Data taken from Marsden and Williams(1993).
Figure 2.2: Aphelion distance Q versus the cosine of the ecliptic orbital inclination i forthe Jupiter family comets. The horizontal lines mark the semimajor axes of Jupiter andSaturn's orbits. Data taken from Marsden and Williams (1993).



CHAPTER 2. OBSERVATIONS 13law, to a semimajor axis a � 34:2 AU, and thus the short-period/long-period boundary pro-vides a useful distinction between comets whose aphelia lie within or close to the planetarysystem, and those that venture signi�cantly beyond.Long-period cometsThe long-period (or LP) comets have periods exceeding 200 years, and their orbits extendoutside those of the giant planets. These comets typically have periods of tens of millionsof years, and semimajor axes of tens of thousands of astronomical units (AU). Figure 2.1reveals that LP comets are not con�ned to the ecliptic plane. These facts suggest that theLP comets are at a di�erent stage of dynamical evolution than the SP comets, or, as isthought more likely, are a dynamically di�erent population from the SP comets. In anycase, the LP comets will be the focus of our interest here.2.3 Orbital elements2.3.1 Semimajor axisThe orbital energy E per unit mass of a bound Keplerian orbit is simply �G(M1+M2)=2a,where a is measured in the centre of mass frame, and M1 and M2 are the two bodies'masses. For a test particle orbiting the Sun, this expression reduces to �GM�=2a. Theseexpressions are not strictly valid in a multi-body system, but nevertheless provide a usefulmeasure of a comet's binding energy. For simplicity, the inverse semimajor axis 1=a isused here as a measure of the comet's orbital energy, di�ering from the Keplerian energyonly by a simple constant factor (see Appendix A).The boundary between SP and LP comets is at 1=a = (200 yr)�2=3 � 0:029 AU�1.Figure 2.3 displays histograms of 1=a for the 289 LP comets with known \original" orbits,at two di�erent magni�cationsy.From Figure 2.3b, it is clear that relatively large numbers of comets travel on orbits witha �> 104 AU (� �> 106 yr). By way of comparison, Pluto's semimajor axis is only 39.5 AU(� � 248 yr). Also notable is a lack of strongly hyperbolic original orbits. Comets enteringthe Solar System from interstellar space would be expected to have velocities comparable toyUnless otherwise stated, the error bars on histograms are �1 standard deviation (�) assuming Poissonianstatistics (� = pN).
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1/a (1/AU)(a) (b)Figure 2.3: Distribution of original inverse semimajor axes of 289 long-period comets at twodi�erent magni�cations. Data taken from Marsden and Williams (1993).the velocity dispersion of disk stars, roughly 30 km s�1 (Mihalas and Binney 1981). Thisvelocity is equivalent to an inverse semimajor axis of approximately �1 AU�1, impossibleto reconcile with the most hyperbolic original orbit observed, C/Sato (1976 I) which had1=a � �7�10�4 AU�1. The few (27) weakly hyperbolic orbits in Figure 2.3 may be due toobservational error or the in
uence of non-gravitational forces (x 1.5). The sharp peak inthe 1=a distribution was interpreted by Oort (1950) as evidence for a population of cometsorbiting the Sun at large (a �> 10 000 AU) distances, a population which has come to beknown as the Oort cloud.It is useful to consider here the distribution of original energies of comets with periheliainside 3 AU, for the purposes of comparison with later results. These distributions, shownin Figure 2.4, are similar to those in Figure 2.3, but the spike is not as high, due to atendency for Oort cloud comets to be brighter than other comets, and thus visible at largerdistances.2.3.2 Perihelion distanceA histogram of the number N of LP comets versus perihelion distance q is shown in Fig-ure 2.5. There is a strong peak near 1 AU due to observational biases: comets appearbrighter when nearer both the Sun and the Earth. Everhart (1967b) concluded that the
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CHAPTER 2. OBSERVATIONS 16creasing linearly with perihelion distance. Kres�ak and Pittich (1978) also found the intrinsicdistribution of q to be largely indeterminate at q > 1 AU, but consistent with dN=dq / q1=2over the range 0 < q < 4 AU.There are two estimates in the literature of the numbers of comets which pass unobservedthrough the inner Solar System. Everhart estimates that only 20% of all comets approachingthe Sun to within 4 AU are observed. Kres�ak and Pittich estimate 60% are observed atq � 1 AU, dropping to only 2% at q = 4 AU. Though not directly comparable, theseestimates are roughly consistent in that they indicate that a large fraction of comets passingnear the Sun likely go unnoticed. It will be assumed here that perihelion distance is notstrongly correlated with the comets' semi-major axis or angular elements, and thus that anyselection e�ects acting on q do not a�ect the observed distributions of the other elements.

Figure 2.6: The cumulative probability distribution as a function of perihelion distance qfor the short-period comets, and for the long-period comets with computed original orbits.Data taken from Marsden and Williams (1993).It is interesting to compare the cumulative distributions of SP and LP comets as afunction of q, displayed in Figure 2.6. Comets of all types are rarely observed if theirperihelia are beyond 2 AU, but those that are seen are more likely to be LP than SP. This



CHAPTER 2. OBSERVATIONS 17di�erence can be explained if the SP comets have typically undergone more apparitionsthan their long-period counterparts, and hence have smaller volatile inventories and producefainter comae. The discrepancy becomes even more striking when one considers that thereare more chances to discover SP comets due to their more frequent returns. The reduction incometary brightness with repeated apparitions is important to our understanding of cometdynamics and will be discussed more fully in x 3.10.1.2.3.3 InclinationFigure 2.7 shows the distribution of the cosine of the LP comet inclinations. For comparison,a spherically symmetric distribution is indicated by the heavy line. Everhart (1967b) showedthat selection e�ects due to inclination should only a�ect the distribution at the 5% level,well below the statistical noise. The data matches the 
at line fairly well by eye: the �2 andKolmogorov-Smirnov (KS) tests return probabilities that the distribution is consistent withspherical symmetry of roughly 0.35 and 0.99 respectively. The �2 distribution examines thematch at each point and is thus more sensitive to high frequencies in the data set than the KStest, which works with the cumulative distribution. Thus, a high probability of 
atness asindicated by the KS test, along with a low probability according to the �2 test, is consistentwith small-scale clumpiness, but little or no low-frequency signal. Discrepancies betweenKS and �2 tests occur for a number of the distributions to follow, but as their 
atness isnot central to the discussion, strong interpretations will not be imposed on the �2 and KSresults.Long period comets, unlike those with shorter periods, are not con�ned to the ecliptic,and are equally likely to be on prograde or retrograde orbits. The ratio of prograde toretrograde comets is 144/145. The �2 and KS tests con
ict, returning probabilities of 0.008and 0.99 that the ecliptic distributions are 
at. The distribution is less 
at to the eye in theGalactic frame. There may be a gap near zero inclination, possibly due to the in
uence ofthe Galactic tide (x 3.2), or to selection e�ects resulting from the confusion of comets withother objects in the Galactic plane.2.3.4 Longitude of the ascending nodeThe distribution of longitudes of the ascending nodes 
 is plotted in Figure 2.8. The 
atline again indicates a SS distribution. The two curves match fairly well, consistent with



CHAPTER 2. OBSERVATIONS 18Everhart's (1967a,b) conclusion that there are unlikely to be any selection e�ects based on
 over time scales long compared to one Earth year, assuming the intrinsic distributionis azimuthally symmetric. The �2 and KS tests indicate probabilities of 0.35 and 0.999respectively that the observed longitudes of the ascending nodes are drawn from an intrin-sically 
at distribution. When applied to the Galactic distribution, the �2 and KS testsyield probabilities of 0.05 and 0.99 that the intrinsic distributions are 
at; again, the lowvalue determined by the �2 test may either be due to noise in the sample, or indicate a realdeviation of the distribution from uniformity on small scales.2.3.5 Argument of perihelionFigure 2.9 shows the distribution of the arguments of perihelion ! for the LP comets. The�2 test reveals a probability less than 0.05 that ! is drawn from a 
at distribution, butthe KS test puts it at over 0:99. Comets with ! less than � outnumber those with !greater than � by a factor of 5/4. This is probably due to an observational selection e�ect(Everhart 1967a; Kres�ak 1982): comets with 0 < ! < � pass perihelion above the ecliptic,and are more easily visible to observers in the northern hemisphere. The lack of observedapparitions with ! > � is a result of the smaller number of comet searchers in the southern
(a) (b)Figure 2.7: The distribution of the cosine of the inclination for the long-period comets in(a) ecliptic coordinates i, and (b) Galactic coordinates ~{. A spherically symmetric sampleis indicated by the 
at line. Data taken from Marsden and Williams (1993).
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(a) (b)Figure 2.8: The distribution of the longitude of the ascending node of the long-period cometsin the (a) ecliptic frame, 
, and (b) in the Galactic frame, ~
. Data taken from Marsdenand Williams (1993).hemisphere until very recent times. The distribution in the Galactic frame has a slightexcess of comets with orbits in the range sin 2~! > 0 (58% of the total number), and thedistribution has a probability of being 
at of less than 0.01 and over 0.99 according to the�2 and the KS test respectively.2.3.6 Aphelion directionsFigure 2.10 shows the distribution of the aphelion directions of the LP comets in the eclipticand Galactic references frames. Unfortunately, Marsden and Williams (1993) do not providethe complete set of elements for the \original" orbits, and thus Figure 2.10 was calculatedfrom the orbital elements at perihelion. It will be shown that the angular elements aretypically only weakly perturbed during a single passage within the planetary system (x 3.1),so the errors in the aphelion positions are likely to be small.Claims have been made for a clustering of aphelion directions around the solar antapex(e.g. Tyror 1957; Oja 1975), but newer analyses with improved catalogues (e.g. L�ust 1984)have shed doubt on this hypothesis. The presence of complex selection e�ects, such as theuneven coverage of the sky by comet searchers, render di�cult the task of unambiguouslydetermining whether or not clustering is present. Attempts to avoid selection e�ects end up
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sin b(a) (b)Figure 2.11: The sine of the aphelion latitudes of long-period comets in the ecliptic (a) andGalactic (b) reference frames. Data taken from Marsden and Williams (1993).near b = 0� may be a selection e�ect resulting from the increased di�culty of spottingcomets against the more crowded skies of the Galactic plane. The weak selection e�ects inthe ecliptic frame are unlikely to signi�cantly a�ect the distribution in the Galactic frame,the two frames being tilted at a large angle (� 60�) to each other.2.4 SummaryThe angular orbital elements, in both the ecliptic and Galactic frame, may or may not beconsistent with a spherically symmetric distribution. The �2 test typically produces a lowprobability of the distribution being uniform, while the KS test, which examines the cumu-lative distribution, generally produces a much higher probability. This implies that there is\high frequency" noise in the sample, but no strong \low frequency" signal. However, thedistribution of Galactic latitudes does appear to have a doubly-peaked distribution possiblydue to the Galaxy's tidal �eld.The perihelion distribution is fraught with selection e�ects and only its gross features areuseful for comparison with theory at this point. Fortunately, the orbital energy distributionhas a distinctive signature. It will provide the primary diagnostic when comparisons withsimulations are performed, though the other distributions also provide useful information.



Chapter 3DynamicsThe equations of motion of the comet can be written as�~r = ~F� + ~Fplanets + ~Ftide + ~Fstars + ~Fclouds + ~Fdisk + ~Fjet + ~Frp + ~Fsw + ~Fdrag; (3.1)where the di�erent terms on the right-hand side represent the di�erent accelerations towhich the comet is subject. Considering initially the heliocentric frame, ~r is then the vectorfrom the Sun to the comet. The �rst term of Equation 3.1 represents the Sun's gravitationalpull, ~F� = �GM�r3 ~r; (3.2)where G is the gravitational constant and M� is the mass of the Sun. The second termof Equation 3.1 represents the gravitational in
uence of the planets ( ~Fplanets), and the re-maining terms, the accelerations due to the Galaxy's tidal �eld ( ~Ftide), individual closeencounters with stars ( ~Fstars) and molecular clouds ( ~Fclouds), a hypothetical disk of matteroutside the planetary orbits ( ~Fdisk), and non-gravitational forces resulting from outgassing( ~Fjet), solar radiation pressure ( ~Frp), solar wind pressure ( ~Fsw) and drag ( ~Fdrag), respec-tively. These e�ects will be considered separately.3.1 The planetsThe functional form of ~Fplanets depends, as do all the terms, on the reference frame in whichit is expressed. The frames of interest here are the heliocentric and barycentric frames. In23



CHAPTER 3. DYNAMICS 24the barycentric frame, ~Fplanets can be expressed simply as~Fplanets(bary) = �Xp GMpr3pc ~rpc; (3.3)where Mp is the planetary mass, and ~rpc is the distance vector pointing from the planet tothe comet. Complications arise when considering the heliocentric frame because it is non-inertial: the Sun orbits the Solar System's centre of mass. The additional terms needed toaccount for the solar motion are called the indirect terms, and serve as corrections to theprincipal terms (Equation 3.3) when working in the heliocentric frame,~Fplanets(helio) = �Xp GMpr3pc ~rpc �Xp GMpr3p ~rp; (3.4)where ~rp is the Sun-planet radius vector.The planets may strongly in
uence a comet's path, but the comet is not massive enoughto have a detectable e�ect on any of the planets: a typical nucleus has a mass only 10�9that of Pluto, and only 10�14 that of Jupiter.3.1.1 EnergyThe motion of the comet in the �eld of even one planet and the Sun has no analyticsolution, and may be quite complicated. However, if the comet's aphelion is well outside theplanetary system, i.e. it is a long-period comet, then the planets' in
uence is concentratednear perihelion, and can be approximated for some purposes by an instantaneous \kick" inthe comet's orbital energy.The energy kick �E and the corresponding change in the inverse semimajor axis �(1=a)are di�cult to calculate analytically (e.g. van Woerkom 1948), but have been determinedfrom numerical experiments (Everhart 1968; Fern�andez 1981). For a single planet, dimen-sional considerations show thatj�Ej � GMp=rp; (3.5a)j�(1=a)j � Mp=rp; (3.5b)where in the second equationMp is in solar masses. The values ofMp and rp for the planetsare listed in Table 3.1.



CHAPTER 3. DYNAMICS 25Planet Mp rp Mp=rp Mpr2pMercury 1:7� 10�7 0.39 4:3� 10�7 2:5� 10�8Venus 2:5� 10�6 0.72 3:4� 10�6 1:3� 10�6Earth+Moon 3:0� 10�6 1.00 3:0� 10�6 3:0� 10�6Mars 3:2� 10�7 1.52 2:1� 10�7 7:5� 10�7Jupiter 9:6� 10�4 5.20 1:8� 10�4 2:6� 10�2Saturn 2:9� 10�4 9.54 3:0� 10�5 2:6� 10�2Uranus 4:4� 10�5 19.2 2:3� 10�6 1:6� 10�2Neptune 5:2� 10�5 30.1 1:7� 10�6 4:7� 10�2Pluto 8� 10�9 39.5 2� 10�10 1:2� 10�4Table 3.1: Quantities related to the mass Mp and semimajor axis rp of the planets of theSolar System. Mp=rp is indicative of the size of the energy perturbation a comet receivesper perihelion passage (Equation 3.5a), Mpr2p, of the torque due to the planet's orbitalquadrupole (Equation 3.16). Units are M� and AU. Data taken from Lang (1992).In comparison, given the same conditions as above, simple theory predicts that theangular orbital elements i, 
 and ! and the perihelion distance q receive perturbations,�i � �
 � �! � �q=q �Mp=M�: (3.6)For a long-period comet with a = 5000 AU and q inside Jupiter's orbit, �(1=a)=(1=a)� 1,while the fractional change in the angular elements and perihelion distance is only of order10�3. Thus the energy of LP comets on high eccentricity orbits evolves on a shorter timescale than i, 
, ! and q.The kicks due to each individual planet are uncorrelated, so the total change in E isgiven by the square-root of the sum of the squares of the individual kicksj�Ej � "Xp (�Ep)2#1=2 � "Xp (GMp=rp)2#1=2 : (3.7)If the comet's perihelion is inside the orbits of all the giant planets, Jupiter dominates thesummation, having Mp=rp over six times greater than the next largest contributor, Saturn(see Table 3.1, column 4). The contributions of the inner planets and Pluto togetherconstitute less than 5% of Jupiter's contribution. Equation 3.7 is constant (within theconstraint q < rJup), and implies a constantj�(1=a)j � 2rJup �MJupM� � � 4� 10�4 AU�1 (3.8)per orbit as well. Of course, these values are only rough estimates, the actual changesin the orbital elements being sensitive functions of the initial conditions. Nevertheless,



CHAPTER 3. DYNAMICS 26Equation 3.8 provides a useful simple model, called the di�usion model, of the evolutionof Oort cloud comets with perihelia within the planetary system.Under the di�usion model, a near-parabolic comet which makes a series of passageswithin the planetary system receives an energy kick each time. The kicks are symmetricallydistributed about zero, and are uncorrelated and identically distributed as long as thecomet's orbital period is long compared to that of the planets. The evolution of sucha comet can thus be approximated by a random walk in energy space, with step sizegiven by Equation 3.8. The region of energy space LP comets inhabit has two \absorbing"boundaries:� At 1=a � 0, the comet leaves the Solar System on an unbound orbit.� As 1=a ! 1, the comet's orbit contracts, bringing it into collision with the Sun. Inreality, comets do not reach such a state, the di�usion approximation being invalidwhere a �< rp. Instead, some upper limit (1=a)sp is de�ned, below which the di�usionmodel is no longer valid. It is useful to take this cuto� to be the boundary betweenlong and short-period comets i.e. where � = 200 yr, corresponding to asp � 34:2 AU,or (1=a)sp � 0:029 AU�1. This boundary is not truly absorbing, as there is nothingto prevent a SP comet from evolving back into an LP comet. However, only a smallnumber of LP comets survive to become SP (Equation 3.10b, and later, Table 5.1),hence the possibility of SP comets returning to the LP domain is small and can beneglected.3.1.2 The Gambler's Ruin problemThe random walk of a LP comet under the di�usion approximation is very similar to thewell-known Gambler's Ruin problem, with the end-states of ejection and becoming short-period corresponding to bankruptcy and breaking the house, respectivelyy.Consider a comet random-walking on an integer lattice of energies. Let �ej be the initialnumber of steps the comet is from ejection, and let �sp be its initial distance in steps fromthe short-period barrier. For a typical visible Oort cloud comet, �ej � 1 and�sp � (1=a)sp�(1=a) � 80: (3.9)ySee e.g. Kannan (1979) for a more complete description of the Gambler's Ruin problem.



CHAPTER 3. DYNAMICS 27The probabilities pej and psp of the comet reaching the ejecting or short-period barriersrespectively are simplypej = �sp=(�ej + �sp) � 0:988; (3.10a)psp = �ej=(�ej + �sp) � 0:012: (3.10b)If m is the number of orbits a comet survives before crossing one of the absorbing barriers,its expectation value �m is�m = �ej �sp � 80: (3.11)However, it should be noted that the distribution of lifetimes, being very broad as wouldbe expected for a di�usion process, is not well-characterised by Equation 3.11.In the case of no short-period barrier i.e. �sp ! 1, the number N of LP cometsremaining on orbit m is given by (Everhart 1976; Yabushita 1979)N(m) = N0m�1=2; (3.12)where N0 is the initial number of comets. This implies a probability pej of ejection at eachorbit ofpej(m) = 12m�3=2: (3.13)3.1.3 Distant planetary encountersComets with perihelia outside the planetary system do not have close encounters withthe planets, and the resulting perturbations are signi�cantly decreased. Heggie (1975)calculated the change in energy of a binary star system when approached by an interloperon a near-parabolic orbit. His results provide a useful approximation to the situation inquestion, though he made the assumptions that the three bodies were roughly equal inmass, that the interloper was approaching on a near-parabolic orbit, and that q � rp,among others. With the Sun and Jupiter playing the role of the binary, the change in theirbinding energy is, through conservation of energy, just the energy absorbed by the comet.From Equation (5.43) of Heggie's paper, the energy kick isj�E=Ej � exp24� 8q39r3p!1=235 : (3.14)



CHAPTER 3. DYNAMICS 28Though Equation 3.14 was derived based on assumptions not always strictly valid in thecase of comets, the conclusion that the energy perturbation drops exponentially as q ! 1is certainly correct.3.1.4 Angular momentumIn the case of LP comets with perihelia outside the planetary system, changes in the an-gular momentum J induced by the planets are dominated by the torques resulting fromthe quadrupole moments of the time-averaged planetary orbits. These torques a�ect theperihelion distances q, related to J throughJ = [GM�a(1� e2)]1=2 � (2GM�q)1=2 where e � 1. (3.15)Approximating the planet orbits by coplanar circles, the total time-averaged quadrupolemoment of the planets Q is the sum of the planets' individual moments Qp = Mpr2p (Ta-ble 3.1, column 5)Q =Xp Qp =Xp Mpr2p � 0:115M� AU2; (3.16)and the associated torque �~J on the comet is�~J = �3GQ2r3 sin � cos � �̂ for q � rp, (3.17)where � is comet's ecliptic latitude, given by sin � = sin i sin(! + f), and �̂ is the eclipticazimuthal unit vector. The rate of change of angular momentum _J is related to the torquethrough_J = �~J � ~Jj ~J j = ���� �~J ��� sin i cos(! + f): (3.18)The absolute change in angular momentum per orbit j�J j, assuming j�J j � jJ j, is givenby j�J j = ���� Z �0 _J dt ���� ; (3.19a)= 3GQ2 ����Z �0 sin � cos � sin i cos �r3 dt���� ; (3.19b)= 3k2GQ2aJ(1� e2) ����Z 2�0 (1 + e cos f) sin � cos �q1� k2 sin2 � d����� ; (3.19c)= 0: (3.19d)



CHAPTER 3. DYNAMICS 29where � = ! + f and k = sin2 i. The planetary quadrupoles produce no net change in thecometary perihelion distance, regardless of their relative orientation. The change in angularmomentum is zero because the quadrupole potential, and hence the torque, goes like r�3;this is not necessarily the case for potentials with arbitrary dependences on r.3.1.5 The loss cylinderA comet with a semimajor axis greater than 3000 AU that comes close enough to the Sunto become visible is likely to receive an energy kick j�Ej comparable to its orbital energyE (Equation 3.8). Such a relatively large kick results in the comet taking on either anunbound or a much more tightly bound orbit, depending on the sign of �E. In either case,the comet is no longer a member of the Oort cloud.The orbit of Saturn is a rough outer limit to the perihelion distance at which an Oortcloud comet typically receives j�Ej �> jEj. Thus the region of phase space where a �>3000 AU and q �< 10 AU is called the loss cylinder, because it is swept clear of Oort cloudcomets by the giant planets in roughly one comet orbit.The loss cylinder gets its name from its geometry in a particular three-dimensionalvelocity space, one axis of which denotes the radial velocity vr, and the others the tangentialcomponents vt1 and vt2, with vt = qv2t1 + v2t2. Any �xed orbital angular momentumJ = rvt (3.20)corresponds to a cylindrical surface in this space. As the angular momentum is related toperihelion distance q through Equation 3.15, the loss cylinder can be de�ned equivalentlyby a �xed q if e � 1. The boundary of the loss cylinder is denoted J� or by the associatedperihelion distance q�. A similar surface called the visibility cylinder represents the rangeof perihelia for which comets produce comae; its size will be taken to be 3 AU here.The existence of the loss cylinder implies that visible comets which approach the plane-tary system on orbits with a > 3000 AU are probably making their �rst perihelion passageclose to the Sun. Such comets are referred to as dynamically new. Dynamically newcomets in the loss cylinder must have recently had their perihelia displaced inwards fromgreater distances by some mechanism.The loss cylinder is emptied on a time scale comparable to the comets' orbital period(� �< 107 yr for a �< 50 000 AU), and must be re�lled if a steady-state distribution is to



CHAPTER 3. DYNAMICS 30be maintained. If the Oort cloud is the source of new comets, a mechanism must exist forreducing their perihelia and bringing them into the loss cylinder.A change in perihelion distance implies a change in angular momentum. If some mech-anism produces a change in orbital angular momentum per orbit �J which is much smallerthan J�, LP comets make their �rst perihelion passage inside the loss cylinder close to itsboundary, and the loss cylinder is said to be empty. In this case, the comets do not becomepart of the observed sample. They are removed from the loss cylinder before their periheliacan evolve inward su�ciently for coma/tail development. Such comets are sometimes saidto encounter the Jupiter barrier, because they are typically removed when their periheliaapproach Jupiter's orbit.Oort cloud comets may hurdle the Jupiter barrier and become visible if a mechanismexists to produce�q �> q�; (3.21)which could push comets deep into, and possibly even through, the loss cylinder. Underthese conditions, the cylinder is said to be full.Due to the lack of net change in angular momentum the giant planets produce in cometswith q � rp (Equation 3.19d), some other mechanism is required to draw in the Oort cloudcomets which are observed. Though the major planets may produce larger changes in J incomets with perihelia near their orbits, such encounters would strongly a�ect the cometsenergies as well. The narrow spike in the observed distribution of comet inverse semi-majoraxes (Figure 2.3) arges against the giant planets being the dominant injectors of Oort cloudcomets.3.1.6 Planet XThere is little evidence for a massive solar companion beyond Pluto, and dynamical con-siderations set an upper limit to its mass of roughly 30 Jupiter masses, and probably muchless (Tremaine 1990; Hogg et al. 1991). Nevertheless, the presence of such a companioncould strongly a�ect the evolution of long-period comets, which may be useful probes of theexistence of such an object, and will be discussed further in x 5.4.2.



CHAPTER 3. DYNAMICS 313.2 The Galactic tidal �eldThe Solar System resides within an extended mass distribution, namely the Galaxy. Thisdistribution produces a tidal �eld in our vicinity, which is referred to as the Galactic tidal�eld or the Galactic tide (Morris and Muller 1986; Torbett 1986; Heisler and Tremaine1986; Matese and Whitman 1989).The e�ect of the Galactic tide is distinct from that of individual close stellar encounters.They constitute two di�erent parts of the Galaxy's gravitational �eld: the overall \smooth"�eld, and the \clumpy" �eld due to the concentration of mass into stars. Heisler andTremaine (1986) have shown that individual stellar encounters are the source of the varianceof the changes in comet velocity, while the Galactic tide is the source of the mean change.3.2.1 The Galactic reference frameConsider a set of mutually perpendicular unit vectors fê~x; ê~y; ê~zg with their origin at theSun and rotating with it about the Galactic centre. Let ê~x be directed radially outwardfrom the Galactic centre, let ê~y be directed tangentially to the Galaxy, in the direction ofits rotation, and let ê~z be directed towards the North Galactic Pole. These vectors formthe Galactic reference frame (see also Appendix A).The acceleration term due to the Galactic tide in Equation 3.1 has the form (Heislerand Tremaine 1986)~Ftide = (A�B)(3A+ B)~xê~x � (A�B)2~yê~y � [4�G�0� 2(B2 � A2)]~zê~z ; (3.22)where �0 is the mass density in the solar neighbourhood; and A and B are the usual Oortconstants. The numerical values of the Oort constants are A = 14:4 � 1:2 km s�1 kpc�1and B = �12:0� 2:8 km s�1 kpc�1 (Kerr and Lynden-Bell 1986). The local mass densityis less well-known. Observable matter (stars and gas) contributes about 0:1 M� pc�3, butthe amount of dark matter present in the solar neighbourhood, if any, is controversial.Recent calculations based on dynamical arguments allow the total/observed mass ratio Pto be between 1 and 2 (Bahcall 1984; Kuijken and Gilmore 1989; Kuijken 1991). Arecent determination by Bahcall et al. (1992) �nds P = 1:53, and a constant value for �0 of0:15 M� pc�3 will be adopted here. It should be noted that �0 is probably not constant, butmodulated somewhat by the Sun's excursions above and below the Galactic plane duringits orbit around the Galaxy (Matese et al. 1995).



CHAPTER 3. DYNAMICS 32Coordinate Momentumf L = (GM�a)1=2~! J = [GM�a(1� e2)]1=2~
 J~z = J cos~{Table 3.2: A set T of canonical coordinate-momentum pairs, useful for the orbit-averagedHamiltonian of a comet orbiting the Sun in the presence of the Galactic tide.Given the above values of A, B and �0, the 4�G�0 term of Equation 3.22 exceeds theothers by an order of magnitude. This dominant component of the tidal acceleration canbe expressed as~Ftide � �4�G�0 ~zê~z = �4�G�0 r sin b ê~z ; (3.23)where b is the comet's Galactic latitude sin b = sin~{ sin(~! + f). This dominant componentis along the Galactic polar axis, and corresponds to a gravitational potential of the formVtide = 2�G�0~z2: (3.24)The Hamiltonian H of a body orbiting the Sun under the in
uence of the Galactic tideprovides a complete description of the body's motion. However, this description is morecomprehensive than is required for some investigations. If the changes in the orbit dueto the tidal perturbation are small, it is reasonable to average H over a full orbit � andconsider the resulting simpler Hamiltonian Hav. The orbit-averaged Hamiltonian providesa useful description of the evolution of the comet's orbital elements under the tide, thoughat a loss of short time scale (t �< �) information.Following the example of Heisler and Tremaine (1986), the set T of canonical coordinate-momentum pairs listed in Table 3.2 will prove useful in the discussion of the orbit-averagedHamiltonian. The symbols ~{, ~
 and ~! represent the inclination, longitude of the ascendingnode and argument of perihelion measured in the Galactic frame; f is the true anomaly,which is independent of the reference frame. The momentum J is the usual orbital angularmomentum per unit mass of the comet, and J~z is its component along the ~z-axis. L is ameasure of the two-body orbital energy through the semimajor axis a.Expressed in these canonical variables, the orbit-averaged Hamiltonian Hav has the form(Heisler and Tremaine 1986)Hav = �(GM�)22L2 + ��0GM2� L2J2 (J2 � J2~z ) hJ2 + 5(L2 � J2) sin2 ~!i ; (3.25a)



CHAPTER 3. DYNAMICS 33which can be expressed in terms of the standard orbital elements asHav = �GM�2a + �G�0 a2 sin2~{ (1� e2 + 5e2 sin2 ~!): (3.25b)The canonical variables f and ~
 are absent from Equation 3.25a, so the correspondingmomenta L and J~z are conserved. The conservation of L implies that of a as well, hence thesemimajor axis and the orbital energy are conserved under Hav. However, ~! does appear inEquation 3.25a, implying that the angular momentum J , and hence the perihelion distanceq are not constants of the motion.yThe comet's angular momentum oscillates with time, with the eccentricity reachingminimum and maximum values e�. If C = 1� e2 + 5e2 sin2 ~{ sin2 ~! is greater than 1, thene� = s1 + 18 �C � 5(1 +K2~z )�q(5 + 5K2~z � C)2 � 80K2~z �; (3.26)where K~z = (1� e2)1=2j cos~{ j. If C � 1 then the limiting eccentricities are given bye� = p1� C; (3.27a)e+ = s1 + 18 �C � 5(1 +K2~z ) +q(5 + 5K2~z � C)2 � 80K2~z �: (3.27b)Equations 3.26 and 3.27a,b can be used in conjunction with the conservation of the semima-jor axis to compute the minimum and maximum perihelion distances a comet will oscillatebetween under the tide's in
uence.To determine whether or not the tide can �ll the loss cylinder, consider the orbit-averaged rate of change of angular momentum _J , which can be obtained from Hav throughHamilton's canonical equations_J = �@Hav@~! ; (3.28a)= � 5��0GM2� L2J2 (J2 � J2~z )(L2 � J2) sin 2~!; (3.28b)= � 5��0GM2� e2L4 sin2 ~{ sin 2~!; (3.28c)from which it can be deduced thatj _J j � 5��0GM2� e2L4: (3.29)yThough no notational distinction is made here, the orbit-averaged coordinates and momenta in Hav,i.e. L; J; J~z and ~!, are not, in general, equal to their instantaneous values in the unaveraged system, exceptin the limit �0 ! 0.



CHAPTER 3. DYNAMICS 34The change in angular momentum over a single orbit j�J j = j R �0 _Jdtj � j _J� j is given byj�J j � 5��0GM2� e2L4 4�2a3GM� !1=2 = 10�2�0G3M4� e2L7: (3.30)Equation 3.30 can be solved to determine the conditions under which the tide can �ll theloss cylinder, i.e. produce �J � J�. These conditions are, assuming e � 1, thata �>  p2q�M�10�2�0 !2=7 ; (3.31a)�> 25 000 q�10 AU!1=7� �00.15 M� pc�3��2=7 AU: (3.31b)The Galactic tide thus provides a mechanism by which Oort cloud comets may becomeobservable, but only if the comets' semimajor axes exceed 25 000 AU.3.3 Non-gravitational forcesThe asymmetric sublimation of cometary volatiles results in a net acceleration of the nucleus.These non-gravitationaly (NG) forces are limited to times of signi�cant outgassing (i.e.coma production), and remain small even then. For example, as P/Halley passed perihelionin 1986, the nucleus was subjected to a radial NG acceleration only 10�5 times that ofthe Sun's gravity. The transverse and normal components were over 10 times weaker still(Rickman 1986). NG forces are small but not negligible: acting in the same directionover many perihelion passages, they may produce signi�cant changes in a comet's orbit. Infact, the need for NG correction terms in comet orbit calculations has long been known.As early as 1823, Encke noted that some comets' orbits deviated from purely gravitationalones, which he attributed to a resisting medium through which the comets passed.Non-gravitational forces are di�cult to model. Their strength depends on the comet'sdistance from the Sun, but displays less regular variability as well: Gas production may varyby a factor of 2 or more between the pre- and post-perihelion legs of the orbit (Sekanina1964; Festou 1986); and jets and streamers are observed to evolve on time scales of lessthan a day (Festou et al. 1993b), suggesting that NG forces change on similar time scales.yTraditionally, the term \non-gravitational forces" has been reserved for the reaction forces resulting fromthe uneven sublimation of cometary volatiles, and it will be used here in that manner. It will be shown inx 3.7 that the other forces of a non-gravitational nature e.g. radiation pressure, are negligible in comparisonto the outgassing forces.



CHAPTER 3. DYNAMICS 35Further complications arise from the rotation of the nucleus, which is di�cult to measurethrough the coma, and which may be quite complicated due to precession (Wilhelm 1987).Our inability to measure or predict the e�ects of outgassing with con�dence makes a precisetreatment of these accelerations di�cult.A simple and naive model of NG accelerations, which is all the data allows, assumes thatthe short time scale components of the NG forces are uncorrelated and cancel out, leavingonly fairly regular, longer time scale components as dynamically important. A simple andwidely-used model called Style II parameters was devised by Marsden et al. (1973). TheNG acceleration term ~Fjety in Equation 3.1 is written as~Fjet = F1ê1 + F2ê2 + F3ê3; (3.32)where the three orthogonal components are: radial F1 (positive outward from the Sun),transverse F2 (in the orbital plane, positive along the direction 90� ahead of the Sun-comet line), and normal F3 (perpendicular to the orbital plane, parallel to ê1 � ê2). TheStyle II model assumes that the accelerations are symmetric about perihelion, and can berepresented byF1(r) = A1g(r); F2(r) = A2g(r); F3(r) = A3g(r); (3.33)where fA1; A2; A3g are independent constants, and g(r) is a non-negative function describingthe increase in activity with decreasing comet-Sun distance r. The form of g(r) is based onan empirical water sublimation curve by Delsemme and Miller (1971),g(r) = �� rro��m �1 + � rro�n��k ; (3.34)wherem = 2:15, k = 4:6142, n = 5:093, ro = 2:808 AU and �, the normalisation parameter,is chosen to be 0.1113 so that g(1 AU) = 1. Note that g(r) is roughly proportional tor�m � r�2 for r � ro. At r � ro, g(r) drops much faster than the simple inverse squarethat describes the incident solar 
ux (Figure 3.1).The constants A1; A2 and A3 are calculated by Marsden et al. (1973) for each cometby a �tting process: the constants are assigned the values which minimise the di�erencebetween the observed and modelled positions of the comet. If the residuals calculated froma model including NG forces are signi�cantly smaller than those predicted from a purelyyThe symbol ~F is again used here to represent the acceleration and not the force, to maintain consistencywith the literature.
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                   r (AU)Figure 3.1: The Style II non-gravitational acceleration function g(r), and a 1=r2 curve.gravitational description of the comet's motion, then NG forces may play a signi�cant role.Note that determinations of fA1; A2; A3g sometimes assume that their values are constantover one or more apparitions, despite the fact that some comets show changes in thesevalues, in both sign and amplitude, from apparition to apparition (Marsden 1976). Asthe peak outgassing occurs on the sunward side of the cometary nucleus, the sign of A1 isalways positive. The signs of A2 and A3 are determined by the rotation of the nucleus andthe non-symmetrical nature of the gas release, which cause the acceleration to deviate fromthe precisely sunward direction.Despite the uncertainties involved, the calculated values of the NG constants give us anidea of the order of magnitude of the forces involved. The value of A1 is typically 10�9 to10�7 AU day�2 (� 10�3 to 10�1 m s�1 day�1) with error estimates variable, but in the10-50% range (Marsden et al. 1973). Comets with shorter periods tend to have smallervalues of A1, which does suggest that their volatile supplies have been depleted by theirmore frequent passages near the Sun. The values of jA2j are typically only 10% of jA1j, withsimilar errors. The tangential component is presumed to be due to the displacement of the



CHAPTER 3. DYNAMICS 37most active outgassing region away from the subsolar point due to rotation of the nucleus.If this is the case, a ratio of A1=A2 � 10 implies a lag angle of roughly sin�1 0:1 � 6�. Theinclusion of a normal component in the models does not reduce the residuals signi�cantly,and so A3 is generally taken to be zero (Marsden et al. 1973; Marsden 1976).The e�ect of the NG forces can be deduced from Gauss's planetary equations (describedin Appendix A). Note that the absence of a normal component F3 would mean that Equa-tions A.19c and A.19d are identically zero, and that the comet's orbital plane is constant.Gauss's equations allow us to estimate the impact of NG forces on cometary dynamics.Assuming the accelerations imparted are given by the Style II function g(r) (Equation 3.34),Equations A.19a{f yield expected changes in inverse semimajor axis and perihelion of�(1=a) = � 4qGM�A2 �Z�� g(r)1 + e cos f df; (3.35a)�q = 4q3GM�A2 �Z�� g(r) (1� 2 cosf)(1+ e cos f)3 df; (3.35b)where e � 1 has been assumed, and df = Jdt=r2 (which can be deduced from Kepler'ssecond law) has been used. The median value of the semimajor axis in these simulationswill be shown to be around 100 AU (x 5.2). Taking a typical visible long-period comet tohave q = 1:5 AU, and a = 100 AU (though the result is insensitive to the exact value of a aslong as e �< 1), the integrands in Equations 3.35a and 3.35b can be numerically integrated,using the expression r = a(1� e2)=(1 + e cos f) to transform g(r) to a function of the trueanomaly. We �nd�(1=a) � �6:8� 10�6� A210�9 AU day�2� AU�1; (3.36a)�q � �2:5� 10�6� A210�9 AU day�2� AU; (3.36b)Typical values of A2 are 10�9 AU day�2 (Marsden et al. 1973) and thus, acting alone, NGforces could move a comet out of the visibility cylinder only on a time scale of hundreds ofthousands of orbits. However, the energy change imparted is only about a factor of sixtyless than that due to the planets (Equation 3.8), thus a comet could conceivably be movedfrom an orbit with a semimajor axis of 100 AU to an unbound one in a thousand orbits.Equation 3.36a and 3.36b do not depend on A1 because the radial NG forces' e�ect onthe energy and perihelion distance averages to zero over a full orbit. However, the radial



CHAPTER 3. DYNAMICS 38acceleration may produce variations in the elements on shorter time scales e.g. from aphelionto perihelion. These short-term variations might be important if, say, the NG forces werestrong enough to push comets into unbound orbits during the outbound leg of the orbit.The \typical" kick during the perihelion-aphelion leg is�(1=a) � � 4qGM�A1 �Z0 g(r) sin f(1 + e cos f)2df; (3.37a)� �9:6� 10�6� A110�8 AU day�2� ; (3.37b)which is too small to unbind orbits with semimajor axes less than 100 000 AU. Largervalues of A1 impart larger kicks, and an order of magnitude increase would provide anenergy change of order that of the planets; thus radial non-gravitational forces may havesome role to play in certain highly active comets.When a comet's nodes cross the orbit of a planet, a close encounter becomes much morelikely. The nodal distances rn are given byrn = a(1� e2)1� e cos! (3.38)where the plus in the denominator refers to the ascending node, the minus to the descendingnode. The rate of change of the nodal distances under NG forces is�rn � 2�q1� cos! � 2q sin!�!(1� cos!)2 ; (3.39)where e � 1 has been used. Using Gauss's equations, the change in ! is found to be�! = � 4q2GM�A1 �Z�� g(r) cosf(1 + e cos f)2df; (3.40)and the change in rn per orbit can then be deduced to be�rn � � 5� 10�61� cos! � A210�9 AU d�2�� 1:3� 10�4 sin!(1 + cos!)2 � A110�8 AU d�2� AU; (3.41)where again a = 100 AU and q = 1:5 AU have been used.If �rn=rp � 1, a close encounter is very likely if one of the nodes crosses a planet'sorbit. The number of orbits m required for a node to migrate near to a planet's orbit is oforder rp=�rn or, for Jupiter's orbit and the values used above, m � 106 orbits. Thus, themotion of the nodes is too slow to appreciably shorten the lives of LP comets.



CHAPTER 3. DYNAMICS 393.4 Passing starsA long-period comet, passing aphelion far from the Sun, may have its orbit perturbed bystars travelling through the solar neighbourhood. The comet's velocity at aphelion is oforder 100 m s�1, much less than the velocity dispersion of stars in the Galactic disk, whichis 30 km s�1 (Mihalas and Binney 1981) . Thus, to a �rst approximation, the comet can beconsidered stationary during a stellar encounter, and the impulse approximation used.The net impulse �~v due to a passing star of mass M? and velocity v? is the di�erencebetween the impulses imparted to the Sun �~v� and the comet �~vc,�~v = �~vc ��~v� � 2GM?v?D2c ~Dc � 2GM?v?D2� ~D�; (3.42)where ~Dc and ~D� are the vectors directed to the point of closest approach from the cometand the Sun respectively. In the case of a star passing very close to the Sun, D� � Dc,and Equation 3.42 can be approximated byj�vj � 2GM?v?D� : (3.43a)If the encounter is a distant one, ~Dc and ~D� are nearly parallel, and the impulse reduces toj�vj � 2GM?r cos �v?D2� ; (3.43b)where � is the angle between ~D� and the Sun-comet vector ~r.Consider the case of the Sun and its attendant comet cloud moving with velocity v�through a homogeneous and isotropic distribution of static stars of mass M? and numberdensity n?. The stars transfer kinetic energy to the comet cloud; the average rate of changein the square of a comet's velocity h _v2i is given by (cf. Bailey 1983, Equation 45)h _v2i � 8�G2M2?n?v� "ln r2dmin bmin!� 2(1� ln 2)# ; (3.44)thus the change per orbit �v2 ish�v2i � � 8�G2M2?n?v� "ln r2dmin bmin!� 2(1� ln 2)# ; (3.45a)� 16�2G3=2M2?n?a3=2v�M1=2� "ln r2dmin bmin!� 0:614# ; (3.45b)� 8�2G3=2M2?n?a3=2v�M1=2� "ln �n?a3v3�M�tSS2GM2? !� 1:23# ; (3.45c)



CHAPTER 3. DYNAMICS 40where bmin � (2�n?v�tSS)�1=2 is the minimum impact parameter expected during the SolarSystem's lifetime tSS, dmin � 2M?(GM�r)1=2=M�v� is the distance within which a singleencounter would result in the comet escaping from the Solar System, and r3=2 � hr3=2i �a3=2 has been used.3.4.1 EnergyThe change in a comet's inverse semimajor axis �(1=a) � ��v2=GM� caused by passingstars can be obtained from Equation 3.45c. Taking v� = 30 km s�1, the local stellar velocitydispersion, n? = 0:15 pc�3 and M? = 0:3 M� (Bahcall and Soneira 1980), the change in1=a is� (1=a) � 10�8 n?0.15 pc�3! 30 km s�1v� ! M?0.3 M�!2 a25 000 AU!3=2AU�1 (3.46)per orbit, where the logarithmic term has been taken to be constant. This result is consistentwith other derivations (cf: Fern�andez 1980; Fern�andez and Ip 1991), and from it onededuces that stellar perturbations have only a very small e�ect on comet orbital energiesover a single orbit. Over time, however, the net transfer of energy to the cloud unbindsits members, and may signi�cantly deplete its numbers over the age of the Solar System(Bailey 1986).3.4.2 Angular momentumThe analytic determination of the change in cometary angular momentum due to passingstars is complex, and beyond the scope of this project. The subject was treated thoroughlyby Heisler and Tremaine (1986). A result of interest is that the loss cylinder is only �lledat semimajor axesa �> 36 000AU (3.47)(l: c: Equation 39), well outside the Galactic tide's value of a �> 25 000 AU (Equation 3.31b).We will see that the number density of comets in the Oort cloud drops sharply withdistance (x 4.2.2), with the result that the tide dominates the overall 
ux into the losscylinder. This result allows the injection of comets into the loss cylinder by passing starsto be neglected when constructing a theoretical model of LP comet evolution.



CHAPTER 3. DYNAMICS 413.4.3 Comet showersEvery 108 yr on average, a very close stellar encounter (D� �< 10 000 AU) may cause acomet shower, enhancing the comet in
ux rate by up to a factor of twenty (Hills 1981;Heisler et al. 1987; Duncan et al. 1987). Because the loss cylinder is cleared on time scalesof order 107 yr, the odds are against a shower currently being in progress. Heisler (1990)estimates that the comet 
ux signi�cantly exceeds its background rate only 2% of the time.The correlation of comet aphelion directions with the Galactic plane, along with the lackof strong clustering associated with any other points in the sky (Figure 2.10), also suggestthat the present comet 
ux is at its quiescent level, though the possibility of a weak showerbeing in progress has been advanced (Heisler 1990). The possibility of comet showers willbe ignored here.3.5 Molecular cloudsA penetrating encounter between the Solar System and an interstellar molecular cloud withvelocity vcl and impact parameter D applies an impulse ofj�vj � 2rGMclvclD2 241�  1� D2R2cl!3=235 j cos �j; (3.48)to a comet, where � is the angle between ~r and ~D, and the cloud is assumed to be sphericaland of uniform density with mass Mcl and radius Rcl (Biermann 1978; Fern�andez and Ip1991). Assuming for simplicity that D � Rcl, e � 1, and that the comet is at aphelionduring the encounter, the corresponding change in angular momentum �J is�J = r�v sin � � 4GMcl a2 sin 2�vclD2 : (3.49)The semimajor axis above which the molecular cloud �lls the loss cylinder isa �>  q�v2clM�D48GM2cl sin2 2�!1=4 (3.50)�> 8000� D20 pc�� Mcl105 M���1=2� vcl10 km s�1�1=2� q�10 AU�1=4 AU: (3.51)Such encounters stir the Oort cloud to great depths and result in large increases in thecometary in
ux, but their frequency is unknown: giant molecular clouds (Mcl �> 105 M�;Rcl � 20 pc) may be encountered as rarely as every 5�108 yr (Bailey 1983; Torbett 1986),



CHAPTER 3. DYNAMICS 42but smaller clouds (Mcl � 103 to 104 M�) could be 100 times more common (Drapatz andZinnecker 1984). It will be assumed here that the current 
ux of comets is una�ectedby a recent encounter with a molecular cloud, because of the rarity of such encountersand the Galactic tide's strong signature in the distribution of cometary aphelion directions(Figure 2.11b).3.6 A massive circumsolar diskIf the Sun were to have a matter disk, a possibility suggested by the presence of disks around� Pictoris and other stars, the dynamics of long-period comets would be a�ected. A diskpotential can be approximated by a Miyamoto-Nagai potential, expressed mathematicallyas (e.g. Binney and Tremaine 1987),Vdisk = �GMdhx2cm + y2cm + �ad +qz2 + b2d �2 i1=2 (3.52)where Md is the disk mass, r2cm = x2cm + y2cm + z2 is the distance to the Solar System'sbarycentrey, and ad and bd are parameters describing the disk's characteristic radius andthickness respectively. This disk will be taken here to be centred on the Solar System'sbarycentre, with the disk plane coinciding with the ecliptic.The resulting acceleration ~F = �rV is~Fdisk = �GMdhx2cm + y2cm + �ad +qz2 + b2d �2 i3=2 0@~rcm + ad~zqz2 + b2d1A : (3.53)The disk potential is conservative and axisymmetric, and thus conserves the z componentof the angular momentum.The disk around � Pic is observed in the infrared out to a least 1100 AU (Smith andTerrile 1987). It is seen nearly edge-on, allowing its axis ratio ad=bd to be estimated at �vea few hundred AU from the central star (Smith and Terrile 1984; Paresce and Burrows1987). The mass of the � Pic disk is poorly known: estimates of H column density basedon observations of CO predict values between 1014 r2disk kg and 1020 r2disk kg, where rdiskis the gas' distance from the central star in AU. For values of rdisk of 500 AU, this yieldsvalues of 10�8 to 10�2 Jupiter masses. Early estimates of the mass in dust yield results of10�5 to one Jupiter mass (Smith and Terrile 1984).yAs the planets have been assumed to be coplanar and in the ecliptic, zcm = z.



CHAPTER 3. DYNAMICS 43There is little or no evidence for a substantial disk in our own Solar System. A studyof planetary residuals limits the mass in a 100 to 1000 AU disk to less than a few Jupitermasses. A study of P/Halley sets much more stringent limits, around 10�2 Jupiter masses,though the inclusion of non-gravitational corrections could be masking the e�ects of a disk(Tremaine 1990; Hogg et al. 1991).Observational evidence also puts relatively strong limits on the mass of such a disk.Imaging with the Hubble Space Telescope puts a preliminary limit of less than 10�3 Jupitermasses in 5{10 km sized objects within 40 AU of the Sun (Cochran et al. 1995). Modelsof the infrared emission expected from dust generated by collisions in a belt of cometsdistributed over 30{100 AU from the Sun puts a similar limit (Backman et al. 1995). Amore distant (500{1000 AU) belt could have an upper mass of roughly one Jupiter mass(Backman 1995).Thus, it is unlikely that a signi�cant amount of mass resides in an unseen disk within100 AU of the Sun, but that at larger distances (� 1000 AU) much larger masses (�MJup)could be present.3.7 Miscellaneous perturbations3.7.1 Radiation pressure and the solar windThe acceleration F imparted to the nucleus by the solar wind or radiation pressure is givenby F = ��R2cFp=Mc; (3.54)where Mc and Rc are the comet's mass and radius, Fp is the momentum 
ux to which thecomet is subjected, and � is a coe�cient describing the e�ciency of the momentum transfer.For a radiation �eld, Fp is related to the energy 
ux FE through Fp = FE=c. For the solarwind, whose parameters are given in x 1:4, the momentum 
ux is nswmswv2sw.These accelerations are small, and since they are always directed radially outward, theperturbations arising during the inward and outward legs tend to cancel. However, theacceleration during the outbound leg could potentially serve to eject comets. Using Gauss'sequations for the e � 1 case (Equation A.21a), one �nds the perturbation incurred during



CHAPTER 3. DYNAMICS 44the outbound leg to be�(1=a) = � 1a2 �=2Z0 _adt; (3.55a)= �2��r2�R2cFp(r�)GM�Mcq ; (3.55b)where r� is the radius of the Earth's orbit. The numerical values of these perturbations,for a small nucleus (Rc = 1 km, Mc = 1012 kg) with perihelion q = 1:5 AU, are�(1=a)rp � �3 � 10�9 q1.5 AU!�1 Rc1 km!2� Mc1012 kg��1 AU�1; (3.56a)�(1=a)sw � �10�13 q1.5 AU!�1 Rc1 km!2� Mc1012 kg��1 AU�1: (3.56b)where the solar constant FE(r�) is taken to be 1400 W m�2, and inelastic collisions (� = 1)are assumed.During times of close approach to the Sun, the e�ective solar wind cross-section of thenucleus is increased by the draping of solar magnetic �eld lines over the coma. However, thenucleus itself has no substantial magnetic �eld; any back reaction can only be transmittedback to the nucleus through the coma's gases. Thus, instead of the solar wind impactingthe nucleus directly, a pressure gradient is set up across the coma. This pressure will be oforder the solar wind pressure, and thus will not result in perturbations signi�cantly largerthan those calculated above.The single-leg solar wind and radiation pressure perturbation are small, and unlikeoutgassing accelerations, the contributions on the inward and outward bound legs tend tocancel. These perturbations will thus be assumed to be negligible.Under a radial acceleration, there is no change in a comet's angular momentum, a factwhich is implicit in the calculation of Equations 3.56a and 3.56b. But the 
ow directionof the solar wind is not precisely radial, and the resulting transverse component of theacceleration does not have opposite signs on the inward and outward legs. However, theangle � by which the solar wind deviates from radial is less than 1� (Foukal 1990). Theresulting one-orbit perturbations are, for the orbital energy,j�(1=a)swj = ���� 1a2 Z �0 _a dt���� ; (3.57a)



CHAPTER 3. DYNAMICS 45� 2�2�r2�R2cFp(r�)j sin �jGM�Mcq ; (3.57b)j�(1=a)swj � 5� 10�14  q1.5 AU!�1 Rc1 km!2 Mc1012 kg!�1 j sin �j0:017 !AU�1;(3.57c)and for the perihelion distance,j�qswj = ����Z �0 [ _a(1� e)� a _e] dt���� ; (3.58a)� ��qr2�R2cFp(r�)GM�Mc ����� sin � Z ��� 1� 2 cos f � e cos2 f1 + e cos f df ����� ; (3.58b)j�qswj � 3� 10�13 q1.5 AU! Rc1 km!2 Mc1012 kg!�1 j sin �j0:017 ! AU: (3.58c)These perturbations are also small compared to those resulting from outgassing. Thus, thesolar wind and radiation pressure have negligible e�ects on cometary orbital dynamics.3.7.2 DragThe solar wind, unlike solar radiation, does not reach distances arbitrarily far from the Sun,but is halted by the pressure of the interstellar medium at the heliopause. This boundarylies between 75 and 105 AU from the Sun in the direction of the solar apex, and further inother directions (Hall et al. 1993). When outside this boundary, comets are subjected todrag from the interstellar medium (ISM). Long-period comets spend most of their orbitalperiods outside the heliopause, and for the purposes of computing the drag from the ISMon comet nuclei, it will be assumed they spend all their time there.The drag acceleration exerted on the nucleus isFdrag = �R2cCDnismmismv22Mc (3.59)where nism and mism are the number density and mass of the interstellar medium particles,and CD is the drag coe�cient of the nucleus, of order unity for spheres in high Reynoldsnumber i.e. low viscosity, 
uids (Streeter and Wylie 1985). The local interstellar mediumhas nism � 0:2 cm�3 and mism � 10�28 kg (Baranov 1986).The drag force is always opposite to the comet's direction of motion, and thus the use ofGauss's equations becomes quite complicated. Nonetheless, the e�ect of drag on Keplerian



CHAPTER 3. DYNAMICS 46orbit is well-understood (e.g. Roy 1978), and the resulting change in 1=a per orbit is�(1=a) = �R2cCDnismmismMc �Z�� (1 + e cos u)3=2(1� e cos u)1=2 du; (3.60a)� 4� 10�16� Rc1 km�2� Mc1012 kg��1� nism0.2 cm�3� AU�1; (3.60b)where u is the eccentric anomaly, and e = 0:99997 has been assumed e.g. a = 50 000 AUand q = 1:5 AU. This result is independent of the semimajor axis, but small in any case.The change in perihelion distance for this same comet is�q � ��R2cCDnismmismaqMc �Z�� (1 + cos u)�1 + e cosu1� e cosu�1=2 du; (3.61a)� �2� 10�11� Rc1 km�2� Mc1012 kg��1 � nism0.2 cm�3� AU: (3.61b)Both the change in energy and angular momentum due to drag by the ISM are negligible,and will be ignored.3.8 Comet lifetimesContinued loss of volatiles ultimately transforms comet nuclei into inert bodies, containingonly the leftover refractory elements of their initial inventories. Given a perihelion distanceof 1 AU, a typical comet's volatiles might be depleted after a thousand orbits (Weissman1980).There is evidence that spent comets may either remain a single solid body, or break intoa collection of fragments:� Some regular meteor showers have been associated with the orbits of comets e.g. the�-Aquarids and Orionids with P/Halley.� A few asteroids have elliptical orbits strongly resembling those of Jupiter-familycomets e.g. 1992 XA which has a perihelion distance of 1.8 AU and an apheliondistance of 5.1 AU (Kres�ak 1977; Marsden and Williams 1994).Whether or not a dead comet breaks up probably depends on various factors, including itsinternal cohesiveness and the patterns of thermal/gravitational stress to which it is subject.



CHAPTER 3. DYNAMICS 47Comets may also be destroyed or become unbound from the Sun before their volatilesare exhausted. Approximately 50% of comets entering the planetary system on near-para-bolic orbits will be transferred to hyperbolic orbits by perturbations from the giant planets(especially Jupiter) after their �rst perihelion passage; a further fraction will be lost oneach subsequent perihelion passage, as the comets di�use through the available energyspace (Gambler's Ruin, x 3.1.2).The nucleus may also break into one or more large pieces before complete loss of volatilesoccurs. After such a splitting event, a comet is often not observed at its next expectedreturn. A comet stands a roughly 10% chance of being disrupted on its �rst close perihelionpassage; the probability drops to less than 1% per perihelion passage for short-period comets(Weissman 1980; Kres�ak 1985).A splitting probability p � 0:1 per revolution yields a half-life m1=2 against splitting ofm1=2 = � ln 2= ln(1� p) � 7: (3.62)Thus, splitting may signi�cantly reduce a comet's lifetime.Comets may be destroyed by collision with the Sun or a planet, but this is unlikely. Ifthe collision probability is simply taken to be the ratio of the planet's cross-section to thearea of a sphere of the same radius as its orbit, then the probability of a comet passingwithin the Roche limit of the Sun or a planet is only of order 10�7 per perihelion passage(Weissman 1980).3.9 The Oort cloudThe existence of the Oort cloud is now generally accepted (see Lyttleton 1974 for a dis-senting viewpoint) based primarily on the observed distribution of 1=a (Figure 2.3), butthe mechanism of its formation, as well as its present characteristics, remain the subject ofdebate.The Oort cloud may either be primordial i.e. formed from the solar nebula, or havebeen captured or produced by the Solar System at a later time. In the latter case, the Oortcloud may have a survival time short compared with the age of the Solar System. However,the production of cometary bodies within the Solar System after the dissipation of the solarnebula almost certainly can be ruled out for lack of a viable mechanism, though the originof comets from the breakup of a planet in the present-day asteroid belt has been postulated



CHAPTER 3. DYNAMICS 48(van Flandern 1978). It has also been postulated that a non-primordial Oort cloud could becaptured from a passing molecular cloud (Clube and Napier 1984; Yabushita and Hasegawa1978), but it remains unclear whether comet nuclei exist in such clouds. In addition, theSolar System has a very low capture cross-section for interstellar comets, owing to the highencounter velocities involved.If the Oort cloud is primordial, its formation through in situ accretion seems unlikely:the condensation of cometary bodies from the solar nebula at Oort cloud distances is dif-�cult to explain due to the low density of matter expected there (Op�ik 1973), thoughradiation pressure (Hills 1982) or wind-powered shells (Bailey 1987) have been proposedas mechanisms by which the required density enhancements could be produced. The mostwidely accepted model of the origin of the Oort cloud holds that comet nuclei are planetes-imals that accreted in or near the planetary region (r < 50 AU) at the same time as theplanets. The growing planets, especially Uranus and Neptune, would have scattered someplanetesimals from their initial near-circular orbits onto highly elliptical ones (Safronov1972; Tremaine 1993). Those proto-comets �nding themselves on orbits with large semi-major axes (a �> 3000 AU) could have their perihelia rapidly increased by the Galactictide. The removal of their perihelia from the planetary system e�ectively decouples theplanetesimals from the planets, and at this point the comets are said to have reached theOort cloud.As cometary isotope abundances are consistent with solar values (Krankowsky et al.1986; Eberhardt et al. 1986), the current understanding of the Solar System and itsformation is consistent with a primordial origin for the Oort cloud (Fern�andez 1985 o�ers amore complete review of the primordial vs. captured question). The question of the originof the Oort cloud is only of secondary interest here except insofar as it a�ects the steady-state nature of the Oort cloud; on the basis of the cloud's likely primordial origin, it will beassumed that the Oort cloud is in a quasi-steady state i.e. the cloud's dynamical evolutiontime scale is comparable to the age of the Solar System.The present distribution of comets in the Oort cloud cannot be observed directly, butDuncan et al. (1987) have derived a theoretical distribution based on the assumption thatthese comets formed in the outer planetary region and were scattered out into the Oort cloudthrough the combined perturbations of the tide and planets. They found the cloud's inneredge to be near 3000 AU, with a space number density of comets roughly proportional to



CHAPTER 3. DYNAMICS 49r�3:5 from 3000 to 50 000 AU. This power law is consistent with Bailey's (1986) analyticaltreatment of the Oort cloud (l:c: Equation 103). Hills (1980) �rst pointed out that thecloud might extend further inwards than indicated by the minimum semi-major axis in thespike; thus the inner region (a < 2� 104 AU) is often referred to as the Hills' cloud.Though the orbits of the comets would have initially been near the ecliptic, the inclina-tions of orbits with semimajor axes greater than about 2000 AU are randomised by passingstars on a time scale of 109 yr. This mixing results in the Oort cloud comets occupying aspherical rather than a 
attened distribution.External in
uences strip comets with large orbits from the Solar System, thus truncatingthe Oort cloud at some distance from the Sun. The last closed Hill's surface providesa useful measure of the maximum possible size of the Oort cloud. Antonov and Latyshev(1972) calculated the Hill's or zero-velocity surface for a comet moving in the �eld ofthe Sun and the Galaxy. On such a surface, the Jacobi integral ~W (x 4.4.3) is constant.Expressed in the Galactic frame, ~W is~W = 2A(A� B)~x2 + (B2 �A2 � 2�G�0)~z2 + GM�r ; (3.63)where A and B are the Oort constants. A particle having zero velocity relative to theSun inside a closed Hill's surface cannot leave the enclosed volume, in the absence of otherperturbations. The last closed surface is at ~W = 32(GM�)2=3[4A(A� B)]1=3. Substitutingthis value into Equation 3.63 and solving yields semiaxes for the Hill's surface~x � 1:41 pc � 290 000 AU; (3.64a)~y � 0:94 pc � 190 000 AU; (3.64b)~z � 0:63 pc � 130 000 AU: (3.64c)The last closed Hill's surface is triaxial and resembles a prolate ellipsoid. In this work,the outer boundary of the Oort cloud is taken to be simply spherical, and at an apheliondistance of 100 000 AU (a = 50 000 AU for comets with e � 1) rather than 130 000 AU.The prolate nature of the cloud and the exact location of the boundary is unlikely to berelevant here, due to the rapid drop o� in comet number density with r.The steep r�3:5 radial density pro�le deduced by Duncan et al. (1987) provides ananswer to the question of why the aphelion directions of Oort cloud comets are crowded atmid-Galactic latitudes. The ability of the tide to �ll the loss cylinder at smaller distances



CHAPTER 3. DYNAMICS 50than passing stars (cf. Equation 3.31b to 3.47) allows it to reach into regions of highercomet density, and makes the tide the dominant injector of Oort cloud comets. Heisler andTremaine (1986) have shown that the 
ux due to the tide exceeds that due to passing starsby a factor of 1.5 to 2. The tide's maximum injection e�ciency is at mid-Galactic latitudes,a signature which can be seen in Figure 2.11b.In the absence of a recent close encounter with a star or a molecular cloud, the losscylinder is �lled only at distances beyond 25 000 AU, yet the inner edge of the Oort cloudmay be as close to the planetary system as 3000 AU. Comets in this inner region neverbecome visible even if their perihelia are evolving inwards under the tide, because they hitthe Jupiter barrier. These comets may, however, provide a source from which the outerOort cloud is replenished. Encounters with stars and molecular clouds may scatter someof the comets in this inner Oort cloud into more loosely bound orbits, \pumping" them upinto the outer Oort cloud, and may also give rise to occasional rare comet showers.The population of the Oort cloud is expected to be eroded over time scales comparableto the age of the Solar System, as comets are ejected into interstellar space or capturedinto smaller orbits. Between 40% (Duncan et al. 1987) and 80% (Weissman 1985) of theoriginal Oort cloud may have been lost over the lifetime of the Solar System, leaving 1012comets totalling 10M� in the present-day comet cloud (Weissman 1991). These numbersare poorly known, and estimates of the current Oort cloud population range from 1011(Op�ik 1973) to 1015 (Marsden 1977) objects.3.10 Problems in long-period comet dynamics3.10.1 The fading problemThe energy kick received by a visible comet (4�10�4 AU�1, Equation 3.8) is larger than thewidth of the main spike in the 1=a distribution of long-period comets (Figure 2.3). Fromthis, it has been concluded that the spike consists of dynamically new comets, and thatolder comets, di�using in energy space over many perihelion passages, populate the tail.The spike will be taken here to be the region where the original inverse semimajor axisof the comets is less than 10�4 AU�1. This value is chosen because of the width of thespike in the observed distribution (Figure 2.3b). All remaining LP comets are consideredto be part of the tail.



CHAPTER 3. DYNAMICS 51De�ne 	1 to be the ratio of the number of long-period comets in the spike to the totalnumber,	1 = N(a > 10 000 AU)N : (3.65)Then 1=	1 is an estimate of a comet's life expectancy in perihelion passages. A more precisemeasure of comet life expectancy is 1=�1, where �1 is the ratio of dynamically new to thetotal number of LP comets,�1 = N(m = 1)N ; (3.66)where m is the number of apparitions a comet has made. Theory and observations canbe compared through these quantities: let the prime 0 symbol denote the relevant quantityderived from observations e.g. 	01 is the ratio of the number in the spike to the total numberfor the observed sample, and let �1 = 	1=	01. If �1 = 1, then observations and theory matchon this point.The value of 	01 computed from the observed sample is 81/246 = 0:33 � 0:04, wherecomets with perihelion beyond 3 AU have been excluded, and the quoted error is based onPoissonian (pn) noise. Note that the de�nition of the spike includes the seventeen cometswith original 1=a < 0 in Figure 2.3, on the assumption that they are coming from the Oortcloud, rather than interstellar space. The outright exclusion of the comets on hyperbolicoriginal orbits yields a value of 	01 = 64=229 = 0:28 � 0:04.The observations provide a value of 	01 � 0:33; the Gambler's Ruin problem predicts	1 � 1= �m � 1=80 = 0:0125 (Equation 3.11); that is �1 � 0:038. Thus, the Gambler's Ruinimplies that only 1 in 25 of the perihelion passages expected to be made by older LP cometsare observed. Why this large discrepancy?Observations and theory have proved di�cult to reconcile on this point. Though moresophisticated analytical treatments than the Gambler's Ruin narrow the gap signi�cantly,the problem persists (e.g. Kendall 1961). Experimental results show the same discrep-ancy: for example, Everhart (1979) found �1 � 0:2, using a straightforward Monte Carlosimulation that included Jupiter, Saturn and passing stars.The gap between theory and observation is known as the fading problem, since it canbe resolved if dynamically new comets fade drastically in brightness after their �rst perihe-lion passage near the Sun. This fading makes them less likely to be observed at subsequentperihelion passages, thus reducing their apparent lifetimes 1=	1, and thus increasing �1.



CHAPTER 3. DYNAMICS 52Weissman (1980), using a Monte Carlo scheme similar to Everhart's (1979), was able toincrease �1 to unity, but not without adding such a fading law.The standard explanation proposed for such fading goes along the following lines: cometsin the Oort cloud may never have approached the Sun to within more than a few tens ofastronomical units since their condensation from the solar nebula, and thus may containparticularly volatile ices (e.g. CO, CO2) that cannot survive the comet's �rst perihelionpassage close to the Sun. These volatiles create a large bright coma for the new comet,but are substantially or completely depleted in the process. When the comet subsequentlyreturns (assuming it has avoided ejection and the other loss mechanisms), it will be muchfainter and may escape detection. The decrease in brightness is required to be largest overthe comet's �rst few perihelion passages, levelling o� as the most volatile components of thecomet's inventory are lost. Thus, the fading problem may \simply" be caused by selectione�ects.However, a comet's failure to reappear at its next perihelion passage could be the resultof other, possibly unsuspected, loss mechanisms. Any phenomena which results in a decreasein the life span of LP comets would tend to increase �1. The reduction in brightness ofthe comet due to a depletion of readily vapourised volatiles will be referred to as standardfading. Determining whether or not standard fading is required to solve the fading problem,or if some other dynamical mechanism is involved is a central goal of this research. Somekey points pertaining to the fading problem are listed below.Pre- and post-perihelion brightnesses The evidence against the fading hypothesis in-cludes the lack of observed large decreases in brightness as LP comets pass perihelion,decreases which might be expected if their volatile inventory is being exhausted (Fes-tou 1986). Though no collection of Oort cloud comet light curves seems available inthe literature, those few published show brightness variations typically no larger thanthose of dynamically older comets (Whipple 1978; Roettger et al. 1990).Short-period comet fading The reduction in brightness of comets over many perihelionpassages remains controversial, even for SP comets. Sekanina (1969) claims P/Enckehas faded by 0.03 magnitudes per orbit over the last century, but Kres�ak (1974,1977) has argued that this is an artifact of instrumental and selection e�ects, andthat random variations in a comet's brightness dominate any secular trend. In either



CHAPTER 3. DYNAMICS 53case, the brightnesses of SP comets have not been observed to change drastically andpermanently over a few orbits, except for occasional splittings.Splitting The physical break-up of the nucleus may provide a comet sink, but a half-life ofm1=2 � 1=	1 � 2 or a splitting probability p � 0:3 would be required to produce therequired tail-spike ratio (see Equation 3.62). Such a high rate of splitting would notallow comets to survive long enough to di�use in 1=a up to the large values seen inthe tail of Figure 2.3. However, dynamically young comets have higher splitting ratesthan older ones. Weissman (1980) showed that, over the period 1846 to 1980, long-period comets had a 0.045 chance per perihelion passage of splitting, the short-periodcomets only 0.008. In addition, the probability was higher for new comets (0.1) thanolder LP comets (0.02).The cause of splitting is not well understood: though some are caused by passages nearthe giant planets, many are not associated with such encounters. Studies of cometaryoutbursts, during which the comet may brighten by up to a factor of 100 for of ordera week, show that impacts by \interplanetary boulders" and chemical and/or phasechanges in the nucleus are not capable of fully explaining the distribution of events(Hughes 1975). The splitting events appear not or only weakly correlated with theecliptic plane, asteroid belt and cometary perihelion points (Pittich 1971) but ratherare randomly distributed. Splitting events are, however, more likely to occur post-perihelion by a factor of 2 or so, though better observational coverage at this timemay be a factor (Smoluchowski 1986).Cratering rates If comets do fade drastically rather than being ejected or otherwise de-stroyed, then their cores may still be present in the Solar System, but be too faintto be observed. These dead comets should, however, contribute to the crateringrate. Shoemaker (1983) compared the cratering rate determined from number countsof impact basins on the Earth's surface to that expected from the observed 
ux ofpotential impactors, and found them to be consistent within a factor of two. Bothrates are di�cult to compute and are based on the extrapolation of relatively poorlydetermined data, but there is no evidence from cratering rate studies for an additionalsource of Earth-impacting objects.



CHAPTER 3. DYNAMICS 543.10.2 The ratio of prograde to retrograde cometsIn the Gambler's Ruin problem, the lifetime �m is proportional to the initial distance to theshort-period barrier �sp (see Equation 3.11). A more careful determination of the energykicks imparted by the planets reveals that retrograde comets receive smaller �(1=a) onaverage, and hence should have lifetimes three times longer on average.If the lifetime of retrograde comets is three times that of prograde comets, the obser-vations should re
ect this fact through a ratio of retrograde to prograde of three to one inthe absence of other important comet loss mechanisms. But the observations, plotted inFigure 2.7, show no such bias. Why is this the case?3.10.3 The clustering of aphelion directionsA number of researchers (Tyror 1957; Oja 1975; L�ust 1984), have reported that theaphelion directions of LP comets are clustered in speci�c directions on the sky. However,due to the presence of strong selection e�ects the results are not compelling. There is a clearconcentration towards mid-Galactic latitudes (Figure 2.11b), an e�ect which is expectedsince the Galactic tide is most e�cient when the Sun-comet line is at 45� to the plane ofthe Galaxy.However, even comets with semimajor axes greater than 36 000 AU show concentrationsat mid-Galactic latitudes (Fern�andez and Ip 1991), shown in Figure 3.2. At these distances,stellar perturbations should also be able to �ll the loss cylinder (Equation 3.47), so thedistribution of aphelion directions should be isotropic. The �2 test indicates only a 10�7chance of the Galactic latitudes being drawn from a spherically symmetric distribution.However, the sample size is small, and thus the concentration at mid-latitudes may be aresult of sampling noise.3.10.4 The source of short-period cometsSome LP comets may survive long enough to di�use into short-period orbits. The incli-nations of Halley-type orbits are, at �rst glance, consistent with a spherically symmetricsource (see Figure 2.1): is this source the Oort cloud?The Jupiter family of comets have inclinations which are clearly not uniformly dis-tributed, but rather concentrated in the ecliptic. Though Everhart (1972) showed that
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Figure 3.2: The distribution of Galactic latitudes of the aphelion directions of the 58 long-period comets in Marsden and Williams (1993) with original semimajor axes greater than36 000 AU. The heavy line indicates the distribution expected for a spherically symmetricdistribution of aphelion directions.Jupiter is most e�cient at capturing the lowest inclination comets from a spherical source,the capture rate is still too low by a factor of 103 to account for the number of Jupiter-familycomets seen today (Joss 1973). The orbital elements of the Jupiter-family comets are mostconsistent with capture from a low-inclination belt of material at 30 to 50 AU (Whipple1972; Fern�andez and Ip 1983; Quinn et al. 1990). Kuiper proposed in 1951 that materialmight remain in this region as leftovers from the formation of the planets, so this ring iscommonly known as the Kuiper belt. Though the existence of the Kuiper belt has beencon�rmed observationally e.g. Jewitt and Luu (1995), some fraction of the SP comets arealmost certainly dynamically very old Oort cloud comets. Is the Oort cloud's contributionto the population of short-period comets important?



CHAPTER 3. DYNAMICS 563.10.5 Hyperbolic cometsSome comets appear to be approaching the Solar System on weakly hyperbolic orbits (Fig-ure 2.3) and treatments of non-gravitational forces are unable to fully explain this phe-nomena. Are there perhaps unexplored dynamical mechanisms which might explain suchorbits?3.11 The present state of the �eldMost research on comet dynamics to date has been limited to analytical approximations andMonte Carlo simulations, which may not capture all the dynamically important physics.Analytical investigations of cometary behaviour can be performed through perturba-tional and averaging techniques. These methods treat a simple two-body problem with anadditional, necessarily weak, perturbation. For example, the e�ects of the Galactic tide(Heisler and Tremaine 1986; Torbett 1986; Matese and Whitman 1989) and of a singleplanet (Quinn et al. 1990) on a comet's evolution have been examined over restricted re-gions of phase space. These methods usually examine only a single facet of comet evolution,and break down if the interactions are too strong.Monte Carlo methods allow long time scale investigations to be made relatively cheaply,by evolving comets within a phase space with fewer dimensions than the full problem. Thesimulation advances in �xed discrete time steps: at each one, the comets are redistributedthroughout the phase space based on pre-computed transition probabilities determinedby averaging over the omitted dimensions. However, Monte Carlo methods require sig-ni�cant simpli�cations of the problem and may prove too coarse-grained to reveal all thedynamics of interest (see Froeschl�e and Rickman 1988 for a review).Weissman (1978; 1979; 1980) has completed the most extensive Monte Carlo inves-tigation of long-period comets dynamics to date. His model included the planets, non-gravitational forces, the e�ects of passing stars, fading and splitting. However, his simula-tions had some restrictions: they did not include the tide, the initial semimajor axis wasalways 25 000 AU, the e�ects of the planets were represented by a Gaussian distribution ofenergy kicks and comets were run for only 1000 returns.His model can produce �1 � 0.66 to 1, with reasonable agreement between the incli-nation and intrinsic perihelion distributions. His models include ad hoc assumptions e.g.



CHAPTER 3. DYNAMICS 57some fraction of indestructible comets, increased fading for comets with small perihelia, anda �xed disruption probability for new and old comets, but none that contradict cometaryphysics as now understood.Weissman had to add very strong fading (28% of his sample of comets fade) to hissimulations in order to match observations. Because his Monte Carlo simulations were fairlycoarse-grained and there is little or no other evidence for strong fading, the possibility thatthe \fading" required is simply an unmodelled facet of the dynamics remains strong.The most direct approach to the study of cometary dynamics is the numerical inte-gration of the comets' equations of motion, including all signi�cant perturbations. Untilrecently, computational restrictions have placed severe limitations on the sophistication andtime scale of possible investigations. For example, Dvorak and Kribbel (1990) numericallyintegrated the trajectories of �ve Halley-type comets in the presence of the Sun, Jupiter andSaturn for 106 years (� 10 000 orbits). Manara and Valsecchi (1991) used similar methodsto follow 100 short-period comets for 1000 revolutions in low inclination orbits in the outerSolar System.As technological development has eased computational restrictions, direct integrationsof cometary dynamics have increased in complexity and length. Levison and Duncan (1994)numerically integrated the known SP comets under the in
uence of all the planets exceptMercury and Pluto for 107 years. However, the research presented here represents the mostsophisticated direct integration of the long-period comets yet published.



Chapter 4AlgorithmThe purpose of this research is to examine the dynamical processes important in the evo-lution of long-period comets, and to investigate the discrepancies between the observeddistribution of orbital elements and simple theoretical models. To accomplish this, a modelhas been created to simulate the important dynamical e�ects in
uencing a long-periodcomet's trajectory as it travels from the Oort cloud to its destruction or departure from theSolar System.The model is embodied by a computer code called LOCI which has the following basicframework:� Each comet is represented by a massless test particle. The test particles are followedindependently, one at a time; thus interactions between comets are neglected. Eachcomet is started in the Oort cloud, and its evolution is followed analytically until itapproaches the Sun close enough for planetary perturbations to become important.The comet is subsequently followed by numerically integrating its equations of motion,expressed in regularised coordinates (x 4.1.2), until lost from the Solar System.� The model Solar System in which the test particles evolve consists of the Sun, andfour planets representing Jupiter, Saturn, Uranus and Neptune. Their physical char-acteristics are listed in Table 4.1. The terrestrial planets and Pluto are omitted forthe following reasons:1. The orbit-averaged quadrupole moments of their orbits Q / MpR2p, are each atleast two orders of magnitude less than that of any giant planet (Equation 3.1658



CHAPTER 4. ALGORITHM 59Name M�=Mp rp (AU) Rp (km)Jupiter 1047.355 5.202803 71492Saturn 3498.5 9.53884 60268Uranus 22869 19.1819 25559Neptune 19314 30.0578 25269Table 4.1: The values of the reciprocal masses (M�=Mp), orbital (rp) and physical (Rp)radii used for the giant planets (Newhall et al. 1983; Lindal 1992; U.S. Naval Observatory1992). and column 5 of Table 3.1), and thus the smallest planets' in
uence on cometaryperihelia is negligible compared to that of the giant planets.2. The energy perturbations imparted by the smallest planets are unimportant: ifthe comet's perihelion distance is within the planets' orbit, �(1=a) / Mp=Rp(Equation 3.5b) and the perturbation is dominated by Jupiter and Saturn (col-umn 4 of Table 3.1).� The planets' orbits are modelled as circular and coplanar. There is no reason toexpect that the small eccentricities and inclinations of the planets play signi�cantroles in long-period comet dynamics. Mutual planetary perturbations are ignored. Itshould be noted that the planets are represented consistently throughout the numericalintegration. No further approximations (e.g. putting the planets' mass into the Sunwhen the comets are far outside the planetary system) are made.� The model includes the dominant component of the Galactic tidal �eld, as describedby Equation 3.23. The Solar System's orbit about the Galactic centre is taken to becircular, and in the Galactic plane. Deviations from this idealised orbit are ignored,though they may result in some temporal variation in the tidally-induced cometary
ux, if there is a large amount of dark matter with small (�< 50 pc) scale height inour Galaxy (Matese et al. 1995). The Galactic centre and poles are oriented so as tomatch their current positions relative to the ecliptic.� The model does not account for encounters with passing stars. In the absence of closestellar encounters, the transfer of comets from the Oort cloud to the loss cylinderis dominated by the Galactic tide, because the tide �lls the loss cylinder at smallersemimajor axis than passing stars (page 50). The omission of stellar encounters has the



CHAPTER 4. ALGORITHM 60considerable bene�t of yielding a deterministic model, in which the comet's evolutionis completely determined by the system's initial conditions.� The model includes the e�ects of non-gravitational forces of arbitrary magnitude anddirection. These parameters can be varied to observe their e�ects on the simulationoutput.� The model also contains provisions for investigating hypothetical phenomena, such asa circumsolar disk or a solar companion.4.0.1 Comparison with observationsThe sample of known comets includes objects of varied and unknown dynamical ages, ob-served to varying degrees of completeness over a relatively inde�nite period. This is insharp contrast to the data available from simulations, where dynamical ages are known andselection e�ects are non-existent. Thus, a basis for comparing the two sets must �rst beconstructed.Let O be the set of comets for which Marsden and Williams (1993) calculated originalorbital elements, and which have perihelion distances less than 3 AU. It will be assumed thatthe distributions of orbital elements of O are free of selection e�ects, except in the periheliondistance q. With this exception, O is representative of a complete sample of long-periodcomets passing within 3 AU of the Sun over some �xed, though unknown, interval of time.This assertion assumes that the 
ux of LP comets has not varied signi�cantly in rate orfunctional form over the observation interval (�< 200 yr), and is based on the fact that no LPcomet has a period short enough to have made more than one appearance in the observedsample.Consider the expected 
ux of LP comets into the loss cylinder. This 
ux can be derived(x 4.2.2), and constitutes the probability distribution from which the simulations' initialconditions are chosen. Any sample of such initial conditions represents the LP cometsinjected into the entrance surface over some �xed period of time. Let S be the sample of allapparitions i.e. visible perihelion passages, performed by the comets represented by sucha set of initial conditions. Then comparisons between the model and observations can bemade by directly contrasting S and O.That O and S are directly comparable is due to our choice of the 
ux into the entrance



CHAPTER 4. ALGORITHM 61surface as the initial conditions for the simulations, as well as the steady-state distributionof LP comets. In the Solar System there are comets of all ages, but given a steady-state, onecomet \dies" e.g. is ejected, destroyed, etc., for every one that arrives from the Oort cloud.This continuous distribution of ages is reproduced by the simulations by following individualobjects throughout their entire lifetimes. As the life-long evolution of the ensemble ofsimulated comets is statistically equivalent to a snap-shot of the steady-state distribution,S and O are directly comparable with each other.4.1 Numerics4.1.1 The integration algorithmLOCI's primary integration algorithm is theBulirsch-Stoer method. The implementationused is bsstep() from Press et al. (1986). The routine bsstep() has automatic step-sizecontrol, achieved by monitoring the local truncation error i.e. the error due to the omissionof higher order terms by the integrator. A fourth-order Runge-Kutta-Fehlberg algorithm, aRunge-Kutta variant designed for e�cient step-size control (Burden and Faires 1989), wasused for testing the Bulirsch-Stoer routine.4.1.2 RegularisationIntegrating the equations of motion of a comet on a highly elliptical orbit is di�cult inCartesian coordinates, due to the very small step sizes required to maintain accuracy nearperihelion. The Kustaanheimo{Stiefel or K{Sy transformation replaces the six Carte-sian coordinates of position ~r = fx; y; zg and velocity ~v = f _x; _y; _zg, with ten regularisedcoordinates. It also replaces the independent variable, the physical time t, with the �cti-tious time s, where dt = r ds. The advantage of the regularised coordinates is that theunperturbed (two-body) equations of motion become those of a harmonic oscillator: thusthe acceleration does not blow up as r goes to zero, and the ensuing small step-sizes andnumerical di�culties are avoided. Regularised coordinates are used in all the simulationsdiscussed here.yThe distinction between the Kustaanheimo-Stiefel transformation and the Kolmogorov-Smirnov test,though usually clear from the context, will be made by using the abbreviations K{S and KS respectively.



CHAPTER 4. ALGORITHM 62Eight of the regularised coordinates represent the particle's phase space position ~u =fu1; u2; u3; u4g and velocity ~u0 = fu01; u02; u03; u04gy. The ninth regularised coordinate is thenegative of the orbital energy h of the particle, given byh = GM�r � 12 j~vj2 � V = GM� � 2j~u0j2j~uj2 � V; (4.1)where V represents any potentials besides the Sun's. The tenth coordinate is the physicaltime t. Both h and t are dependent variables and must be integrated along the particle'strajectory in the same manner as the eight position and velocity coordinates.The regularised position and velocity are obtained from the Cartesian coordinates bymeans of the K{S transformation (see Stiefel and Scheifele 1971 for a fuller exposition of theK{S formalism). Because the regularised space has two more dimensions than Cartesianspace, the K{S transformation is not one-to-one; each position in physical space correspondsto a one-dimensional manifold in K{S space, as do the velocities.A requirement of K{S regularisation is that the frame origin must coincide with theprimary force centre. This fact dictates the reference frame in which the comet integrationcan best be performed.Reference framesThe equations of motion di�er depending on the reference frame in which they are expressed.Two frames prove useful:1. The barycentric frame is an inertial frame. However, the barycentre does not coin-cide with the primary force centre, the Sun. Regularisation requires the force centreand frame origin to coincide if its superiority in handling highly eccentric orbits nearperihelion is to be e�ective.2. The heliocentric frame is non-rotating and centred on the Sun. Its advantage isthat the origin and central force coincide, thus allowing regularisation's bene�ts to befully exploited during cometary passages close to the Sun. Its primary disadvantageis that it is a non-inertial frame: it su�ers accelerations as the Sun orbits the SolarSystem's barycentre, and thus the indirect terms (Equation 3.4) are not identicallyzero. These terms do not go to zero as r becomes large, and result in extremely smallyThe prime symbol 0 here represents a derivative with respect to s, i.e. u01 = du1=ds, etc.



CHAPTER 4. ALGORITHM 63step-sizes at large distances. To understand why, consider a comet far outside theplanetary system, whose period � is large compared to those of the planets. On timescales much less than � , the comet is e�ectively travelling in a straight line relative tothe Solar System's barycentre. But the Sun continues its orbit around the centre ofmass, a complicated motion which is re
ected in the heliocentric frame by the comettaking on a tortuous looping trajectory, like a telephone cord. This complicated pathresults in very small step sizes in the integration algorithm, with corresponding slowprogress and numerical di�culties.The two frames complement each other: the bene�ts of both can be obtained by per-forming the integration in the heliocentric frame near perihelion, and switching to thebarycentric frame at large radii. Regularised coordinates are used in both frames; regular-isation provides little bene�t and some increase in complexity over Cartesian coordinatesin the barycentric frame, but its use eliminates the need for duplicate Cartesian and regu-larised coordinate subroutines. The switch between the two frames is accomplished by themodel at a constant distance from the Sun, normally taken to be at 10 AU.4.1.3 Error tolerancesThe error in a single integration step is dictated by a set E of ten error limitsE = fEu1 ; : : : ; Eu4 ; Eu01 ; : : : ; Eu04 ; Eh; Etg; (4.2)one for each of the regularised coordinates. The Bulirsch-Stoer routine compares its ownestimate of the local truncation error against E in order to adjust the step-size, and to keepthe single-step error below those limits.The value of the error limits is controlled by means of a single parameter � called the tol-erance, which is translated into an error limit through a process described in Appendix B.The tolerance is typically chosen to be 10�9 for reasons described in x 4.4, with an upperlimit set by the machine precision of roughly 10�14.4.1.4 Random numbersA sequence of random numbers is required to initialise the simulations. In this research,approximately 106 random numbers are required, ten for each simulated comet. Six are



CHAPTER 4. ALGORITHM 64required for the six initial orbital elements, and four for the initial phases of the planets.The model uses ran2() from Press et al. (1992), modi�ed for use with double precision(64-bit) numbers, to produce the required values. This routine uses Bays-Durham shu�ingto avoid serial correlations and has a period of over 1018 calls.4.1.5 ChaosThe motion of Halley's comet has been shown to be chaotic (Chirikov and Vecheslavov1986), as has that of comets on near-parabolic orbits with perihelia near the giant planets(Petrosky 1986; Sagdeev and Zaslavsky 1987). It is likely that the motions of most cometsin these simulations will be chaotic as well. Thus, the numerically integrated trajectoryprovided by LOCI is expected to diverge exponentially from the true one as a result oftruncation and roundo� errors (e.g. Miller 1964).This problem is inherent in all N-body simulations: arbitrary precision mathematicalroutines are becoming available, but remain much too slow. However, it is reasonable tosuppose that the simulated results still provide an accurate re
ection of reality. The errorsintroduced by �nite precision arithmetic (roughly 1 in 1015 per step) are likely similarin order of magnitude to those introduced into the real Solar System by such weak andneglected e�ects as the non-uniform distribution of matter in the solar neighbourhood.Thus, one may hope that, statistically, the simulations continue to re
ect reality.4.1.6 Time requirementsThe question of where most of the CPU time is likely to be spent can be addressed asfollows: The probability of a comet being ejected from a simple Sun-planet system on themth orbit is given by a power law (Equation 3.13). If the probability of a comet reaching anend-state remains a power law under the addition of the tide and the other relevant physics,and this power law has the formp(m) / m
 ; (4.3)where 
 is some constant, then the expectation value m of m is justm = 1Xm=1m � p(m) / 1Xm=1m
+1: (4.4)Equation 4.4 diverges if 
 � �2. A Sun-planet system has 
 = �3=2 (Equation 3.13), andthough the extra physics in the model is expected to increase the rate at which comets evolve



CHAPTER 4. ALGORITHM 65and hence lower 
, it seems likely that �m will ultimately prove to diverge, i.e. that mostof the time will be spent following a few very long-lived comets. This problem is handledby putting \on hold" any comets which prove to have very long lifetimes, and re-examiningthem at a later date. However, such cases are relatively rare, and only a few dozen of thehundreds of thousands of comets simulated here are not eventually integrated throughouttheir full lifetimes.4.1.7 Planetary encountersClose encounters between comets and planets, including collisions, are of interest for de-termining both current and past cratering rates. These simulations track such events. Aclose encounter with a planet is de�ned here to be a passage through a planet's sphere ofin
uence RI. The sphere of in
uence is de�ned to be surface around a planet at which theperturbation of the planet on the two-body heliocentric orbit is equal to that of the Sun onthe two-body planetocentric orbit. If the planet's mass is much less that that of the Sun,this surface is roughly spherical and is given byRI = �MpM��2=5 rp; (4.5)where rp is the planet's orbital radius. The Sun has no sphere of in
uence in this sense, soa close encounter with the Sun is instead de�ned to be passage within 10 solar radii.Each crossing from outside the sphere of in
uence to within is counted as one encounter:the simulation does not check for multiple close approaches while the comet is within thesphere of in
uence. However, it will be seen that captures, de�ned here to be a closeencounter with a planet during which the eccentricity relative to the planet at closestapproach is less than unity, are extremely rare events.4.2 Initial conditionsIn the absence of recent (t �< 107 yr) stellar encounters, the injection of new long-periodcomets from the Oort cloud is dominated by the Galactic tide. Equation 3.28c reveals thata comet's perihelion decreases under the tide's in
uence when sin 2~! > 0, that is when0 < ~! < �=2 or � < ~! < 3�=2: (4.6)



CHAPTER 4. ALGORITHM 66Comets with ~! outside this region have increasing perihelia, and therefore are not of imme-diate interest.LOCI randomly selects the comets' initial conditions from the 
ux of comets withdecreasing perihelia. The 
ux is measured at a phase space boundary called the entrancesurface.4.2.1 The entrance surfaceThe entrance surface de�nes the angular momentum at which LOCI begins the simulationof a comet. Taking the entrance surface JE to be a cylinder i.e. a �xed perihelion distance,proves too restrictive for our purposes, and thus JE is permitted to be a function of comet'sinitial orbital elements.There are two main criteria for the selection of an appropriate entrance surface. Firstly,the corresponding perihelion distance qE should be far enough outside the planetary sys-tem that the orbit-averaged approximation for the tide is valid for q � qE . Secondly, qEshould be close enough to the planetary system that CPU cycles are not wasted by numer-ically integrating the comets' trajectories in the regions where they can be handled wellanalytically.To calculate JE , consider the change in angular momentum per orbit �J , given byEquation 3.30. If JE is taken to be a constant Z times �J , then the orbit-averaged ap-proximation is correct outside JE , as long as Z �> 1. A value of 3 for Z will be used here.The expression for JE thus becomes, through Equation 3.30JE(L) = Z 10�2�0G3M4� e2L7; (4.7)or, in terms of the entrance perihelion distance qE ,qE(a) = a241�  1�Z2100�4�20e4a6M2� !1=235 ; (4.8a)� Z250�4�20M2� a7 where e � 1. (4.8b)There are three restrictions on this expression:1. The initial perihelion distance qE , must be su�ciently far outside the planetary systemthat the typical energy perturbation per orbit is small. Equation 4.8b has no minimum
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Figure 4.1: The base 10 logarithm of the fractional root-mean-square change in energy,h(�E=E)2i1=2, per perihelion passage caused by the four giant planets, as a function ofperihelion distance q.perihelion distance, so a lower limit qE� on the perihelion distance must be imposed.The exponential decrease of �E with r (see Equation 3.14) suggests that qE� neednot be much greater than the size of the planetary system. The value of qE� waschosen so that the root-mean-square of the fractional change in energy h(�E=E)2i1=2after one orbit (aphelion to aphelion) in a model Solar System containing only theSun and the four giant planets, would be less than 0.1% for typical Oort cloud comets.Figure 4.1 shows the distribution of �(1=a) in such a system as a function of q: allorbits have an initial semimajor axis of 25 000 AU, and the values of cos i, ! and 
were selected from uniform probability distributions. The energy change drops below0:1% per orbit at about 60 AU; this distance is taken to be qE�.The semimajor axis a= where Equation 4.8b is equal to qE� is easily shown to bea= �  M2� qE�50�4Z2�20!1=7; (4.9a)



CHAPTER 4. ALGORITHM 68� 24 000 Z3 !�2=7 qE�60 AU!1=7� �00.15 M� pc�3��2=7 AU: (4.9b)2. It is clear from Table 3.2 that J is always less than L, which re
ects the requirementq � a. Equations 4.7 and 4.8a, b violate this condition at large L, as the analyticaltreatment of the tide breaks down where �J � J . The condition JE � L is violatedwherea > � M�10�2Z�0�1=3; (4.10a)�> 58 000�Z3 ��1=3� �00.15 M� pc�3��1=3 AU: (4.10b)This is outside but near the Oort cloud outer boundary chosen here, and which is givenby the maximum initial semimajor axis a+ = 50 000 AU. Equation 4.10a provides arestriction on our choice of Z , con�ning it to values of Z �< 4:75 for our chosen valueof a+.As the entrance surface expands towards larger semimajor axes, qE ! a, and the frac-tion of comets which evolve entirely within the entrance surface becomes important.In fact, at qE = a, all comets are already inside (or just on) the entrance surface.The assumed uniform distribution in angular momentum assumed implies that at anygiven semimajor axis, the fraction # of comets already inside the entrance cylinderand which can cross the Jupiter barrier is JE=L or, from Equation 4.7# = Z 10�2�0G3M4� L6 � 0:6�Z3 �� a50 000 AU�3� �00.15 M� pc�3� : (4.11)Thus a substantial fraction of comets at the outer edge of the Oort cloud are missed,but this fraction decreases rapidly with decreasing L. Integrating the phase-spacedensity (described later in x 4.2.2) of comets both inside and outside the entrancesurface shows that, for the afore-mentioned values, approximately 90% of cometsreside outside the entrance surface. Thus only a small fraction of comets are missedthrough our choice of the entrance surface.In a similar vein, the approximation e � 1 becomes invalid as qE ! a. Equation 4.8ayields a value for qE at the outer Oort cloud edge of approximately 10 000 AU,



CHAPTER 4. ALGORITHM 69implying e � 0:8. Thus, the large eccentricity approximation remains accurate in thislimit under Z = 3.3. Equations 3.26 and 3.27a,b reveal that not all cometary perihelia are eventually drawninto the planetary system by the tide. Many comets reach a minimum periheliondistance far outside the planetary system, and thus do not become subject to signif-icant planetary perturbations. In the absence of stellar perturbations, such cometsremain in the Oort cloud, and never become visible. To avoid wasting CPU cycleson such comets, the trajectories of comets whose initial conditions would result in atidally-induced minimum q greater than 40 AU are not numerically integrated, butterminated immediately. From numerical experiment it is found that approximately�ve of every six comets entering our entrance surface have perihelia which will notcross the q = 40 AU boundary; thus the exclusion of such orbits nets a signi�cantsavings in processor time.The entrance surface as detailed above can be summarised asqE = 8>>>><>>>>: qE� where a� � a � a=Z250�4�20M2� a7 where a= � a � a+ (4.12)subject to the condition Z � Z+ whereZ+ = M�10�2�0a3+ ; (4.13)and where a+ and a� are the outer and inner limits of the Oort cloud respectively. Pluggingin the previously discussed numerical values, Equation 4.12 becomesqE � 8><>: 60 AU where 10 000 AU � a � 24 000 AU60� a24 000 AU�7 AU where 24 000 AU � a � 50 000 AU (4.14)noting that our choices of Z = 3 and a+ = 50 000 AU satisfy Z � Z+ (Equation 4.13).4.2.2 The 
ux of comets into the entrance surfaceLet the phase space density of comets, expressed in the canonical system T of Table 3.2, begiven by g(L; J; J~z; ~
; ~!; f). The phase space density may in principle be a function of allthe coordinates and momenta. However, if the Oort cloud is collisionless, and in a quasi-steady state, Jeans theorem states that g is a function only of the integrals of motion. If no



CHAPTER 4. ALGORITHM 70perturbations are present, the integrals of motion include the energy and the componentsof the angular momentum.The Oort cloud is certainly collisionless, with a two-body relaxation time of over 1026years (Binney and Tremaine 1987, Equation 4{9). For a quasi-steady state in which L, Jand J~z are integrals requires �rstly that any perturbing forces be weak, and secondly thatthe loss cylinder be small.1. The requirement that the perturbing forces be weak is ful�lled if the tidal forces areweak, as the tide is the dominant perturber of the Oort cloud. The ratio of the tidalto the solar force (cf. Equations 3.2 and 3.23), given by����� ~Ftide~FM� ����� = 4��0jzjr2M� � 4��0r3M� : (4.15)is less than unity wherer < � M�4��0�1=3 � 0:8 pc � 1:7� 105AU: (4.16)Thus, for comets with a �< 85 000 AU, the assumption of weak tidal forces is valid.The next strongest perturbing forces are those of the planets, but they are importantonly near the loss cylinder. As the entrance surface qE is chosen to be everywhere welloutside the loss cylinder and the planetary system, the assumption of weak planetaryperturbations is valid outside qE .2. The loss cylinder must be small because losses are irreversible and detract from thesteady-state. The cross-sectional area �� of the loss cylinder J� = rvt� (Equation 3.20)is �� = �v2t� = ��J�r �2 � 2�GM�q�r2 : (4.17)An upper limit to the bound transverse velocity vt1 possible at any radius is theparabolic velocity vt1 = 2GM�=r, yielding a total cross-sectional area �1 = �v2t1 =2�GM�=r. The ratio of the loss cylinder area to the total phase space area is���1 � q�r � 10�3� q�10 AU�� r10 000 AU��1 ; (4.18)indicating that the loss cylinder is indeed small.



CHAPTER 4. ALGORITHM 71Having ascertained that the distribution of Oort cloud orbits outside and near the en-trance surface is collisionless and in a quasi-steady state, Jeans theorem now assures us thatthe distribution function g can be a function only of L; J , and J~z . The Oort cloud phasespace density g used in these simulations is based on the results of Duncan et al. (1987),who determined the Oort cloud's number density n to be a function only of radius r, andto be of the formn(r) / r� (4.19)where � = �3:5�0:5, within a range of r from 3000 to 50 000 AU. Integrating Equation 4.19over r yields the number of comets N(r) within a given shell with its inner edge located3000 AU from the Sun,N(r) = rZ3000 AU 4�r2r� dr / r�+3: (4.20)The Oort cloud being in a quasi-steady state, r can be replaced by its time-average hri =a(2 + e2)=2, yieldingN(a) / a�+3 where 4500 AU � a � 75 000 AU: (4.21a)N(L) / L2�+6 (4.21b)Duncan et al. (1987) also found cometary inclinations to be randomised for a > 5000 AU,indicating that g is not a function of the inclination i, and hence J~z , at large radii. It will beassumed here that the angular momenta are randomised, and hence that g is not a functionof J . This last assumption rests on the mixing of the Oort cloud by passing stars, which isalso presumed to replenish any regions of phase space depleted by the actions of the tideand the loss cylinder.Taking g(L) / L� where � is some constant, the total number of comets can be expressedin terms of L asN(L) = 2�Z0 df 2�Z0 d~
 2�Z0 d~! LZ0 dL LZ0 dJ JZ�J g dJ~z = 8�3 LZ0 g(L)L2dL / L�+3: (4.22)Comparison of Equations 4.21b and 4.22 shows that � + 3 = 2� + 6, and hence thatg / L2�+3. The �nal form chosen for the phase space density isg(L) = g0L2�+3 (� = �3:5, 10 000 AU� a � 50 000 AU); (4.23)



CHAPTER 4. ALGORITHM 72where g0 is a constant factor related to the total number of comets in the cloud. The inneredge of the Oort cloud was chosen to be a� = 10 000 AU instead of 3000 to 5000 AUto conserve CPU time by neglecting comets which cannot pass the Jupiter barrier, as ourinterest here is restricted to comets that can become visible. The outer edge of the Oortcloud is taken to be at a+ = 50 000 AU.Let �(L; JE; J~z ; ~
; ~!; f) dL dJ~z d~
d~! df be the average 
ux per unit time of cometscrossing into the entrance surface JE at a given point, then�(L; JE; J~z ; ~
; ~!; f) = 1� JE� _J�ZJE g(L; J; J~z; ~
; ~!; f) dJ; (4.24)where � is the comet orbital period and _J is the usual time derivative of the angularmomentum and here represents the phase-space velocity normal to the entrance surface,positive outwards. Note that Equation 4.24 holds whether or not the entrance surface is\�lled", i.e. whether or not _J� � JE .Substituting Equation 3.28b and Equation 4.23 into Equation 4.24 yields the 
ux � intothe entrance surface�(L; JE; J~z ; ~!) = �5��0g0GM2� L2�+5J2E (J2E � J2~z )(L2 � J2E) sin 2~!: (4.25)The sign of Equation 4.25 is determined by sin 2~!. Since only the 
ux into the surface isof interest, the quantity �E is de�ned to be�E = 8><>: � where � < 0, that is where 0 < ~! < �=2 or � < ~! < 3�=20 otherwise (4.26)such that �E is non-zero only where the tide is moving cometary perihelia inwards.In these simulations, the comets' initial elements are drawn at random from �E . Apractical implementation of this selection process requires the cumulative probability dis-tribution P (w) of comets drawn into the entrance surface by the tide, as a function of eachrelevant variable w. If P (w) is known, one can generate an appropriately distributed set ofw's by solving the equation w = P�1(�), where � 2 [0; 1] is a uniform random deviate andP�1 is the inverse transform of P , mapping [0; 1]! w. P (w) is related to �E throughP (w) = wZ�1 dw 1Z�1 1Z�1 1Z�1 �E(w; x; y; z)dxdydz (4.27)where w; x; y and z are the canonical variables, and it has been assumed that �E is separable.



CHAPTER 4. ALGORITHM 73Combining Equations 4.26 and 4.27 and converting to orbital elements, the expressionsfor the cumulative probabilities are found to beP (~
) = ~
2� (0 � ~
 < 2�) (4.28a)P (~!) = 8>>>>>>><>>>>>>>: 14(1� cos 2~!) (0 � ~! < �2 )12 (�2 � ~! < �)12 + 14(1� cos 2~!) (� � ~! < 3�2 )1 (3�2 � ~! < 2�) (4.28b)P (~{) = 1� (~{� 12 sin 2~{) (0 � ~{ < �) (4.28c)P (�) = �2� (0 � � < 2�) (4.28d)Note that the mean anomaly � is chosen from a uniform random distribution. The orbit-averaged approximation, by its very nature, tells us nothing about the role of � or thetrue anomaly f in the dynamics. The 
ux into the entrance cylinder could in principle be afunction of f , but our choice of initial conditions should be insensitive to this fact unless thecomet can cross the entrance cylinder in less than one orbit i.e. �J � JE . Our de�nitionof JE = Z�J with Z > 1 speci�cally precludes this possibility, so � may be chosen atrandom.The cumulative probability function of the semimajor axis is more complicated, itscalculation being left to Appendix C. Between the inner edge of the Oort cloud a� and a=,P (a) = (2qE�)1=23Pa ha1=2 � a1=2� + 2qE� �a�1=2 � a�1=2� �i ; (4.28e)and where a= < a � a+P (a) = P (a=) + 5�2�02M�Pa 24a4 � a4=2 �  10�2�0ZM� !2 a10 � a10=5 35 ; (4.28f)where Pa is a constant such that P (a+) = 1. The eccentricity e is determined by our choiceof qE and a,e = 1� qEa : (4.28g)These seven equations (4.28a through g) are used by LOCI to choose the comet's initialorbital elements.



CHAPTER 4. ALGORITHM 744.3 The end-states of cometsA comet's dynamical lifetime is �nite: any of a number of processes may transfer it to anunbound orbit or destroy it outright. A comet is said to have reached an end-state if itsorbital parameters allow it to be classi�ed into one of nine categories, listed below. Enteringan end-state may indicate the loss or destruction of a comet or simply an intermediatestopping point, from which the simulation can subsequently be restarted. The nine end-states are:Collision : The distance between the comet and a Solar System member i.e. the Sun or oneof the giant planets, is less than that object's physical radius. Simply comparing theplanet-comet distance to the planets' radii at each time step is insu�cient to detectall collisions: the integrator's �nite step-size could result in the integration \steppingover" the planet, and failing to record a collision. Collision detection is ensuredby calculating the Keplerian i.e. two-body, orbit of the comet around the nearestplanet, and using the pericentric distance of this orbit as the minimum planet-cometseparation.Ejection : The comet is leaving the Solar System on an orbit which is unbound i.e.parabolic or hyperbolic with respect to the Solar System's barycentre. The simulationis not terminated until the comet is at least 105 AU from the Sun, to allow for thepossibility that subsequent perturbations will result in the comet losing energy andreturning to a \bound" state.Escape : Though still bound to the barycentre in the two-body sense i.e. e � 1, the comethas ventured beyond the last closed Hill's surface (Equations 3.64a, b and c), and isconsidered stripped from the Solar System by the action of passing stars, molecularclouds, etc. The distinction between escape and ejection is somewhat arbitrary.Exceeded age of Solar System : The comet lifespan has exceeded the present age ofthe Solar System, taken to be 5 � 109 yr. Such a comet would, given time, reachone of the other end-states, but has not yet had time to become part of the observedsample.Exceeded time limit : The comet has completed more than 5000 orbits without enteringone of the other end-states. The simulation is terminated and saved, and will be re-



CHAPTER 4. ALGORITHM 75examined at a later date. This is merely a safeguard that prevents extremely long-livedcomets from consuming large amounts of CPU time, as discussed in x 4.1.6.Faded The comet is considered to have faded through loss of volatiles, splitting or othermechanisms, and is no longer bright enough to be observed, even if its orbit shouldcarry it close to the Sun. The probability of a comet fading is largely unknown, andthe determination of this fading function is a primary goal of this research. Thefading end-state is not allowed as an end-state in any simulations unless explicitlymentioned in the accompanying text.Perihelion too large : The comet's perihelion q has evolved beyond some limit, usuallytaken to be 40 AU, and is moving outwards under the in
uence of the tide i.e. sin 2~! <0. Such a comet is unlikely to become visible in the near-future. Though the comet'sperihelion may begin to decrease once again, these \new" orbital parameters shouldalready be represented within the 
ux of comets into the entrance surface, and thusneed not be considered further.Short-Period The comet's orbital period has decreased below 200 yr: it has become ashort-period comet. The possibility exists that such a comet will di�use back out to theLP regime, but the small number of comets which reach this end-state (see Tables 5.1and 5.3 later) make the consideration of a return from this end-state unnecessary.Visible The comet has passed within 3 AU of the Sun. Such comets continue to evolveafter their �rst apparition, however, it will be seen in x 5.1 that the �rst appari-tion provides a useful intermediate stopping point for the simulations. Though somecomets do become visible with perihelia greater than 3 AU, the observed sample isalmost certainly not complete beyond this point.4.4 Model implementation and testingThe model was implemented as a computer code written in ANSI C, with all 
oating-point values in double (64 bits � 15 digits) precision. The primary testing platform wasa Silicon Graphics IRIS 4D/25S; the primary simulation platforms were two DEC AlphaAXP 2100 4/200's.



CHAPTER 4. ALGORITHM 764.4.1 Integration toleranceTesting was accomplished by examining each segment of included physics e.g. planets, non-gravitational forces, etc. in isolation, and comparing these restricted simulations with knownanalytical results. First, however, a set of criteria is needed to choose the tolerance �, whilebalancing speed and accuracy. The full simulation has no conserved quantities suitable fordetermining the tolerance, so � was chosen such that the typical fractional error per orbitis less than 10�7 for the relevant conserved quantities in each of the restricted simulations,described below. After experimentation, the value of the tolerance � was chosen to be10�9. The typical errors, described in the sections below, are summarised in Table 4.2. Thefractional energy change per orbit for a typical LP comet in the complete model is of orderunity, so an integration tolerance of one part in 107 is more than su�cient for this problem.4.4.2 The two-body problemConsider the Sun and a single test particle. This simple system tests the implementationand bene�ts of regularising the coordinates. A hundred particles were run on orbits witha = 105 AU and q = 0:01 AU (e = 0:9999999). The other elements were chosen randomlyfrom a spherically symmetric distribution and the particle trajectories were integrated for106 orbits (� 1013 yr).The angular elements (i, 
, !) and the angular momentum both showed a roughlylinear secular trend in error growth with orbit number, with a fractional change of roughly10�9 orbit�1. A certain amount of scatter was also present, with a fractional root-mean-square (RMS) value per orbit of 10�8.The errors in orbital energy showed no net growth, but did show a fractional scatter ofabout 1% about the correct value. However, this scatter was not due to error in the regu-larised energy coordinate h (x 4.1.2), which was perfectly conserved, but to slight roundo�errors in the transformation from the regularised coordinates to Cartesian coordinates toorbital elements. Also, jEj is small to begin with, only 10�5 AU�1, so this \large" error isnot a concern.When the particles' equations of motion are expressed in Cartesian coordinates, a muchlower integration accuracy is achieved. Given the same initial conditions, the angular ele-ments are typically conserved to only 1 in 105 over 1000 orbits, both the energy and angular



CHAPTER 4. ALGORITHM 77Test a (AU) q (AU) �E=E �J=J �W=WTwo-body 100 000 0.01 10�8 10�8 |Jupiter 1 0{5.2 | | 10�5Tide 47 000 � 10 000 | 10�12 |NG 10 000 0.1 10�8 10�11 |Disk 10 000 0.1 10�7 10�10 |Table 4.2: Typical per-orbit errors for di�erent test scenarios. Initial semimajor axes a andperihelion distances q are shown on the left. The errors are in the orbital energy (�E=E),angular momentum (�J=J) and Jacobi constant (�W=W ).momentum drift by factors of ten or more, and particles frequently reach unbound orbits.The regularised coordinates are thus to be preferred for the integration of high-eccentricityorbits.4.4.3 The planetsIn this section, the gravitational in
uences of the Sun and Jupiter alone on a test particlewill be considered. Collisions are ignored, Jupiter's orbit is taken to be circular, and theonly allowed end-state is ejection. This simpli�ed system will be termed the Sun-Jupitermodel or a Sun-planet model if an arbitrary planet is to be considered.PrecessionThe planets perturb comets in ways other than a simple energy kick. Quinn et al. (1990)showed that the planets produce a precession of the comets' orbits, which can be picturedas a trajectory in q{! space. This precession is due to the quadrupole moment of theplanet's time-averaged orbit. A comparison of the results obtained with LOCI with thoseof Quinn et al. under the same initial conditions is shown in Figure 4.2.The phase-space trajectories show the same general behaviour, and the di�erences ob-served are expected. Quinn et al. orbit-averaged the system's Hamiltonian, and thus theirresults lack the realistic stochasticity present in our integration. As well, quantities whichare integrals of the motion of the averaged Hamiltonian are not strictly conserved underthe unaveraged Hamiltonian. Figure 4.2a re
ects this fact through the slow wandering oftrajectories away from their averaged ideals e.g. two of the trajectories in Figure 4.2a crossthe q = 0:4 line due to drift in the z-component of the angular momentum. Though theexistence of the above-mentioned di�erences between LOCI's and the orbit-averaged results
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(a) (b)Figure 4.2: Evolution in q{! space of a test particle in a Sun-Jupiter system: (a) LOCI'sintegration and (b) orbit-averaged results from Quinn et al. (1990). The arrows in (a)indicate the direction of evolution with time.are due to the more realistic treatment used, the quantitative correctness of these deviationsremains unveri�ed by this test.Lifetime against ejectionThe Gambler's Ruin problem (x 3.1.2) predicts that, of an initial sample of parabolic orbits,the probability of a particle remaining bound to a Sun-planet system at the mth perihelionpassage is proportional tom�1=2 (Equation 3.12). LOCI's duplication of this result appearsin Figure 4.3: the straight line indicates the least-squares best �t, the slope of which matchesthe expected result to within 0.5%. The initial cometary perihelia are uniformly distributedinside Jupiter's orbit.Jacobi's integralThe circular restricted three-body problem deals with a massless particle in a Sun-planet system. The only known integral of motion of this system is Jacobi's integral W .Expressed in a non-rotating barycentric coordinate system with the x-axis increasing alongthe Sun-Jupiter line, and the y-axis perpendicular to x and in the orbital plane, Jacobi's
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Figure 4.3: Number N of test particles remaining in the Sun-Jupiter system as a function oforbit number m for a set of 1000 initially parabolic comets. The particles' initial periheliawere distributed linearly in q inside Jupiter's orbit. The straight line is a least-squares �tto the points.integral can be expressed asW = v2 + 4�(y _x� x _y)=�Jup � 2G�M�r + MJuprJup � ; (4.29)where �Jup is Jupiter's orbital period, and v2 = _x2 + _y2 + _z2 is the test particle's velocity.Consider the 1000 test particles in the random walk described in the previous section.Most particles are ejected by the one thousandth orbit, but twenty remain. These survivorsdisplays errors of h(�W=W )2i1=2 � 10�2, or 10�5 per orbit.The error in the Jacobi integral is large compared to, say, the energy error in thetwo-body problem (x 4.4.2). The di�culty arises from close planetary encounters: thecoordinates are regularised about the Sun, not the planet, and the large accelerations whichoccur during encounters degrade the simulation's accuracy, despite the reductions in step-size. Though one could switch to a coordinate system regularised about the planet inquestion during close approaches, the added complexity has been judged excessive for ourpurposes. The Jacobi error is the exception to the rule that the integrals of motion should



CHAPTER 4. ALGORITHM 80be constant within 10�7 per orbit (x 4.4.1).The distribution of energy perturbationsThe energy perturbations imparted to parabolic comets making a single perihelion passagethrough a Sun-planet system were examined numerically by Everhart (1968). Figure 4.4shows a comparison of our results for a Sun-Jupiter system with Everhart's functional �t.The points are LOCI's results with pn error bars, the solid curve is Everhart's result. Theinitial conditions for the 104 comets used in our simulation were� Parabolic orbits, started 105 AU from the Sun,� Perihelion distances distributed uniformly between 0.9 and 1.1 times Jupiter's orbitalradius,� Angular elements (i;
; !) chosen from a spherically symmetric distribution.The initial conditions for Everhart's result were: spherically symmetric angular elements andperihelia at Jupiter's orbit. The distributions show some slight di�erences, but these are tobe expected. Everhart's function is chosen empirically to match the observed distribution'sshape, rather than from any consideration of the physics, and because the shape of thedistribution depends strongly on inclination, it would be surprising if an empirical functioncould accurately represent all the phase space in question.In fact, the function shown in Figure 4.4 is not the function Everhart claims as rep-resentative of the distribution averaged over all inclinations, but rather the sum of the 14separate �ts he produced, each for a small range of inclinations between 0 and �. Everhart'sall-inclinations function di�ers markedly from our results and from the sum of his separatedeterminations, especially for small perturbations (j�(1=a)j< 0:0002 AU�1). The cause ofthis discrepancy seems to be that the empirical function Everhart chose, though providing areasonable match when �tted to the distribution associated with a small inclination range,it is rather poorly designed to match the sum of these distributions.4.4.4 The Galactic tideHeisler and Tremaine (1986) analytically derived the orbit-averaged evolution of a cometmoving under the Galactic tide. The comet moves along a trajectory in K{~! space, whereK = J=L = p1� e2 and ~! is the usual argument of perihelion relative to the Galactic
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(a) (b)Figure 4.4: The �(1=a) distribution for parabolic comets making a single orbit with peri-helion near Jupiter's orbit, at two di�erent magni�cations. The heavy line is a compositeof Everhart's (1968) empirical �ts.frame. The allowed curves are parametrised by K~z = K cos~{, the component of K alongthe Galactic ~z-axis. Figure 4.5a displays LOCI's results for K~z = 0:585; Figure 4.5b thoseof Heisler and Tremaine (1986). The data in Figure 4.5a, which is sampled about onceper orbit, shows some scatter around the analytical trajectory, because our model does notignore the high-frequency components that have been averaged out of Heisler and Tremaine'sresult.The quantities J~z , K~z and L are all conserved in the orbit-averaged approximation, butonly J~z is an integral of the unaveraged motion. Our results display a net error in J~z of lessthan 1 part in 1012 per orbit over the 500 to 5000 orbits required to travel from ~! = �=2 andback again along the curves plotted in Figure 4.5. The RMS error per orbit was roughly1 in 106, the source of this error again being the accumulated error in the transformationof coordinates from regularised to Cartesian to orbital elements to J~z , and is thus not ofconcern.4.4.5 Non-gravitational forcesNon-gravitational forces can be handled by K{S regularisation despite the fact that theyare not conservative and thus cannot be represented by a potential. The accuracy of the
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C=0.42(a) (b)Figure 4.5: Orbital evolution in K{~! space under the dominant component of the Galactictide: (a) LOCI's results, and (b) analytical treatment by Heisler and Tremaine (1986). Thecurves labelled a; b; d; f and g in (b) correspond to the curves with C = 1:4; 1:2; 1:01; 0:75and 0.42 in (a) respectively.NG module of the simulation was evaluated by comparing its results with a parallel butindependenty integration of Gauss's equations (Equations A.19a-f).The test orbits had semimajor axes of 10 000 AU, perihelion distances of 0.1 AU andrandom, spherically symmetric angular elements. The test duration was 1000 orbits. Eachof the three NG parameters, radial, tangential and normal, was tested individually, withvalues of �10�9 AU day�2.The two methods showed di�erences less than 1 in 1012 on all elements on which theNG forces in question should have no e�ect e.g. semimajor axis in the case A1 = A2 = 0.Otherwise, the methods typically di�ered by 10�8 rad orbit�1 in the angular coordinates.The fractional di�erences in the energy and angular momentum were typically 1 in 105 and1 in 108, or 10�8 and 10�11 per orbit, respectively.y\Independent" here means that, though all di�erential equations are integrated by the same routines,the simulation and the parallel integration cannot see each others coordinate values.



CHAPTER 4. ALGORITHM 834.4.6 Massive circumsolar diskThe e�ects of a hypothetical disk of material orbiting the Sun at distances of 100 to 1000 AUwere modelled through the addition of a Miyamoto-Nagai disk potential, described in x 3.6.The test case had ad = 1000 AU, bd = 100 AU and Md = 10�3M�, with the test particleorbits having a = 10 000 AU, q = 0:1 AU and spherically symmetric angular elements. Thetest particles were followed for 1000 orbits. The z-component of the angular momentumJz is an integral of the motion, and was conserved to better than 1 in 1010 per orbit. TheKeplerian orbital energy (/ 1=a) is not conserved in the presence of the disk potential, butthe total energy (Keplerian + disk potential) is: in the simulations it varied by only 1 in1010 per orbit as well.A more comprehensive test involved the co-integration of Gauss's equations, as was donefor the NG forces. In this case, the two schemes typically di�ered by 10�8 rad orbit�1 in theangular coordinates. The fractional di�erences in the angular momentum and the Keplerianenergy were 1 in 107 and 1 in 1010 per orbit respectively.



Chapter 5ResultsThe dynamical evolution of an Oort cloud comet can be conveniently divided into twoseparate stages for our purposes. The �rst is the comet's sojourn in the outer reaches ofthe Solar System before �rst becoming visible, visibility taken here to mean passage within3 AU of the Sun. The second stage encompasses the remaining evolution up to the pointwhere the comet is ejected or otherwise permanently excluded from the sample of observablecomets.Let the set of those LP comets which are making their �rst visible perihelion passage becalled the V1 comets, and those making their mth visible apparition, the Vm comets. Theunion of all visible LP comets will be called the dynamically evolved visible LP comets. Thelifetime of a comet mx can be measured by the number of perihelion passages since (andincluding) its �rst apparition. The number of visible perihelion passages a comet makes inits lifetime is denoted mv. The comet's lifetime in terms of physical time tx is also useful,but is not clearly de�ned in all cases e.g. the exact moment of ejection may be di�cult todetermine.5.0.1 Original elementsThe original elements of observed comets are computed by integrating their orbits backwardsfrom perihelion, and are typically quoted at distances of 60 to 100 AU from the Sun.However, hypothetical structures with radii of 100 to 1000 AU are introduced into someof our simulations, and complicated artifacts might be introduced into the elements if theyare calculated near a massive perturber. To avoid this possibility, the original elements84



CHAPTER 5. RESULTS 85of our simulations are measured at aphelion instead. Adjustments must thus be made tothe simulated distributions of orbital elements in order to compare them with the observeddistributions, but these adjustments are usually small. The original inverse semimajor axisis a�ected somewhat by the comet's climb out of the Galactic potential well (Equation 3.24),but the resulting change in 1=a is only of order�(1=a) � 4��0~z2M� � 5� 10�7� ~z50 000 AU�2 AU�1, (5.1)which is small and can be ignored. However, the shift in energy produced by a disk orPlanet X may be more pronounced, of order�(1=a) � 8>>><>>>: 2MXrXM� � 2� 10�4� MX0:01M��� rX100 AU��1 AU�1;2MdadM� � 2� 10�4 � Md0:01M��� ad100 AU��1 AU�1; (5.2)where the companion has mass MX and orbital radius rX , and the disk has a potentialdescribed by Equation 3.52. The numerical values in Equation 5.2 correspond to the max-imum change in 1=a among the simulations to be described here. In most cases, the e�ectis smaller and will be neglected.It is interesting to note that that the mean excess velocity of observed hyperbolic comets,roughly equivalent to 1=a � 10�4 AU�1, is not well explained by the presence of such \darkmatter". A shift of 10�4 AU�1 in inverse semimajor axis would pull the outer edge of theOort cloud inside 104 AU, and thus preclude the �lling of the loss cylinder, either by thetide or passing stars (Equations 3.47 and 3.31b). Nevertheless, a few \high dark-matter"simulations will be performed for completeness.5.1 The newly visible cometsThe newly visible or V1 comets constitute the injection spectrum fromwhich the observed LPdistribution has evolved. The V1 set can be used as a starting point for any investigation ofphenomena that only a�ect the comet after its �rst apparition e.g. non-gravitational forces,fading. The elements of the V1 comets are here measured in the barycentric frame at theaphelion immediately preceding their �rst apparition.The set of V1 comets produced in the course of this research has 1368 members, and wasobtained from a set of 125 495 initial conditions within the Oort cloud. Of these 1368 newcomets, 1340 �rst became visible while still Oort cloud members i.e. when a > 10 000 AU.



CHAPTER 5. RESULTS 86End-state Ejection Escape Exc. Limit Large q Short pd. Visible TotalNumber 3803 4 57 15023 31 1368 20286Fraction 0.1875 0.0002 0.0028 0.7406 0.0015 0.0674 1.0000Minimum tx 6.80 34.4 17.2 7.46 11.7 7.14 6.8Median tx 28.7 56.7 152 35.2 29.3 26.8 33.3Maximum tx 342 108 480 1182 72.4 147 1182Minimum mx 1 13 5000 1 6 1 1Median mx 8 14 5000 5 387 5 6Maximum mx 4799 28 5000 4872 3432 2937 5000Table 5.1: The distribution of end-states of the 20 286 Oort cloud comets with minimumperihelia under the tide of less than 40 AU. The minimum, median and maximum lifetimesmx and tx are shown in in orbital periods and millions of years, respectively. No cometssu�ered collisions or survived for the lifetime of the Solar System.The V1 comets were produced over twenty-seven separate runs on a DEC Alpha, requiringover thirteen weeks of real time and roughly eight weeks of CPU time at a tolerance � =10�9. On average, a new Oort cloud comet was started every 40 seconds, and a visiblecomet produced every 3800 seconds.Of the 125 495 Oort cloud comets simulated, 105 209 were determined to have minimumperihelion distances under the Galactic tide (Equations 3.26 and 3.27a,b) greater than40 AU, too far outside the planetary system to su�er appreciable planetary perturbations(Figure 4.1). These simulations were terminated immediately, and counted as part of thePerihelion too large end-state. The remaining 20 286 were integrated numerically, andof these only 1 in 15 became visible. Table 5.1 shows the distribution of these 20 286 cometsamong the various end-states.During this pre-visibility stage of LP comet dynamical evolution, there were 694 closeencounters with the giant planets by 341 individual comets, distributed as shown in Ta-ble 5.2. There were no captures or collisions, though some comets did pass within theplanets' satellite families.Only 57 of the 20 286 comets which were numerically integrated triggered the ExceededTime Limit 
ag (see x 4.3), set at 5000 revolutions. These comets constitute only 0.05% ofall initial conditions and are not included in the discussions to follow, but will be addressedagain in x 5.1.1.



CHAPTER 5. RESULTS 87Planet Jupiter Saturn Uranus Neptune TotalNumber of comets 60 145 71 67 341Number of encounters 210 317 109 93 694Encounters/comet 3.5 2.19 1.53 1.39 2.04Collisions 0 0 0 0 0Captures 0 0 0 0 0RI(Rp) 674 907 2030 3510 |Min. distance (RI) 0.023 0.043 0.074 0.049 0.023Min. distance (Rp) 16.0 38.7 150 167 16.0Outer satellite (Rp) 326 216 23 222 |Table 5.2: Planetary close encounter data for the 20 286 initial conditions which had initialperihelia within 40 AU of the Sun. Encounters for the 57 comets in the Exceeded TimeLimit end-state are included only up to their 5000th orbit. The size of planet's sphere ofin
uence RI (Equation 4.5) and that of the orbit of the planet's outermost satellite are alsogiven.Perihelion distanceThe distribution of perihelion distances of the V1 comets is shown in Figure 5.1a. Thedistribution is sloped slightly upwards towards larger q. This is to be expected: a fullloss cylinder should have a 
at distribution in q, but empty or partially full loss cylinderswill have a preponderance of orbits at larger perihelia. This conclusion is strengthened byan analysis of Figure 5.1b, which plots �rst apparition perihelion distance versus original
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CHAPTER 5. RESULTS 88semimajor axis, and which con�rms the �lling of the loss cylinder at a �> 25 000 AU(Equation 3.31b).
(a) (b)Figure 5.2: Distribution of orbital energies for the V1 comets: (a) at the aphelion beforetheir �rst apparition i.e. original energies and (b) at the aphelion immediately following�rst apparition. The energies of unbound orbits are measured at r = 105 AU.Orbital energyThe distribution of V1 orbital energies is shown in Figure 5.2, both at the aphelion beforethe comets become visible and at the aphelion immediately after their �rst apparition. Thecuto� at 2� 10�5 AU�1 in Figure 5.2 is arti�cial, a result of our choice of the Oort cloud'souter edge at 50 000 AU. Note the concentration of original orbits at very small but positiveenergies. In fact, all but 28 (� 2 %) are in the region of the spike (1=a < 10�4 AU�1). Theorbits within the spike have a mean 1=a � 3:3�1�10�5 AU�1. This result is in good accordwith Heisler's (1990) Monte Carlo simulations, which indicated that, outside of showers,the energy distribution of new comets is expected to peak at 3:55� 10�5 AU�1. Heisler'ssimulations also included passing stars, indicating that our omission of these perturbersdoes not strongly a�ect the distribution of original semimajor axes.The post-perihelion energy distribution (Figure 5.2b) is much broader, due to the plane-tary perturbations discussed in x 3.1. The distribution is highly symmetric about zero, witha median 1=a of 5:0�10�5 AU�1; its full width at half maximum is 6:2�0:3�10�4 AU�1,



CHAPTER 5. RESULTS 89in reasonable agreement with the expected size of planetary perturbations (Equation 3.8).
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CHAPTER 5. RESULTS 90The nature of the smaller peak at 45 000 AU is unclear: if the sample is split into twoparts, it appears only in one half, and thus may be a statistical 
uke despite its relativelylarge size. It will assumed to be unimportant for two reasons. Firstly, only a few percentof the V1 comets are involved; and secondly, the subsequent planet-dominated evolution ofthe V1 comets is relatively insensitive to the comets' original semimajor axis, as all Oortcloud comets approach the Sun on essentially parabolic orbits.Angular elementsThe aphelion directions of the V1 comets, measured at the aphelion passage immediatelypreceding their �rst apparition, are shown in Figure 5.4. The most striking feature is theconcentration towards mid-Galactic latitudes, a result of the Galactic tide. However, thereal distribution is expected to be much clumpier, due to the injection of comets by passingstars.The inclinations, longitudes of the ascending nodes, and arguments of perihelion in theecliptic and Galactic frames are shown in Figures 5.5, 5.6 and 5.7. The peak in the cos~{distribution near zero is expected: the 
ux � is proportional to (J2E � J2~z )=J2E = sin2 ~{(Equation 4.25). Thus the 
ux is expected to increase towards high Galactic inclination i.e.~{ � �=2. The peaks in Figure 5.7b are also expected: the regions where sin 2~! > 0 are theregions where the perihelia are moving inwards under the tide. The distributions of cos i,
, ~
 and ! are relatively uniform, expected because the Galactic tide is independent ofthese quantities.5.1.1 The longest-lived cometsOnly a small fraction of comets survive for more than 500 orbits after their initial apparition,but this remnant's extremely long lifetimes make it di�cult to follow their evolution tocompletion, as noted in x 4.1.6.The number of comets remaining in the simulations as a function of orbit number isshown in Figure 5.8a. The amount of CPU time needed to follow all remaining comets forthe previous 500 orbits is shown in Figure 5.8b. As the number of orbits increases, neitherthe number of comets remaining nor the CPU time approach zero rapidly, if at all. Thus,for all practical simulation lengths, some number of comets will always remain. These long-lived comets are not necessarily the oldest in terms of physical time, though they tend to
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(a) (b)Figure 5.5: Distribution of the cosine of the orbital inclinations for the V1 comets: (a) atperihelion in the ecliptic frame, and (b) at the previous aphelion in the Galactic frame.
(a) (b)Figure 5.6: Distribution of the longitudes of the ascending nodes for the V1 comets: (a) atperihelion in the ecliptic frame, and (b) at the previous aphelion in the Galactic frame.
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(a) (b)Figure 5.7: Distribution of the arguments of perihelion for the V1 comets: (a) at perihelionin the ecliptic frame, and (b) at the previous aphelion in the Galactic frame.be. The �nite age of the Solar System provides no relief, as the dynamically oldest cometsin our simulations are signi�cantly less than 5 billion years old (Column 4 of Table 5.1). Asit seems impossible to follow all comets to completion, it becomes necessary to arbitrarilyterminate the simulations at some point, chosen here to be at their 5000th orbit.The longest-lived comets may provide clues to particularly stable regions in our SolarSystem, in terms of survival for large number of perihelion passages rather than for longtimes. The perihelion distances and semimajor axes of these comets on their 5000th orbitare indicated in Figure 5.9. These comets tend to be on small orbits, with semimajor axesless than 1000 AU, and there is an excess (39/57, 68%) of prograde comets, unexpecteddue to the shorter di�usion times of prograde comets (x 3.10.2). These comets' periodsare typically much longer than the planets', and only a few comets are near mean motionresonance.5.2 Dynamically evolved long-period cometsGiven a set of V1 comets, the next logical step is to evolve them forward in time. Theset of all apparitions made by the LP comets throughout their evolution consitutes thedynamically evolved LP comets.
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(a) (b)Figure 5.8: Number of (a) long-period comets remaining in the Solar System , and (b) CPUseconds required to simulate all surviving comets for the previous 500 orbits, both plottedas a function of age m measured in perihelion passages since their to initial apparition.

Figure 5.9: Perihelion distance q versus semimajor axis a for the 57 comets which survived5000 orbits after their initialisation within the Oort cloud.



CHAPTER 5. RESULTS 955.2.1 Element distribution parametersIt is useful to de�ne a few simple parameters which describe the distributions of variousorbital elements.� The ratio 	1 of the number of comets in the spike (a > 104 AU) to the total numberof long-period comets was introduced in x 3.10.1.� The inverse semimajor axis range available to LP comets runs from zero (unbound)to 0.029 AU�1 (short-period). Let the ratio of the number of comets in the inner halfof this range (0.0145 to 0.029 AU�1) to the total number be 	2, providing a measureof the \tail" of the energy distribution.� Let the ratio of prograde comets to the total number be 	3.For each of these parameters, the ratio of the theoretical value 	n to the observed (indicatedby a prime) value 	0n will be called �n. The following values of 	0 are adopted to be usedfor the determination of �:	01 = 81=246 = 0:329� 0:042;	02 = 18=246 = 0:073� 0:018;	03 = 127=246 = 0:516� 0:056:These numbers are based on those comets in Marsden and Williams catalogue with perihe-lion distances less than 3 AU. The error estimates are based on Poisson noise.5.2.2 Evolved long-period cometsThe simulation that evolves the V1 comets throughout their lifetimes, but which does notinclude any perturbers except for the giant planets and the tide will be called the standardcase. The distribution of end-states for this case is shown in Table 5.3. The visible end-state is disabled, as it is in all further simulations described in this chapter, and all cometsare evolved until destroyed or lost. The mean comet lifetime is 45.3 orbits per comet, afactor of two less than for a simple di�usion process (x 3.1.2) but signi�cantly less thanrequired to solve the fading problem (x 3.10.1). The standard case has �1 = 0.086, �2 =3.93 and �3 = 0.59, and fails to match the observations. The maximum allowed number



CHAPTER 5. RESULTS 96End-state Ejection Large q Short pd. TotalNumber 1223 109 36 1368Fraction 0.894 0.080 0.026 1.000Minimum tx 0.296 2.61 0.014 0.014Median tx 1.33 4.62 0.67 1.40Maximum tx 31.7 71.0 7.94 71.0Minimum mx 1 1 13 1Median mx 1 2 330 1Maximum mx 5832 2158 4277 5832Table 5.3: The distribution of end-states of the V1 comets, simulated from initial apparitionuntil all are either lost or destroyed. The minimum, median and maximum lifetimes tx ofthese comets are measured from their �rst apparition. Of the 61 864 subsequent perihelionpassages, 45% (28 004) are made by the 12 comets which survive for 1000 or more orbitsafter their �rst apparition. No comets escape, su�er collisions with the planets or Sun, orsurvive for the age of the Solar System.of orbital periods before the Exceeded time limit end-state (x 4.3) is invoked is 10 000orbits for the standard case simulations, but no comets reach this end-state.The planets are the dominant perturbers of dynamically older comets, and ejection is themost common end-state: 89% of V1 comets meet this fate. The details of close encountersbetween comets and the giant planets after initial visibility are detailed in Table 5.4. Perhapsmost surprising is the high frequency of multiple encounters with a giant planet by a singlecomet. This does not indicate a capture by the planet but typically arises when a verydistant encounter | often near the comet's perihelion and which leaves the comet's orbitrelatively undisturbed | is followed by one or more subsequent encounters, in many casesresulting in the ultimate ejection of the comet.About 8% (109/1368) of comets move back out to large perihelion distances. Most ofthese remain members of the Oort cloud: the median 1=a of these comets is 4�10�5 AU�1(a = 25 000 AU). Only 38 have a < 10 000 AU, with the smallest orbit having a semimajoraxis of about 1000 AU.Poissonian, pN error-bars are no longer appropriate for histograms of the number distri-butions, as the individual apparitions are no longer uncorrelated: one comet may contributehundreds or thousands of perihelion passages. The appropriate error bars in this case arebootstrap estimators, and subsequent �gures show the one standard deviation uncertaintiesestimated by this method (Efron 1982; Press et al. 1992).



CHAPTER 5. RESULTS 97Planet Sun Jupiter Saturn Uranus Neptune TotalNumber of comets 7 28 12 2 3 52Number of encounters 16 43 16 4 3 82Encounters/comet 2.3 1.5 1.3 2.0 1.0 1.6Collisions 0 0 0 0 0 0Captures | 0 0 0 0 0Min. distance (RI) | 0.018 0.086 0.17 0.16 0.018Min. distance (Rp) 1.61 12.5 77.9 335 553 12.5Outer satellite (Rp) | 326 216 23 222 |Table 5.4: Planetary close encounter data for the dynamically evolved long-period comets.The distance to each planet's outermost satellite is given in the last row.Perihelion distanceThe perihelion distribution of the dynamically evolved visible comets is shown in Figure 5.10.The structure visible is partly due to the strongly correlated contributions of very long livedcomets: of the 61 864 visible perihelion passages, over 45% (28 004) are made by the 12comets which survive for 1000 or more orbits after their �rst apparition. Comparisonwith the observed distribution (Figure 2.5) reveals some super�cial similarities, but thestrong observational selection in favour of objects near the Sun or the Earth makes drawingconclusions di�cult.Let the total number of comets with perihelia inside q be N . Then a linear least-squares �t to the simulated distribution yields dN=dq roughly proportional to 1+ q for q <3 AU, similar to Everhart's (1967b) earlier estimate of the intrinsic perihelion distribution.However, the simulations could arguably be consistent with any number of slowly varyingfunctions of perihelion over 0 < q < 3 AU, possibly including dN=dq / q1=2, as proposedby Kres�ak and Pittich (1978). The estimates of the intrinsic perihelion distribution of LPcomets published by Everhart and by Kres�ak and Pittich are indicated on Figure 5.10 bythe solid and dashed curves.Orbital energyThe original energy distribution of the visible comets is shown in Figure 5.11 at two di�erentmagni�cations, for all 61 864 perihelion passages and for all 52 303 visible passages. Thefraction 	1 of comets in the spike obtained from these simulations is 1473=52303 = 0:028,all perihelion passages with 3 AU of the Sun being deemed observed. Thus the simulationsproduce 35 visible LP comets for each comet in the spike, whereas the observed sample has
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q (AU)Figure 5.10: Distribution of perihelion distances q for the dynamically evolved LP cometpopulation. Error bars are bootstrap-based one � estimates. The curves are Everhart's(1967b, dashed lines) and Kres�ak and Pittich's (1982, solid line) estimates of the intrinsicperihelion distribution.them in only a 3 to 1 ratio (Figure 2.3).This disagreement is at the heart of the fading problem: how can the loss of 95% of thedynamically older long-period comets be explained? This question will be addressed in theupcoming sections of this chapter.These simulations allow us to estimate the contamination of the spike by dynamicallyolder comets. There are 1368 V1 comets, of which 1340 have a > 104 AU, but a total of1475 apparitions are made by comets with a > 104 AU. Thus roughly 7% of comets in thespike are not dynamically new, and 2% of comets coming from the Oort cloud do not maketheir �rst appearance within the spike. However, these numbers ignore the possibility ofsigni�cant reductions in the brightness of LP comets over time, and are thus only upperlimits (x 5.5).
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CHAPTER 5. RESULTS 100Angular elementsThe inclination distributions, in the ecliptic and Galactic frames, are shown in Figure 5.12.There is a noticeable excess of comets in ecliptic retrograde orbits: the fraction on progradeorbits is 15875=52303� 0:3. This is inconsistent with observations as Marsden's comets havea ratio near a half (Figure 2.7a). The simulated Galactic inclinations are consistent witha 
at distribution, as expected from theory, but whether or not the observed distribution(Figure 2.7b) is 
at is less clear.
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(a) (b)Figure 5.12: Distribution of the cosine of the inclination for the visible LP comets, (a) takenat perihelion in the ecliptic frame, and (b) at the previous aphelion in the Galactic frame.Figure 5.13 shows the distribution of the longitude of the ascending node, and Fig-ure 5.14, that of the argument of perihelion. The planets, the dominant perturbers, are notexpected to produce strong signatures in these angular elements, and our results seem mod-erately consistent with this expectation. There are a few peaks in the �gures, particularlyin ~
 and ~!, which may be statistically signi�cant. These bumps are the result of several(� 10) long-lived comets clustered together in the phase space in question, but whether thisis chance or a systematic e�ect is unclear.The standard model provides only a poor �t to the observed distributions, in particularas regards the orbital energies and inclinations. Assuming that our simulations correctlyportray the intended physics, the next question is: how do our simulations di�er from
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(a) (b)Figure 5.14: Distribution of the argument of perihelion of the visible LP comets, (a) takenat perihelion in the ecliptic frame, and (b) at the previous aphelion in the Galactic frame.



CHAPTER 5. RESULTS 102reality? Before going on to examine this question, we will consider the implications of thesesimulations regarding the population of the Oort cloud.5.2.3 The current Oort cloud populationThe 
ux into the entrance surface (Equations C.8a,b) can be integrated over all semimajoraxes (or all L) in order to relate the constant g0 to the total number of simulated cometsN0 ts a+Za� �E(a; qE) da = ts L+ZL� �E(L; JE) dL = N0: (5.3)where ts is the length of real time represented by our simulation. Equation 5.3 can easily beintegrated numerically to yield N0 = 1:21�10�10g0ts for the usual values of the parametersin question. For the 125 495 comets in our Oort cloud simulation (x 5.1), this impliesg0 = 1:04� 1015 t�1s yr. The value of ts depends on N0 and the total number of comets inthe Oort cloud.Before calculating the value of ts, consider �rst the total number of Oort cloud comets.As the Oort cloud is assumed to be in a steady-state, r can be replaced in Equation 4.19by its time average hri / a. Then the total number Ntotal of comets in the Oort can beobtained throughNtotal = a+Za� n0a�4�a2da = 2�Z0 df 2�Z0 d~
 2�Z0 d~! L+ZL� dL LZ0 dJ JZ�J g0L2�+3 dJ~z ; (5.4a)= 4�2g0(a�1=2� � a�1=2+ ) (5.4b)� 2:3� 1014� ts1 year��1 : (5.4c)where � = �3:5 has been assumed, and from which the numerical value for the densitycoe�cient can also be obtainedn0 = �2 g0 = 1:63� 1015� ts1 year��1 : (5.5)If one knows the number Nvo of long-period comets crossing within 3 AU per unit timein our Solar System, the value of ts and hence the total number of comets in the Oortcloud can be estimated from Equation 5.4c. If the number of simulated comets which enterthe visibility cylinder is Nvt (1368 for our simulations), then ts � Nvt=Nvo. The time-scale



CHAPTER 5. RESULTS 103over which Marsden and Williams (1993) catalogue is complete, if any, is unclear, but roughestimates of comet 
uxes can be made. Everhart (1967b) estimated that 8000 comets passedwithin 4 AU of the Sun within a 127 year period, implying roughly 60 yr�1 . Kres�ak andPittich (1978) deduced 25 yr�1 within Jupiter's orbit. Taking 10 yr�1 within 3 AU as anestimate and assuming one in three of these is dynamically new (Festou et al. 1993b) yieldsts � 3 � 136810 yr�1 � 410 yr: (5.6)This value implies an Oort cloud population of roughly 5 � 1011 comets between 10 000and 50 000 AU (Equation 5.4c). However, this method becomes an increasingly poor probeof the Oort cloud's population as distances become large and the visible 
ux falls to zero(Figure 5.3).5.2.4 The original Oort cloud populationAbout 20% of Oort cloud comets crossing the entrance surface are removed from the cloud(x 5.1). The 
ux of comets across the entrance surface is proportional to the total numberof comets in the cloud (Equations 5.3 and 5.4a), thus both decay exponentially with time,ignoring other loss mechanisms. Roughly 20 000 comets are removed during the 400 yearscorresponding to these simulations, implying that approximately 3�1011 objects have beenlost since the Solar System's formation. As these �gures ignore other loss mechanisms,particularly stripping by passing stars, they likely to be much too low. Nevertheless, itseems likely that the Oort cloud originally had at least twice its current population.5.2.5 Discovery probability functionThe previous simulations assumed that all comets passing within 3 AU of the Sun wouldbe detected by astronomers; however, the strong bias in the observed distribution towardscomets near either the Sun or the Earth (Figure 2.5) indicates that this is unlikely to betrue.Everhart (1967a) examined the LP comets which became part of the observed sampleand concluded that comets which have the same excess magnitude S0 have equal a pri-ori chances of being discovered. The excess magnitude is de�ned byS0 = �Z0 (Han�H) �(Han�H) dt; (5.7)



CHAPTER 5. RESULTS 104where � is the comet's period, H is its visual magnitude at the Earth (Equation 1.8), Hanis some lower limiting magnitude, and �(x) is a step function which is unity where x > 0and zero where x � 0. Comets with large values of S0 are bright and visible for a relativelylong time, and thus more likely to be observed.Everhart found that the discovery probability pd increases roughly linearly with S0.Here a form for pd(S0) ofpd(S0) = 8><>: S0=80 mag-weeks if S0 < 80 magnitude-weeks1 if S0 � 80 magnitude-weeks (5.8)will be adopted. The excess magnitude depends sensitively on the position of the Earth,but for simplicity the Earth will be taken to be at its \average" position i.e. at the Sun, forthese calculations. In this case, Equation 1.8 becomesH � H0 + (5 + 2:5n) log10 r; (5.9)recalling that r must be measured in AU. The values of n, H0 and Han are taken to be 4,7 and 13 respectively (Everhart 1967a,b). These values imply that the excess magnitudebecomes non-zero at q �< 2:5 AU.Given the previous assumptions, the excess magnitude is simply a function of q. Thetrajectories of LP comets near the Sun approximate parabolas, and thus r � 2q=(1+ cos f)will be adopted. The excess magnitude is thenS0 � �Z0 [Han �H0 � (5 + 2:5n) log10 r ] �(Han�H) dt; (5.10)� 12q3=2(2GM�)1=2 fanZ�fan 2� 5 log10[2q=(1 + cos f)](1 + cos f)2 df; (5.11)where fan is the true anomaly at which the comet's visual magnitude exceeds the limit Han,given byfan = ��� cos�1 �2q 10H0�Han5+2:5n � 1���� � j cos�1 (0:8q � 1) j: (5.12)A plot of S0 versus q appears in Figure 5.15. The excess magnitude is 80 magnitude-weeks at q � 1:5 AU, and drops to zero at q � 2:5 AU, with a roughly linear relationship
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Figure 5.15: The simpli�ed excess magnitude S0 versus perihelion distance q, as expressedin Equation 5.11.between these two points. As an approximation, the discovery probability is taken to bepd(q) = 8>>>><>>>>: 0 if q > 2:5 AU;2:5� (q=1 AU) if 1:5 � q � 2:5 AU1 if q < 1.5 AU (5.13)The application of this discovery probability to our simulations is shown in Figure 5.16.This addition changes the agreement with observations very little, as the other orbitalelements are only weakly correlated with perihelion. In some simulations where this isnot the case, the comet discovery probability proves to be important, but it does little toimprove the standard model.5.2.6 Short-period cometsBefore going on to consider other possible dynamical e�ects, let's consider �rst those short-period comets which originate at the Oort cloud. During the standard simulations, only 68Oort cloud comets eventually become short-period comets, 36 of them after having made
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Figure 5.17: Short-period comet aphelion directions (standard case) on an ecliptic equal-area map. Aphelion directions are measured on the aphelion previous to their �rst perihelionpassage as a short-period comet.is really an upper limit as fading has not yet been considered. As an average of �ve newSP comets are discovered each year (Festou et al. 1993a), one deduces that the Oort cloudmust contribute less than 3% of the population of SP comets, and another source for thesecomets is required. Our results thus are consistent with the the primary source of SP cometsbeing the Kuiper belt.5.2.7 Planetary encounter ratesThe length of time represented by these simulations will be shown to be roughly 400 yr(x 5.2.3), and from this the rate of close encounters between the LP comets and the giantplanets can be calculated. A total of 253 encounters by 88 objects were recorded for Jupiter,333 by 157 for Saturn, 111 by 73 for Uranus and 96 by 70 for Neptune. These numberstranslate to total rates of 0.6, 0.8, 0.3 and 0.2 comets per year passing through the spheresof in
uence (Equation 4.5) of Jupiter through Neptune respectively.If these numbers are naively taken to represent a uniform 
ux F across the sphere ofin
uence, the rate n of impacts between LP comets and the giant planets can be deducedto be n = F �MpM���4=5 Rprp !2 ; (5.14)
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CHAPTER 5. RESULTS 109where rp and Rp are the planets' orbital and physical radii, and Mp, their mass. Theresulting collision rates are 2� 10�6, 10�6, 7� 10�8, 2� 10�8 per year for Jupiter throughNeptune respectively. It should be noted that Comet Shoemaker-Levy 9, which collidedwith Jupiter in July of 1994, was not a LP comet when captured by that giant planet butrather a SP Jupiter-family comet (Benner and McKinnon 1995).5.3 Non-gravitational forcesIn the previous simulations, only the Galactic tide and giant planets were included. Theexpected e�ects of outgassing forces on the dynamics of comets were detailed in x 3.3. Non-gravitational forces are speci�ed by two parameters (x 3.3). The radial component A1 isalways positive, as the outgassing force always accelerates the comet away from the Sun.The tangential component A2 is generally less than A1 (jA2j = 0:1jA1j will typically beadopted here), and may be of either sign depending on the comet's rotation.5.3.1 Two simple casesConsider two simple cases, each with non-gravitational forces A1 = 10�8 AU day�2, andjA2j = 0:1A1. In the �rst case, A2 will be taken to be positive, and in the second, negative.These choices imply a constant rotation vector for the nucleus, which is unlikely, but testthe cases in which the NG forces are maximally e�cient.In the �rst case, A1 = 10�8 AU day�2 and A2 = +10�9 AU day�2. The distributions oforbital elements produced are shown in Figure 5.19, and are characterised by the parameters�1 = 0.13, �2 = 2.85 and �3 = 0.68. The orbital energy and perihelion distance are expectedto decrease secularly under the NG forces (Equations 3.35a and 3.35b). Thus the NG forcesact to unbind comets, both by reducing 1=a and by drawing the comets' perihelia inwardsto where the NG forces are more e�ective. This results in an increase in �1 to 0.13 from0.09 in the standard case, insu�cient to produce a match with observations.There is only a 3% increase in the number of comets ejected over the standard case,but there is a signi�cant reduction in comet lifetimes, to a mean of 36.1 from 47.7 orbits.This is due to a decrease in the lifetime of ejected comets to 22.2 orbits from 29.7. Theperihelion distribution (Figure 5.19) shows a strong erosion of the comet population at smallperihelion distances. This indicates that even modest non-gravitational forces likely play a
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q (AU)(a) (b)Figure 5.19: Distribution of the (a) original inverse semimajor axis 1=a, and (b) the peri-helion distance q for the visible LP comets under non-gravitational forces characterised byA1 = 10�8AU day�2 and A2 = 10�9AU day�2.signi�cant role in shaping the perihelion distribution of the LP comets.The second case, with A1 = 10�8 AU day�2, A2 = �10�9 AU day�2 is identical tothe previous one, except for A2 being of the opposite sign. In this case, the NG forces actto increase the perihelion distance and 1=a of comets (Equations 3.35a and 3.35b), tendingto circularise their orbits. The increase in 1=a causes comets to evolve into more tightlybound, and hence long-lived orbits (average lifetime: 51.0 orbits). There is also an increasein short-period comet production: 102 versus 68 in the standard case. The distributionparameters are �1 = 0:08, �2 = 5:07 and �3 = 0:77, which show no improvement over thestandard case.The perihelion distribution shows little or no erosion near the Sun, as there is no pref-erential unbinding of comets with small q. The distribution does not increase noticeablytowards larger perihelion, despite the secular increase in q, presumably because the rate ofincrease of perihelion is quite small.5.3.2 More realistic non-gravitational forcesNeither of the two simple cases presented above match the observed distributions particu-larly well. But realistically, Oort cloud comet nuclei are likely to have randomly oriented
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CHAPTER 5. RESULTS 112strongest case, the �(1=a) due to NG forces over one orbit exceeds that due to the planetsby a factor of 100. Nonetheless, these experiments provide useful test cases.There are a number of biases introduced into the simulations when very strong NG forcesare introduced. Firstly, NG forces may become non-negligible for comets with q > 3 AU,which is not accounted for in our simulations. Secondly, though some NG perturbations av-erage to zero over a full orbit, their e�ects over fractions of an orbit may become dynamicallyimportant for very large NG forces e.g. Equation 3.37a.Figure 5.21 illustrates the results of the simulations including the more realistic NGforces, and Table 5.5 lists some associated quantities. It is found that increasing the NGforces does decrease the number of dynamically older LP comets in the system, (i.e. in-creasing �1, decreasing �2), but also erodes the population of comets at small periheliondistances. Note that even excessive NG forces cannot bring the distribution of inverse semi-major axes into line with observations and result in an extreme depletion of comets withsmall perihelia, in contradiction with observations (Figure 2.5). The failure of the NG forcescan be summarised as follows:� Perturbations due to radial NG forces average to zero over a full orbit and thus haveno long-term e�ect on LP comet evolution, assuming outgassing is symmetrical aboutperihelion.� Positive values of the tangential acceleration A2 reduce the tail of the population,resulting in an increase in �1 towards unity and improving the match with observa-tions, but erode the population at small perihelia, an e�ect which is not seen in theobserved sample.� Negative values of A2 preserve a reasonable perihelion distribution, but increase thenumber of comets in the tail of the energy distribution, thus reducing �1 and degradingthe match of the 1=a distribution.Though one might be able to concoct a mixture of NG forces which will result in a bettermatch with the observations, non-gravitational forces seem unable to decisively resolve thefading problem.
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Figure 5.21: Distributions of the inverse semimajor axis 1=a and perihelion distance q for the visibleLP comets. On the left: constant values for A2, half positive, half negative. On the right: the signof A2 is randomised for each perihelion passage. The values of jA2j used are, from the top down,10�9, 10�8, 10�7 and 10�6 AU day�2, with A1 = 10jA2j. The bottom section is for comparison,and includes the standard case (left side) and the observations (right side). The observed periheliondistribution includes curves indicating the estimated intrinsic distribution (x 5.2.2).
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Figure 5.22: Distributions of the inverse semimajor axis 1=a and perihelion distances q forthe LP comets, when a discovery probability (Equation 5.13) is applied. The simulationsare otherwise identical to those in Figure 5.21.



CHAPTER 5. RESULTS 115A1 A2 Total Spike Tail Prograde �1 �2 �3 �m0.0 0.0 52303 1473 15004 15875 0.09 3.93 0.59 45.41.0 0.1 35370 1457 7368 12381 0.13 2.85 0.68 36.11.0 �0:1 57819 1462 19364 21110 0.03 4.59 0.71 51.01.0 �0:1a 44383 1461 13705 19021 0.10 4.23 0.83 38.410 �1a 45899 1425 16628 18504 0.09 4.96 0.78 42.5100 �10a 30660 1341 11296 11012 0.13 5.05 0.70 33.11000 �100a 13248 995 5432 5872 0.23 5.62 0.86 14.41.0 �0:1b 49642 1450 13203 16387 0.09 3.64 0.64 46.710 �1b 45202 1448 13631 17311 0.10 4.13 0.74 41.4100 �10b 25774 1364 4969 11452 0.16 2.64 0.86 27.71000 �100b 9878 1035 1536 5042 0.32 2.13 0.99 13.2Table 5.5: The parameters of the visible LP comet orbits under di�erent non-gravitationalforces. \Total" is the total number of apparitions i.e. q < 3 AU, \Spike" is the number ofthese with original semimajor axes greater than 104 AU, and \Prograde" the number withecliptic inclinations less than 90�. The lifetime in orbits �m includes all perihelion passages,regardless of q, after the initial apparition. The superscript a indicates that half the samplehave positive A2, half negative; b indicates A2 has a random sign assigned for each perihelionpassage.A1 A2 Total Spike Tail Prograde �1 �2 �3 Undisc.0.0 0.0 33365 957 10008 10140 0.09 4.11 0.59 0.361.0 0.1 15010 941 2247 5422 0.19 2.05 0.70 0.571.0 �0:1 38126 945 14121 15132 0.08 5.07 0.77 0.341.0 �0:1a 27617 944 9256 11223 0.10 4.59 0.79 0.3810 �1a 24606 908 9946 11281 0.11 5.54 0.89 0.46100 �10a 10789 843 4659 4326 0.24 5.92 0.78 0.651000 �100a 1943 508 668 821 0.80 4.71 0.82 0.851.0 �0:1b 30469 934 8193 11407 0.09 3.68 0.73 0.3810 �1b 21310 931 4316 10438 0.13 2.77 0.95 0.53100 �10b 8859 860 1551 4215 0.30 2.40 0.92 0.661000 �100b 1252 545 175 669 1.32 1.91 1.03 0.87Table 5.6: The parameters of the LP comets, for the same conditions as in Table 5.5, butwith the inclusion of the discovery probability as given by Equation 5.13. The rightmost col-umn lists the fraction of comets with q < 3 AU that go undiscovered under this probabilityfunction.5.3.3 Discovery probability functionThe application of a discovery probability to these simulations is shown in Figure 5.22: thenon-gravitational forces are identical to those in Figure 5.21, but apparitions are given aweight proportional to their discovery probability (Equation 5.13).The addition of the discovery probability to the simulations improves the match withthe observations to some degree: �1, �2 and �3 all tend towards unity as one moves down



CHAPTER 5. RESULTS 116Table 5.6. However, unrealistically strong NG forces are still required to match the inversesemimajor axis distribution, and result in an unacceptable perihelion distribution. Thus itseems that NG forces are unable to solve the fading problem, though they likely contributeto the shaping of both the 1=a and q distributions.5.4 Other scenariosThe fading problem refers to the discrepancy between theory and observations in the numberof comets with semimajor axes between a hundred and a few thousand AU (see Figure 5.9).Thus, the presence of a (possibly unsuspected) mechanism which preferentially removessuch comets could explain the discrepancy. Such a removal mechanism might arise fromstructures with size scales comparable to those of the orbits which they are to a�ect moststrongly. Some real and hypothetical structures with hundred AU size scales include:1. The heliopause, where the solar wind meets the interstellar medium,2. A massive circumsolar disk, perhaps related to the 10 to 100 kilometer sized objectsthat have been discovered in the Kuiper belt beyond Neptune (Jewitt and Luu 1993;Cochran et al. 1995).3. A massive solar companion object at 100 to 1000 AU.The existence of the heliopause is well established (e.g. Kurth et al. 1984; Linskyand Wood 1995); however, it will be shown that its dynamical in
uence is small and nosimulations were performed to examine its e�ects on LP comets (x 5.4.3).The two other hypotheses are more controversial. Though little if any evidence supportsthe existence of undiscovered disks or planetary objects in our Solar System, they cannotyet be excluded, and long-period comets may prove to be the most sensitive tools we havefor constraining their properties. For this reason, these two scenarios will be examined here.In order to reduce the computational cost of these investigations, the V1 comets are usedas a starting point i.e. the e�ect of the disk or companion is ignored previous to the comet's�rst visible apparition. More precisely, V1 comets are restarted at the aphelion previousto their initial apparition, in order to correctly calculate any perturbations occurring onthe inbound leg immediately preceding their �rst apparition. Though the addition of theperturbations due to a disk or companion only after comets become visible is unrealistic,



CHAPTER 5. RESULTS 117it provides a �rst look at whether or not these features act in the right direction to resolvethe fading problem.5.4.1 Massive circumsolar diskA circumsolar disk is represented by means of a Miyamoto-Nagai potential (Equation 3.52)centred on the Solar System's centre of mass. The disk looks like a point mass at distancesrcm from the centre of mass which are large compared with the disk's characteristic radiusad, thus it might be expected to in
uence the dynamical lifetimes of comets with a �< admost strongly.Comets coming in from the Oort cloud, falling through the disk's potential, are subject toan \apparent" decrease in their original inverse semimajor axis. This o�set, 2�10�4 AU�1for a 0:01M� disk with radius 100 AU and less for larger or less massive disks (Equation 5.2)is omitted from the �gures to follow. The original inverse semi-major axes are measured ataphelion, as discussed in x 5.0.1.Three disk masses were examined, 10, 1 and 0.1 Jupiter masses. The results are displayedin Figures 5.23 and 5.24, with a discovery probability given by Equation 5.13 used in thelatter. In x 3.6, it was noted that disk masses above one Jupiter mass violate variousdynamical and observational constraints and that the upper limits might be even lower;thus our chosen disks include some of unrealistically high mass. Two disk shapes wereinvestigated, both with axis ratios of ad=bd = 10. The �rst had a characteristic size ad =100 AU corresponding to a Kuiper belt-like disk, the second had ad = 1000 AU, similar insize to the � Pictoris disk.The evolution of comets with perihelia outside the planetary system is more complicatedin the presence of a disk. Of most concern here is the validity of the Perihelion TooLarge end-state (x 4.3). This end-state assumes that comets with perihelia at 40 AU andwith sin 2~! > 0 are unlikely to become visible (x 4.3). This assumption is only correct ifthe torque is dominated by the Galactic tide, and this may not be the case when a disk ispresent. However, to keep the simulation times reasonable it was necessary to retain thePerihelion Too Large end-state's threshold at 40 AU. The a posteriori justi�cationis that, in simulations which include disks, this end-state is similarly populated (in factordinarily a bit underpopulated) relative to the standard case (Table 5.7), indicating thatthis shortcut is not grossly a�ecting the simulation results.



CHAPTER 5. RESULTS 118The threshold for the Exceeded Time Limit end-state (x 4.3) was again set at 10 000orbits. Only one comet reached this state, in the simulation with the largest and mostmassive disk. It was on a high-inclination, large perihelion orbit (a = 220 AU, q = 59 AU,i = 93�). Upon re-examination, it was found to be ejected 1095 orbits later, after con-tributing 11 visible perihelion passages. These apparitions are included in all the relevant�gures.The disk applies a torque to the comets, resulting in a change in perihelion distance. Aswith the Galactic tide, the disk torque can produce an oscillatory motion of the cometaryperihelion, the frequency of which increases with increasing disk mass. This e�ect ordinarilyresults in an increase in the comet's average lifetime, as the risk of ejection is much reducedwhen the comet's perihelion is outside Saturn's orbit, but also signi�cantly reduces thenumber of apparitions comets make in a given number of perihelion passages.The net e�ect of the disks is shown in Figure 5.23. The perihelion distribution of visiblecomets is not strongly a�ected, remaining more or less 
at. The disk does decrease theperihelion distance of some comets su�ciently to collide with the Sun. The number of suchincidents is noted in Table 5.8.The values of the � parameters for this model are also listed in Table 5.8. The values of�1 are far smaller than unity even for the most massive disks, and it is clear from Figure 5.23that the simulated 1=a distributions remain much broader than the observations, thoughwith some improvement as disk mass is increased.Md ad bd Number Oort Min. 1=a Med. 1=a Max. 1=a0 | | 109 71 2:1� 10�5 3:2� 10�5 9:0� 10�40.1 100 10 100 66 1:9� 10�5 4:2� 10�5 3:1� 10�30.1 1000 100 104 67 2:0� 10�5 4:6� 10�5 1:0� 10�31 100 10 105 64 1:5� 10�5 4:0� 10�5 1:4� 10�21 1000 100 87 65 1:5� 10�5 4:1� 10�5 2:3� 10�310 100 10 109 52 1:8� 10�5 4:4� 10�5 1:5� 10�210 1000 100 255 59 1:4� 10�5 3:0� 10�5 3:9� 10�3Table 5.7: Characteristics of the inverse semimajor axis distributions for the PerihelionToo Large end-state, when the Solar System contains a massive circumsolar disk. \Num-ber" is the number of comets which entered this end-state and \Oort" the number withsemimajor axes greater than 10 000 AU. Units of 1=a are AU�1. The standard case (nodisk) is indicated on the �rst line, and all simulations start from the set of 1368 V1 comets.Md, ad and bd are the parameters of the disk, measured in Jupiter masses and AU (Equa-tion 3.52).
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Figure 5.23: Distribution of the inverse semimajor axis 1=a and perihelion distance q forthe visible LP comets when the Solar System contains a massive circumsolar disk. Allsimulations have disk axis ratios ad=bd = 10. The simulations on the left have characteristicdisk widths ad = 100 AU, those on the right ad = 1000 AU. The disk masses increase fromthe top down, with values of 0.1, 1 and 10 Jupiter masses. The bottom line of graphs is forcomparison, and includes the standard case (left side) and the observations (right side). Thelower rightmost graph includes Everhart's and Kres�ak's estimates of the intrinsic periheliondistribution (x 2.3.2), shown as the dashed and solid curves respectively.
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Figure 5.24: Distributions of the inverse semimajor axis 1=a and perihelion distance q forthe visible LP comets when the Solar System contains a massive circumsolar disk and thediscovery probability function is given by Equation 5.13. The disk characteristics are thesame as in Figure 5.23.



CHAPTER 5. RESULTS 121Md ad bd Total Spike Tail Prograde �1 �2 �3 �m R�0.1 100 10 38947 1486 8382 15178 0.12 2.95 0.75 60.4 00.1 1000 100 42106 1496 9122 16957 0.11 2.97 0.78 33.7 11 100 10 37676 1459 12027 11888 0.12 4.37 0.61 60.8 21 1000 100 39138 1458 9944 16141 0.11 3.48 0.80 44.7 110 100 10 26445 1416 8881 6813 0.16 4.60 0.50 62.6 510 1000 100 16636 1324 3020 7555 0.24 2.49 0.88 66.9 30:1d 100 10 24535 968 6086 8589 0.12 3.40 0.68 60.4 00:1d 1000 100 26335 969 5261 11950 0.11 2.74 0.88 33.7 11d 100 10 27655 947 9514 8712 0.10 4.71 0.61 60.8 21d 1000 100 25200 947 7070 9881 0.11 3.84 0.76 44.7 110d 100 10 18769 939 7104 4103 0.15 5.18 0.42 62.6 510d 1000 100 10600 910 1541 4650 0.26 1.99 0.85 66.9 3Table 5.8: Parameters of the distributions of the visible long-period comets when the SolarSystem contains a circumsolar disk. The units of Md are Jupiter masses, those of ad andbd, AU. The rightmost column indicates the number of comets which collided with the Sun.The superscript d indicates that the discovery probability from Equation 5.13 has beenapplied. The de�nitions of the other columns are the same as in Table 5.5.Md 0.1 MJup 1 MJup 10 MJupad 100 AU 1000 AU 100 AU 1000 AU 100 AU 1000 AUNumber of objects 40 39 66 43 50 41Number of encounters 51 76 111 88 82 65Encounters/object 1.3 1.9 1.7 2.0 1.6 1.6Collisions 0 1 2 1 5 3Captures 0 0 0 0 0 0Table 5.9: Planetary close encounter data for the dynamically evolved long-period cometsunder a massive disk. All collisions listed are with the Sun; however, close encounters withthe Sun are not included in this table.Increasing the disk mass also tends to improve �2 and �3 for the 1000 AU disk, thoughit acts in the opposite direction for the smaller disk. There is no set of disk parametersthat comes close to producing a match with observations. More massive disks might beable to do better, but these would violate even more strongly the mass constraints on suchan object (x 3.6). Thus, it seems unlikely that the fading problem is the result of a massivecircumsolar disk.5.4.2 Massive solar companionA massive, unseen companion to the Sun such as a Planet X or Nemesis object can bemodelled as a �fth planet. For simplicity, only circular orbits lying in the ecliptic planeare considered. The companion was added to the simulations at the aphelion immediately



CHAPTER 5. RESULTS 122preceding the comets' �rst visible apparition, as was done for the disk (x 5.4).Companions of 0.1, 1 and 10 Jupiter masses were simulated, on orbits with radii of 100and 1000 AU. The orbital periods of these objects are 1000 and 31 600 years respectively.The companion masses used are based on Figure 5 in Tremaine (1990), and chosen so thatthe companion would not violate, or violate only weakly, the constraints on its mass arisingfrom considerations of the properties of Oort cloud comets and the planets. Note that, as inthe previous section, the original semimajor axes of the comets are measured at aphelion,and thus do not include the energy o�set caused by their fall through the companion'sgravitational potential (Equation 5.2).Nine comets reached the Exceeded Time Limit end-state, here set at 10 000 orbits,many more than in the standard case where it was not reached at all. Of these nine, �vesurvived for another 10 000 orbits without becoming visible; these will be neglected. Theother four do eventually become visible, contributing a total of 335 apparitions, which areincluded in the following �gures.The simulation results are presented in Figure 5.25, and in Figure 5.26 with the additionof a discovery probability (Equation 5.13). The perihelion distribution takes on a variety offorms, from those concentrated at smaller (< 1 AU) distances to those concentrated furtherout. There is no clear trend with mass or companion orbit size. The large error bars seenon some of the histogram bars indicate a noisy distribution i.e. one where a few individualcomets contribute a signi�cant fraction of the total number of apparitions. In particular,the perihelion distribution for the 1000 AU{10 Jupiter mass disk shows a sharp spike inthe smallest bin, but with an error bar roughly two-thirds its height. This is due to a singlecomet becoming \trapped" for a long time in high-inclination orbit, and does not seem tobe indicative of a real clustering of objects in that vicinity.The � parameters for this model are listed in Table 5.10. As the companion mass isincreased, the fraction of prograde to retrograde comets improves, especially in the caseof the larger companion orbit. The companion also reduces the height of the tail of the1=a distribution, �1 increasing slightly with disk mass but remaining below unity. Thenumber of dynamically oldest comets remains high without any clear trend with increasingmass. Overall, the presence of a companion produces little improvement in the match withobservations, thus we conclude that the fading problem is unlikely to arise due to such acompanion object, at least of the type examined here.
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Figure 5.25: Distribution of the inverse semimajor axis 1=a and perihelion distance q forthe visible LP comets when the Solar System contains a massive solar companion. Thesimulations on the left have companion semimajor axes aX = 100 AU, those on the rightaX = 1000 AU. The companion masses increase from the top down, with values of 0.1,1 and 10 Jupiter masses. The bottom line of graphs is for comparison, and includes thestandard case (left side) and the observations (right side). The lower rightmost graphincludes Everhart's and Kres�ak's estimates of the intrinsic perihelion distribution (x 2.3.2),shown as the dashed and solid curves respectively.



CHAPTER 5. RESULTS 124

Figure 5.26: Distribution of the inverse semimajor axis 1=a and perihelion distance q forthe visible LP comets when the Solar System contains a massive solar companion and thediscovery probability function is of the form of Equation 5.13. Conditions are otherwiseidentical to those in Figure 5.25.



CHAPTER 5. RESULTS 125MX aX Total Spike Tail Prograde �1 �2 �3 �m R�0.1 100 40662 1451 9111 14074 0.11 3.07 0.67 43.1 10.1 1000 49420 1490 10057 13550 0.09 2.79 0.53 44.4 11 100 38397 1473 7465 9379 0.12 2.66 0.47 85.4 41 1000 35940 1438 9338 13544 0.12 3.56 0.73 68.1 110 100 14877 1379 3365 5846 0.28 3.10 0.76 66.0 410 1000 28600 1400 8183 15489 0.15 3.92 1.05 146.3 20.1d 100 25300 944 6762 8893 0.11 3.66 0.68 43.1 10.1d 1000 31376 975 6206 8623 0.09 2.71 0.53 44.4 11d 100 27918 963 4764 6047 0.10 2.34 0.42 85.4 41d 1000 24740 943 6713 8281 0.12 3.72 0.65 68.1 110d 100 9749 928 2197 4059 0.29 3.09 0.81 66.0 410d 1000 22177 1030 6052 12649 0.14 3.74 1.11 146.3 2Table 5.10: Parameters of the visible long-period comets when the Solar System containsa massive solar companion. The companion's mass MX is in Jupiter masses, the size ofits orbit aX in AU. The rightmost column indicates the number of comets which collidedwith the Sun. The superscript d indicates that the discovery probability (Equation 5.13)has been applied. The other columns are the same as in Table 5.5.MX 0.1 MJup 1 MJup 10 MJupaX 100 AU 1000 AU 100 AU 1000 AU 100 AU 1000 AUNumber of objects 52 38 55 39 38 49Number of encounters 88 64 127 64 80 109Encounters/object 1.7 1.7 2.3 1.6 2.1 2.2Collisions 1 1 4 1 4 2Captures 0 0 0 0 0 0Table 5.11: Planetary close encounter data for simulations including a solar companion.Close encounters with the Sun and the companion are excluded. All collisions occurredwith the Sun.5.4.3 HeliopauseThe out
owing solar wind encounters the interstellar medium at the heliopause. Shocks formboth inside and outside this interface as the low-density, high-velocity solar wind meets thehigher density but slower moving ISM. These shocks heat the gas to temperatures of upto 100 000 K throughout a shell roughly 25 AU thick. This shell is located approximately100 AU from the Sun in the upstream direction (Hall et al. 1993). Both the radio andultraviolet signatures of these shocks have been detected (Kurth et al. 1984; Linsky andWood 1995), and the heliopause's existence is well-established.If the shocks associated with the heliopause produced conditions which signi�cantlyeroded comet nuclei, they could signi�cantly reduce the lifetime of LP comets. However, a



CHAPTER 5. RESULTS 126�rst glance seems to indicate that there is neither enough mass nor energy in these structuresto do so. The density at the boundary is not expected to exceed that of the ISM, and the gasvelocity is not expected to exceed that of the solar wind (Steinolfson et al. 1994; Baranovand Zaitsev 1995); thus the plasma density remains low, and the conditions of drag do notappreciably di�er from those discussed in x 3.7.2.The gas temperature at the heliopause is roughly 105 K, exceeding that of the interstellarmedium by roughly two orders of magnitude. An upper limit to the amount of heat Ehdeposited in the nucleus through direct contact with this hot medium can be set by assumingcomplete transfer to the comet of all the kinetic energy in any molecule coming striking thenucleus. Then Eh is just the energy 
ux due to gas thermal motions multiplied by the timethe comet is in the heated region,Eh = 4�R2cvgnkT whv ; (5.15a)� 4�R2cnwh(kT )3=2 rhGM�mg!1=2 ; (5.15b)� 5� 108� Rc1 km�2� n1 cm�3�� wh25 AU�� rh50AU�1=2� T105 K�3=2 J; (5.15c)where Rc is the comet's radius, n is the gas number density, mg is the gas molecular mass,here assumed to be protons, T is the gas temperature, vg � q2kT=mg is the gas thermalvelocity, wh is the width of the heated zone, rh is its distance from the Sun, and v is thecomet's velocity there. The latent heat of sublimation L for H2O is about 50 kJ mol�1(Keller 1990), and the deposition of Eh thus results in the release of a mass M of gas suchthat M = EhNAmH20L ; (5.16a)� 200� Eh5� 108 J�� L50 kJ mol�1��1 kg; (5.16b)where NA is Avogadro's number. The loss of this small amount of material is unlikely tosigni�cantly a�ect the nucleus.Other possibilities remain: the shocked gas emits UV photons which might deposit sig-ni�cant energy in the nucleus; however the photon energy density is unlikely to exceed thethermal energy density by the several orders of magnitude required. More speculative pos-sibilities include thermal and/or acoustic shocks to the nucleus during its passage through



CHAPTER 5. RESULTS 127this region. However, it seems most likely that the heliopause has little or no e�ect on theevolution of long-period comets.5.5 FadingIn the previous sections, a number of dynamical mechanisms were explored with a view toresolving the fading problem. However, none of them are capable of bringing the simulationsinto agreement with observations. These mechanisms share a common defect: the tailof the simulated inverse semimajor axis distribution is overpopulated relative to that ofthe observed distribution. Since the comets di�use in 1=a after leaving the Oort cloud(x 3.1.2), the overpopulation of the tail appears to be a result of longer comet lifetimesin the simulations than in reality. Thus one is led to consider fading i.e. the physicaldegradation of the nucleus either into an increasingly faint object through loss of volatiles,or through its breakup into less easily detectable pieces.Our interest here lies not in attempting to model in detail the physical processes bywhich comet nuclei fade over time, but rather in determining the mathematical relationshipbetween a comet's brightness and its age, the fading function. The distributions of allthe orbital elements, ecliptic and Galactic, are available to help with this construction.However, only the 1=a, i, ~{ and ~! distributions display signi�cant changes over the �rstseveral apparitions; the others change more slowly or not at all.The ecliptic and Galactic inclination are closely related, but the relationship of i to theplanets, the dominant perturbers of visible long-period comets, is clearer and thus onlythe ecliptic inclination will be used here to constrain the fading function. Though ourassumption that the Galactic tide is the dominant injector of comets (x 3.9) is correct, thecontribution of passing stars is likely to heavily contaminate the observed distribution ofthese elements. Thus, ~! is likely to be of little usefulness in the determination of the fadingfunction. The inverse semimajor axis and the ecliptic inclination will serve as our primaryfading benchmarks, through the values of �1, �2 and �3 (x 5.2.1).As it seems likely that non-gravitational forces play a role in determining the orbitaldistribution of evolved LP comets, their contribution, along with that of the discoveryprobability function, will be investigated. The set of NG parameters chosen as typical for ourpurposes has the following characteristics: A1 = 10�7 AU day�2, A2 = �10�8 AU day�2,



CHAPTER 5. RESULTS 128A3 = 0, with a random sign for A2 at each perihelion passage. Simulations containingthese NG forces will be referred to as the standard NG case, and were investigated earlier(x 5.3.2).5.5.1 Determining the fading function directlyThe most direct approach to the construction of the fading function would be to breakdown the simulated data set into individual distributions, one for each perihelion passagei.e. fV1; V2; V3; : : : ; Vi; : : :g, and then use a �tting procedure to determine the fractionalamount �i of each distribution required such that the union of them matches the observeddistributions, subject to the restriction that �i+1 � �i. Unfortunately, this problem ispoorly conditioned. The inclination and inverse semimajor axis distributions change onlyslowly after the �rst few apparitions, creating a degeneracy i.e. Vn � Vn+1 when n � 1.The only feature reliably extracted via the direct approach is the need for a fairly rapidfading (� 50%) over the �rst few orbits. The numerical complications associated with thedirect approach lead us instead to experiment with a few simple fading laws with clearphysical bases.5.5.2 One parameter fading functionsConsider a number of simple, one-parameter fading functions. In each case a weight func-tion �, ranging between one (no fading) and zero (completely faded), is applied to eachapparition. This weight function represents the probability that any given apparition willbe observed. Let m be the number of perihelion passages and m0 be the number of appari-tions since a comet's �rst apparition, inclusive, and let t be the time in Myr since the �rstapparition. The fading functions examined here are:A) Constant lifetime Each comet is assigned a �xed lifetime, measured either in1. apparitions mv ; �(m0 � mv) = 1, otherwise � = 0,2. perihelion passages mx; �(m � mx) = 1, otherwise � = 0,3. time tx; �(t � tx) = 1, otherwise � = 0.B) Constant fading probability Comets are assigned a �xed probability � of fading,measured either



CHAPTER 5. RESULTS 1291. per apparition; � = (1� �)m0�1,2. per perihelion passage; � = (1� �)m�1,3. per million years; � = e�t=tx .Note that there is no fading previous to the �rst visible perihelion passage. For time-based fading, the equivalent exponential decay has be used, where the decay timetx = �1= ln�.C) Power law The fraction of comets remaining goes like a power law based on either1. number of apparitions; � = (m0)��,2. perihelion passages; � = m��,where � is constant and greater than zero. Note that this implies that the comets' life-times mx are distributed such that mx / d�=dm / m���1. If lifetime is proportionalto comet mass, as might be expected if each apparition releases an approximately equalamount of volatiles, then the comet mass M has a di�erential number distributionsuch thatdN /M���1 dM: (5.17)To determine the e�ects of each of these fading functions, the three quantities �i areplotted as a function of the associated parameter. If all three are unity for a particularvalue of the parameter, then the fading function provides a good match to our observedsample, at least in terms of 1=a and i.Fading by orbit numberThe fading laws based on apparition and orbit number will be considered together as theyproduce very similar results, shown in Figures 5.27 to 5.32.The �rst two of these �gures display the � parameters assuming long-period cometshave constant lifetimes (models A1 and A2). The spike/total ratio �1 matches observationsatm orm0 � 10, but the tail/total ratio �2 is too low at that point. Given a longer lifetime,the number in the tail increases, matching the observed tail at m � 100, but �1 is nowtoo low. The prograde/total ratio �3 is typically near but below unity. The match withobservations (Figure 5.33) is poor.
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PROGRADEFigure 5.27: The values of �i given a �xed lifetime mv in apparitions (model A1). Thegraphs on the right include a discovery probability, those on the left do not. The upper twographs are based on the standard case, the lower two on the standard NG case.
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PROGRADEFigure 5.28: The values of �i given a �xed lifetime mx in perihelion passages (model A2).The graphs on the right include a discovery probability, those on the left do not. The uppertwo graphs are based on the standard case, the lower two on the standard NG case.
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Figure 5.29: The values of �i given a �xed fading probability � per apparition (model B1).The graphs on the right include a discovery probability, those on the left do not. The uppertwo graphs are based on the standard case, the lower two on the standard NG case.
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Figure 5.30: The values of �i given a �xed fading probability � per perihelion passage(model B2). The graphs on the right include a discovery probability, those on the left donot. The upper two graphs are based on the standard case, the lower two on the standardNG case.
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PROGRADEFigure 5.31: The values of �i given a power law lifetime based on apparition number andwith exponent �� (model C1). The graphs on the right include a discovery probability,those on the left do not. The upper two graphs are based on the standard case, the lowertwo on the standard NG case.
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PROGRADEFigure 5.32: The values of �i given a power law lifetime based on orbit number, and withexponent �� (model C2). The graphs on the right include a discovery probability, thoseon the left do not. The upper two graphs are based on the standard case, the lower two onthe standard NG case.
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CHAPTER 5. RESULTS 138Figures 5.29 and 5.30 display the behaviour of the parameters �i given a �xed fadingprobability � (models B1 and B2). This fading law does not allow for a simultaneousmatching of the requirements on both the spike and tail, and must be considered unlikely.In Figures 5.31 and 5.32, the e�ects of a power-law lifetime are shown (models C1 andC2). Though the match is not perfect (note in particular that the prograde fraction �3remains too low for all � explored), it is better than in the previous two cases. A value of �of 0:6�0:1 seems to provide the best match. The distributions of orbital elements under thisfading law are shown in Figure 5.34. For comparison, the observed distributions are shownin Figure 5.33. The C models can provide a reasonable match with observations: a progradeto retrograde ratio is near unity, and a perihelion distribution decreasing somewhat towardsthe Sun.If the C models represent reality correctly, then some information about the LP comets'mass distribution may be extracted. If comets give up approximately the same amountof mass per apparition and mass is proportional to lifetime, then the di�erential massdistribution of the LP comets goes roughly like M�1:6 (Equation 5.17). The actual massdistribution of LP comet nuclei is di�cult to obtain owing to the obscuring e�ects of thecoma, but is estimated at M�2:5 for the brightest LP comets, and at M�1:7 for the fainterones (Weissman 1983). Measurements of the sizes of main-belt asteroids imply di�erentialmass distributions proportional toM�2 at large (�> 100 km) diameters (Hughes and Harris1994). There is also evidence for shallower slopes (M�1:35) at smaller sizes, but thesemeasurements still only include diameters greater than 20 km (Cellino et al. 1991). Thusit seems that a � � 0:6� 0:1 fading law is not inconsistent with our knowledge of the sizedistributions of small objects in the Solar System.Fading based on time since �rst apparitionA cometary lifetime tx measured in physical time since �rst apparition seems a priori lesslikely than one based on the number of apparitions. Such a lifetime might be expected ifthe �rst apparition removes a protective layer, possibly of insulating refractory material,from the nucleus and thus \starts the clock" on some kind of time-based decay process.A constant lifetime tx (model A3, Figure 5.35) provides a remarkably good match withobservations, if tx � 105 yr. This scenario works because one hundred thousand yearsprovides enough time for the relatively few comets captured directly into tight orbits (a �<



CHAPTER 5. RESULTS 139100 AU) to �ll out the tail, while not providing enough time for those on larger (a �1000 AU) orbits to return as frequently and �ll out the middle part of the 1=a distribution.Even �3, typically too low when the fading function is based on orbit number, here reachesunity near the lifetime in question. The orbital element distributions for this case are shownin Figure 5.37. Neither the perihelion nor inclination distributions match observations verywell.The time-based exponential decay law (model B3), shown in Figure 5.36, provides onlyfairly poor matches when NG forces are excluded, but is improved by their inclusion. Theorbital elements distributions for the case tx = 0:09 Myr is shown in Figure 5.38. Theinclination distribution shows an excess of prograde comets, and the perihelion distributionis concentrated towards smaller values of q. This fading law provides a fair but far fromideal match.Bailey's fading lawOne other fading law, proposed by Bailey (1984), will be considered here, though it hasno free parameters. Bailey derived a fading function by using an analytical treatmentto calculate the expected 1=a distribution. The resulting fading law has a per-revolutionprobability pd of a comet fading completely and permanently given bypd � 0:3[1 + (250=a)2]�3=2 (5.18)where a is measured in AU. Note that this fading law depends solely on the size of the orbit.Though not derived from physical principles, the mechanism proposed a posteriori to explainthis fading law is \thermal shock": comets with large aphelia have lower temperatures Tas they approach perihelion than those with shorter periods. The thermal di�usivity ofthe nucleus is proportional to its thermal conductivity (which goes like T�1) and inverselyproportional to the speci�c heat (which goes like T 3), and thus is a strongly decreasingfunction of temperature. The resulting deeper and more rapid heating is proposed to disruptthe nucleus, possibly by mechanisms similar to those which produce cometary outbursts andsplittings (x 3.10.1).The results of the application of this fading function to the simulations are listed inTable 5.12. The best match is provided when standard NG forces are included but not adiscovery probability; however, the perihelion distribution shows a sharp spike at q � 3 AU
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PROGRADEFigure 5.35: The values of �i given a constant lifetime tx in physical time (model A3). Thegraphs on the right include a discovery probability, those on the left do not. The upper twographs are based on the standard case, the lower two on the standard NG case.
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CHAPTER 5. RESULTS 144NG forces? Discovery? �1 �2 �3No No 1:04� 0:17 1:92� 0:72 1:00� 0:14No Yes 1:05� 0:15 1:76� 0:65 0:95� 0:13Yes No 1:09� 0:16 0:99� 0:45 1:06� 0:13Yes Yes 0:94� 0:14 1:51� 0:57 1:04� 0:14Table 5.12: Parameters �i under Bailey's (1984) fading function, for cases which mayinclude NG forces and a discovery probability.which is not present in the observations or the expected intrinsic distribution. The casewhich includes both NG forces and a discovery probability is barely consistent (within theerror bars) with the observations, but provides a more reasonable perihelion distribution.The orbital element distributions for this case are shown in Figure 5.39. The match withobservations (Figure 5.33) is good except for the perihelion distribution, which increasesnear the Sun. There is also a small excess of comets on retrograde orbits. Bailey's fadinglaw provides a good, but not ideal match with observations.SummaryThe best overall match by the one-parameter fading laws considered is provided by thepower law model based on apparition or perihelion passage number (models C1 and C2),which alone provide a good match to the perihelion distribution (Figure 5.34). Fair matchesare provided by a time-based exponential decay (B3) with decay constant tx � 0:09 Myr,a constant lifetime tx = 0:1 Myr (A3), and Bailey's fading law, whereas the other modelsproduce only poor matches or can be ruled out entirely.5.5.3 Two parameter fading functionsThough the available function space becomes increasingly large, a few two-parameter fadingfunctions will be examined here. Fading laws based on orbit number will not be considereddue to the similarity of the results for apparition number and orbit number.D) Two populations Let the Oort cloud consist of two populations of comets, distin-guished by their internal strength. The �rst and more fragile set of objects havea �nite lifetime while the other objects, comprising a fraction f2 of the total, areuna�ected by fading. The fragile population's lifetimes are either1. a �xed number of apparitions mv ; �(m0 � mv) = 1, otherwise � = f2,
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CHAPTER 5. RESULTS 1462. a �xed time tx from �rst apparition; �(t � tx) = 1, otherwise � = f2.Such a fading law might be appropriate if the Oort cloud contains both relativelyweak \snowy" nuclei and stronger \icy" nuclei.E) Fixed fading probability plus survivors In this case, one portion of the LP cometspopulation has a �xed fading probability � while some fraction f2 survive inde�nitely.The fading functions are based either on1. apparition number m0; � = (1� f2)�m0�1 + f2,2. time t since �rst apparition; � = (1� f2)et=tx + f2.This is a more sophisticated treatment of the two population model.F) Power law variant The fading function is a variant of the one-parameter power law,and is based either on1. apparition number m0; � = [(m0 + �)=(1 + �)]��,2. time t in Myr since �rst apparition; � = [(t+ �)=�]��,where � and � are positive constants. Note that � is constructed so as to be unity att = 0 or m0 = 1.Fading based on apparition numberThe results of model D1 are shown in Figure 5.40. The �t is generally worse than the one-parameter case (A1) shown by the heavy line, because the prograde fraction �3 is lower whensome fraction of comets are allowed to live inde�nitely. The best match among the familiesof curves with both NG forces and a discovery probability occurs near mv = 6 orbits, for asurvival fraction of roughly 0.04. This case corresponds to roughly 96% of Oort cloud cometsbeing fragile with lifetimes against disruption or fading of approximately six orbits, whilethe remaining 4% are longer-lived, perhaps more similar in nature to the fading-resistantSP comets. The orbital element distributions for this scenario are in Figure 5.43, andmatch observations (Figure 5.33) well. Weissman (1978) also found that a two-populationMonte Carlo model, in which a large fraction (85%) of LP comets had signi�cant fadingprobabilities while the reminder survived inde�nitely, matched the observations best. Notethat the observed splitting probability for dynamically new Oort cloud comets of 0.1 per
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PROGRADEFigure 5.40: The values of �i given a two-population model based on apparition number(model D1). The graphs on the right include a discovery probability, those on the left donot. The upper two graphs are based on the standard case, the lower two on the standardNG case. The fraction f2 which survive past the lifetime mv are 0, 0.01, 0.04, 0.07, 0.1, 0.2,0.4, 0.6, 0.8 and 1, beginning with the heavy line.
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PROGRADEFigure 5.41: The values of �i given a a �xed fading probability � per apparition togetherwith a fraction f2 of unfading survivors (model E1). The graphs on the right include adiscovery probability, those on the left do not. The upper two graphs are based on thestandard case, the lower two on the standard NG case. The values of f2 are 0, 0.04, 0.08,0.12, 0.16, 0.2, beginning with the heavy line.
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Figure 5.42: The values of �i given a two-parameter power law lifetime based on apparitionnumber (model F1). The graphs on the right include a discovery probability, those on theleft do not. The upper two graphs are based on the standard case, the lower two on thestandard NG case. The values of � are 0, 10, 20, 30, 40 and 50, beginning with the heavyline.



CHAPTER 5. RESULTS 150orbit results in a half-life of seven orbits (Equation 3.62), suggesting splitting may be thesource of fading if there is indeed a \fragile" population of Oort cloud comets.The fading law involving a �xed fading probability for one segment of the population,and an inde�nite lifetime against fading for the rest (model E1) produces results as shownin Figure 5.41. The match is usually no better than the no survivor case (B1), shown bythe heavy line, and typically gets worse as the survival fraction f2 increases.The two-parameter power law (model F1), displayed in Figure 5.42, ordinarily does nobetter than its one-parameter counterpart. Though the prograde fraction �3 shows littlevariation, the intersection of the �1 and �2 curves is typically below the value of one requiredto match observations when � > 0. Though an eventual return to near unity as � ! 1is not excluded by these �gures, the extremely rapid fading required in such a case seemsunlikely.The two-parameter fading models based on apparition number typically do no betterjob of matching the observed distribution than one-parameter models, with the exceptionof model D1, which can provide a good match to observations when most comets have short(� 6 orbits) lifetimes, while a small fraction (� 4%) live inde�nitely.Fading based on time since �rst apparitionWhen the two-population fading model is based on the time since �rst apparition (model D2,Figure 5.44), the �t is typically only slightly better than the corresponding one-parametermodel. The normalised tail to total ratio �2 provides the most stringent restriction on thesurvival fraction. Only a small fraction, roughly 1%, of comets could survive inde�nitelyand still produce a match, as long as the remaining comets have a lifetime against fadingtx � 105 yr. The distributions of orbital elements for this case are displayed in Figure 5.47.The perihelion distance and inclination distributions are very similar to those of the one-parameter (A3) model (Figure 5.37), and match the observations only poorly.The case of exponential decay with time plus a small fraction of non-fading cometsproduces the results displayed in Figure 5.45 (model E2). Only a very small fraction (�< 2%)can survive in either of the four cases if a match is to be obtained, and the best matchappears to remain with the case of no survivors (model B3).Figure 5.46 displays the e�ects of model F2. The intersection of �1 and �2 occurs aboveunity for all curves in the families plotted, approaching it more closely as � increases. The
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CHAPTER 5. RESULTS 156value of �3 also remains close to unity, particularly in the case which includes NG forces anda discovery probability. Thus, the best matches are provided as �!1, but the increasingsteepness of this fading law makes it an unlikely candidate.5.5.4 SummaryThe two-parameter fading laws examined here typically do only slightly better than the one-parameter laws at matching the observed distributions, if at all. The best one-parameterfading functions, based on the values of the �i parameters and an examination of theorbital elements distributions, are C1 and C2 (power law based on apparition/orbit number,� � 0:6). The best match among the two-parameter families is obtained frommodel D1 (twopopulations, 96% of comets live only 6 orbits, the remainder inde�nitely). In particular,C1, C2 and D1 can provide good matches to the perihelion distributions, particularly inregards to the decrease in numbers observed at q close to the Sun.



Chapter 6ConclusionsThe dynamical evolution of long-period comets has been simulated from its beginning inthe Oort cloud to its end with the comets' loss or destruction. A numerical integrationalgorithm was used to follow each comet's trajectory individually, under the in
uence ofthe giant planets and the dominant component of the Galactic tide, though the e�ects ofpassing stars were ignored. Additional simulations studied the e�ects of outgassing reactionforces, a hypothetical circumsolar disk or solar companion and the disruption or fading ofthe nucleus. Solar wind and radiation pressure, the heliopause, molecular clouds and dragwere also examined but proved to be either negligible or inapplicable. Various conclusionscan be drawn from this research:The concentration of aphelion directions of the observed long-period comets at mid-Galactic latitudes (Figure 2.11b) is due to the action of the Galactic tide, and is not simplyan artifact of statistical noise. It may be possible to use the observed distribution of theGalactic argument of perihelion ~! to estimate the relative comet injection rates of the tideand passing stars, as injection due to the tide should be restricted to the range sin 2~! > 0while that due to stars will be uniform over ~!. However, the observed sample of dynamicallynew long-period comets is too small to disentangle these components as yet.The current Oort cloud contains roughly 5 � 1011 objects orbiting between 10 000 and50 000 AU from the Sun (x 5.2.3), assuming the Oort cloud is in a near steady-state, witha number density proportional to r�3:5, and that the 
ux of dynamically new long-periodcomets through a sphere of radius 3 AU around the Sun is currently 10 yr�1. As many as3�1011 Oort comets may have entered the loss cylinder since the Solar System's formation,157



CHAPTER 6. CONCLUSIONS 158indicating that the original Oort cloud had over 1012 members, and probably more.All but a small fraction of comets in the Oort spike are making their �rst apparition. Inthe absence of fading, roughly 7% of observed comets with 1=a < 10�4 AU�1 have madeone or more previous apparitions; similarly, 2% of comets originating in the Oort cloud donot make their �rst visible perihelion passage within the spike, but on more tightly boundorbits (x 5.2.2). As these numbers ignore the e�ects of fading, they provide only upperlimits and the actual fractions are likely to be much lower.The Oort cloud provides only a small fraction of the short-period comets, up to 3%if fading is ignored. Thus another source or sources must be providing the bulk of theshort-period comets.Long-period comets pass through each giant planet's sphere of in
uence at a rate ofapproximately one every few years (x 5.2.7). Collision rates may be as high as once permillion years for Jupiter and Saturn, dropping to roughly once per few hundred millionyears for Uranus and Neptune.The purely dynamical lifetimes of simulated long-period comets are too long to repro-duce the observed distributions of these comets, with discrepancies in particular in theoriginal inverse semimajor axis and inclination distributions. Thus the \fading problem" isnot simply a result of incomplete theoretical treatments, but represents a real gap in ourunderstanding of the evolution of long-period comets, and possibly in our knowledge of theinventory of the Solar System.The observed prograde fraction 	3 of long-period comets is near 0.5, as is that of thedynamically new (V1) comets simulated here. However, 	3 is expected to decrease as thecomet population ages due to preferential ejection of prograde comets by the giant planets;in the standard model, 	3 is 0.3 (x 5.2.2). The prograde fraction thus provides a measureof the age of the long-period comet population. The observed value of near 0.5 implies thatlong-period comet lifetimes are much shorter than their dynamical lifetimes, and indicatesthat a fast-acting fading mechanism of some kind is at work.Non-gravitational forces play a signi�cant role in shaping the distributions of the long-period comet orbital elements, in particular by shortening their lifetimes against ejection andby sculpting the distribution at small perihelia. NG forces reduce the dynamical lifetimesof comets but are too small by roughly two orders of magnitude to resolve the fading theproblem of themselves.



CHAPTER 6. CONCLUSIONS 159The fading problem probably does not re
ect the presence of a massive circumsolardisk or solar companion object, at least as far as can be determined from the somewhatsimpli�ed treatment given these features here. Low mass disks and companions are unableto produce orbital element distributions which match observations, while at higher masses,these features prevent the �lling of the loss cylinder (x 5.0.1).No clear explanation for the existence of the observed visible comets on hyperbolicoriginal orbits is provided by this research. The excess velocities are small, correspondingto roughly �10�4 AU�1 in inverse semimajor axis, but are larger than those produced by theGalactic tide (� �10�6 AU�1, Equation 5.1) or non-gravitational forces (� �10�5 AU�1,Equation 3.36a) over a single comet orbit. A circumsolar disk or solar companion mightproduce a change �(1=a) of this magnitude, but would strongly in
uence the Oort cloudand prevent the �lling of the loss cylinder (x 5.0.1). Other e�ects, such as rapid variations inoutgassing or asymmetrical outgassing about perihelion might produce hyperbolic comets,but such e�ects were not examined here.The observed distributions of orbital elements can be matched by the addition of fadingto the simulations, though of a fairly restricted form: a large fraction of comets must fadefairly quickly (�< 10 orbits) while a smaller fraction must survive much longer times (�> 1000orbits). The fact that the cratering rate is near that expected from the current knownpopulations of comets and asteroids (x 3.10.1) implies that fading results in the completedisruption of the comet nucleus. This hypothesis is supported by the lack of observed sharpdecreases in the brightnesses of long-period comets as they pass perihelion, decreases whichmight be expect if fading were due to a rapid loss of volatiles which left the comets inertbut intact (x 3.8).A one-parameter power law fading function (model C1 and C2) with exponent � � 0:6provides a good match between our simulations and observations. This fading law might beexpected if each apparition results in the loss of approximately equal amounts of volatiles,and the di�erential mass distribution of dynamically new long-period comets N(M)dM /M�1:6dM (x 5.5.2).A two-population fading model (D1) in which approximately 95% of comets survive forroughly six orbits and the remainder inde�nitely also provides good agreement with obser-vations, and could be explained by a division of the Oort cloud population into objects withlow and high internal cohesiveness. Such a fading model would be roughly consistent with



CHAPTER 6. CONCLUSIONS 160the observed splitting probabilities of dynamically new long-period comets, approximately0.1 per orbit (Equation 3.62).The fading problem remains partly unresolved. Though it seems likely to be associatedwith the disruption of the nucleus rather than a dynamical e�ect, the exact nature ofthis decay process remains unclear. The fading process is likely to be sensitive to the eachcomet's particular properties and to the pattern of thermal and other stresses to which theyare subject, and thus very di�cult to predict. Future progress will likely require improvedobservational data rather than more sophisticated theoretical treatments; in particular moreinformation on the physical characteristics of comet nuclei, as well as greater observationalcoverage of their orbits, is needed.



Appendix ACelestial MechanicsA.1 Orbital elementsThe six standard elements of a two-body orbit are: semimajor axis a, eccentricity e, incli-nation i, longitude of the ascending node 
, argument of perihelion !, and true anomalyf (e.g. Roy 1978). The reader is assumed to be familiar with these elements, but a briefsketch of the angular orbital elements is presented in Figure A.1.The elements are usually measured in the heliocentric reference frame, but can also betaken in the barycentric frame, in which case the centre of mass is the origin about whichthe elements are computed instead of the Sun. The notation used here for the heliocentricand barycentric elements is the same, with the context indicating which is being used.A.2 Galactic elementsThe angular orbital elements as measured in the Galactic frame are also of interest here(x 3.2.1). In this case, the Sun is at the origin, but the \vernal equinox" is directed insteadtowards the Galactic centre, and the \ecliptic pole" is directed towards the Galactic pole.The Galactic angular elements are denoted by a tilde i.e. ~{, ~
 and ~!. The Galactic argumentof perihelion ~! should not be confused with the commonly-used symbol for the longitudeof perihelion, $ = 
+ !, as the longitude of perihelion will not be used here.161
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Figure A.1: The inclination i, longitude of the ascending node 
, argument of perihelion !and true anomaly f in the ecliptic frame. Adapted from Roy (1978).A.3 Kepler's third lawThe orbital period � of a comet can easily be related to its semimajor axis a through Kepler'sthird law:� = 2� a3GM�!1=2 ; (1.1)where G is the gravitational constant, M� is the mass of the Sun, and the mass of theorbiting body has been assumed to be negligible. In the case where a is measured in AU,M� in solar masses and � in years, this expression reduces to� = a3=2: (1.2)



APPENDIX A. CELESTIAL MECHANICS 163A.4 Radius in the orbitThe distance r of the orbiting body from the origin is givenr = a(1� e2)1 + e cos f : (A.17)The true anomaly f can be determined from the time t since perihelion passage by solvingthe transcendental Kepler's equation, but this equation will not be required for thesediscussions.A.5 Two-body energyThe energy per unit mass E of a particle on a bound orbit in a two-body system is simply�GM=2a, where M is the total mass of the system and a is the semimajor axis measuredin the barycentric or centre of mass frame. For a massless (test) particle orbiting the Sun,M = M�, and the barycentric and heliocentric frame coincide. In this case, the inversesemimajor axis 1=a provides an unambiguous measure of the test particle's energy.A.6 Energy in multi-body systemsIf potentials other than that of the Sun are present, the semimajor axis a of a test particle'sorbit may vary due to the perturbing presence of these other �elds. In the presence ofmassive planets, the Solar System's heliocentric and barycentric frames no longer coincide,owing to the accelerations imparted to the Sun by the planets. Nevertheless, a useful\snapshot" of a test particle's energy is provided by the osculating value of 1=a. Theosculating elements are those which would be measured if the particle were travelling withits instantaneous position and velocity in a simple two-body system rather than a perturbedone. For our purposes, if is convenient to measure 1=a in the barycentric frame: though itsaccuracy as a measure of energy is degraded while the comets travel within the planetarysystem, the barycentric 1=a reduces to the correct two-body value as the particle movestowards in�nity. For this reason the inverse semimajor axis of comets will be measured ataphelion here.



APPENDIX A. CELESTIAL MECHANICS 164A.7 Gauss' equationsIf a particle orbiting the Sun is subject to a small perturbing force ~Fpert, Gauss's planetaryequations can be used to deduce the resulting change in its orbital elements. A \small"perturbing force is taken here to mean that the fractional change in any orbital element issmall over a single orbit.Let the perturbing force be written as~Fpert = F1ê1 + F2ê2 + F3ê3; (A.18)where the three orthogonal unit vectors are: radial ê1 (positive outward from the Sun),transverse ê2 (in the orbital plane, positive along the direction 90� ahead of the Sun-cometline), and normal ê3 (perpendicular to the orbital plane, parallel to ê1� ê2). Then, in termsof these components, Gauss's planetary equations aredadt = " 4a3GM�(1� e2)#1=2 [F1 e sin f + F2(1 + e cos f)] ; (A.19a)dedt = "a(1� e2)GM� #1=2 [F1 sin f + F2 (cosu+ cos f)] ; (A.19b)didt = F3r cos(! + f)[GM�a(1� e2)]1=2 ; (A.19c)d
dt = F3r sin(! + f)[GM�a(1� e2)]1=2 sin i; (A.19d)d!dt = "a(1� e2)e2GM� #1=2 ��F1 cos f + F2�2 + e cos f1 + e cos f � sin f�� d
dt cos i; (A.19e)d�dt = e21 + (1� e2)1=2 �d
dt + d!dt �+ 2 d
dt (1� e2)1=2 sin2 i2 � 2F1r(GM�a)1=2 ; (A.19f)where u is the eccentric anomaly, such that cos u = (a� r)=ae, and � is the mean longitudeat t = 0, i.e. the mean longitude ` is` = Z t0 d�dt dt+ �; (A.20)where d�=dt, the rate of change of the mean anomaly �, is just the mean Keplerian angularvelocity d�=dt = 2�=� .The median eccentricity of Marsden's (1993) comet catalogue is 0.66; for the 289 long-period comets with computed original orbits, the median e is 0.9999. Thus, it is convenient



APPENDIX A. CELESTIAL MECHANICS 165to consider Gauss's equations under the approximation e � 1, or equivalently, q=a� 1:dadt �  2a4GM�q!1=2 [F1 sin f + F2(1 + cos f)] ; (A.21a)dedt � � 2qGM��1=2 [F1 sin f + F2 (cosE + cos f)] ; (A.21b)didt � � 2qGM��1=2F3 cos(! + f)1 + cos f ; (A.21c)d
dt � � 2qGM��1=2F3 sin(! + f)(1 + cos f) sin i ; (A.21d)d!dt � � 2qGM��1=2 ��F1 cos f + F2 �2 + cos f1 + cos f � sin f� � d
dt cos i; (A.21e)d�dt � d!dt + "1 + 2�2qa �1=2sin2 i2# d
dt � 4qF1(GM�a)1=2(1 + cos f) ; (A.21f)These equations will prove useful in determining the e�ects of outgassing and other pertur-bations on comets.



Appendix BError tolerancesThe error tolerance � is converted to an error limit for each individual regularised coordinatethrough a combination of relative and absolute terms: the �rst is dependent on thecomet's instantaneous orbit; the second is not.Because the unperturbed regularised equations are those of a simple harmonic oscillator(x 4.1.2), the error limits for the position and velocity coordinates are taken simply to be� times their instantaneous amplitudes. For the energy h and time t, the relative term isbased on the instantaneous values of h and and the period � respectively.The absolute term is required to avoid excessively stringent error limits on coordinatesthat happen to have near-zero amplitudes. The absolute terms are based on an arbitrarySun-centred reference orbit, usually taken to have a0 = 104 AU, with corresponding regu-larised energy h0. The error limit equations are shown in Equations B.1a,b,c and d below,with the relative term �rst, the absolute term second. The error tolerance for t has noabsolute term as comets with small orbits are terminated in our simulations before theirperiod becomes too small.Euj = � �2hu0j2 + u2j�1=2 + �a1=20 j = 1; 2; 3; 4; (B.1a)Eu0j = � �h2u2j + u0j2�1=2 + � �h0 a02 �1=2 j = 1; 2; 3; 4; (B.1b)Eh = � h+ � h0; (B.1c)Et = � �: (B.1d)166



Appendix CThe Flux of Long-Period CometsC.1 The 
ux across the entrance surfaceThe orbit-averaged inwards 
ux �E per unit time due to the Galactic tide across any surfaceof constant angular momentum J = JE per unit L is the integral of Equation 4.24 over theall other canonical coordinates,�E(L; JE) dL = dL� 2�Z0 df 2�Z0 d~
 2�Z0 d~! JEZ�JE dJ~z JE� _J�ZJE g(L; J; J~z; ~
; ~!; f)�( _J) dJ; (C.1)where �( _J) is a step function, unity when _J < 0 and zero otherwise, which removes theoutwards 
ux from the integral. Using the independence of the orbit-averaged _J on f and~
, (Equation 3.28b) and assuming the phase space density is of the form g = g0L2�+3(Equation 4.23), we easily integrate over f and ~
 to get�(L; JE) dL = 4�2g0L2�+3dL� 2�Z0 d~! JEZ�JE dJ~z JE� _J�ZJE �( _J) dJ: (C.2)Integrating this equation with respect to J simply yields�(L; JE) dL = �4�2g0L2�+3dL 2�Z0 d~! JEZ�JE _J�( _J) dJ~z: (C.3)The expression for _J is given by Equation 3.28b. Upon substitution, Equation C.3 becomes�(L; JE)dL =�4�2g0L2�+3dL2�Z0 d~! JEZ�JE� 5��0GM2� L2J2E (J2E�J2~z )(L2�J2E) sin 2~!�( _J) dJ~z;(C.4a)167



APPENDIX C. THE FLUX OF LONG-PERIOD COMETS 168= 20�3g0�0GM2� L2�+5J2E (L2�J2E)dL 2�Z0 sin 2~!�(� sin 2~!) d~! JEZ�JE(J2E�J2~z ) dJ~z; (C.4b)where the dependence of the sign of _J on sin 2~! has been explicitly acknowledged. Theintegrals over ~! and J~z are easily done, yielding�(L; JE)dL = 160�3g0�03GM2� L2�+5JE(L2 � J2E)dL: (C.5)The total 
ux across the entrance cylinder per unit L is the integral of Equation C.5over the entrance cylinder, which is given by Equation 4.14, and which is here expressed inour chosen canonical coordinates asJE(L) = 8><>: JE� where L� � L � L=ZkL7 where L= � L � L+ (C.6)where L� and L+ are the minimum and maximum values of L in the Oort cloud, corre-sponding to the minimum and maximum semimajor axes a� and a+, k = 10�2�0=G3M4�(Equation 4.7), and L= is the point at which JE� = ZkL7 i.e. L= = (JE�=Zk)1=7 (Equa-tion 4.9a).Equation C.5 must be integrated along the path in L{J space corresponding to theentrance cylinder, and may require an extra factor measuring the arclength along this path.However, the 
ux is always parallel to ~J and so is reduced by a factor of the cosine of theangle between ~J and the normal to the entrance cylinder. It easy to conclude that thesecontributions cancel out, and deduce that�iE(L; JE)dL = 160�3g0�03GM2� L2�+5JE�(L2 � J2E�)dL; (C.7a)�oE(L; JE)dL = 160�3g0�0kZ3GM2� L2�+14(1�Z2k2L12)dL (C.7b)where the superscripts i and o indicate the inner and outer regions of the entrance surfacerespectively. This 
ux can be expressed in terms of the semimajor axis a = L2=GM� byusing the expression dL =pGM�=4ada,�iE(a; qE)da = 80p2�33 g0�0G�+7=2M�+5=2� q1=2E� a�+2(a� 2qE�)da; (C.8a)�oE(a; qE)da = 800�53 g0�20ZG�+7=2M�+3=2� a�+13=2 1� 100�4�20Z2M2� a6! da; (C.8b)
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Figure C.1: The 
ux �E of long-period comets into the entrance cylinder as a function ofsemimajor axis a.where the approximation J2E� � 2GM�qE� has been made in the inner region. The 
uxis plotted in Figure C.1, assuming values of �0 = 0:15 M� pc�3, Z = 3, qE� = 60 AU,� = �3:5, and with g0 normalised so that �E = 1 at a�. This function is the basis for theprobability function used to compute comet initial elements (Equation 4.28f).C.2 The 
ux into the visibility cylinderThe 
ux expected into the visibility cylinder can be deduced from the 
ux into the entrancecylinder under the assumption that the tide remains the dominant perturber until the cometreaches the visibility cylinder: this is true in the outer Oort cloud where the loss cylinderis �lled.Consider Figure C.2, which shows a cross-section of the entrance and visibility cylindersin J~z{J~x~y space, where J~x~y = qJ2~x + J2~y such that J2 = J2~z +J2~x~y. The angular momenta Jvand JE are those at which the comet's perihelion is within the visibility cylinder and theentrance surface respectively.
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Figure C.2: Diagram of the entrance cylinder.Since J~z is conserved under the tide but J~x~y is not (x 3.2.1), the evolution of an LP cometis a horizontal trajectory in Figure C.2. The sequence of dots moving inwards from the rightside of the entrance cylinder represents the angular momentum values of a particular cometat a series of perihelion passages. The 
ux into the visibility cylinder is just the fractionof perihelion passages made within the entrance surface to that made within the visibilitycylinder.The step size �J is not generally constant from orbit to orbit, thus the 
ux into thevisibility cylinder is reduced by a factor _J~x~y(Jv)= _J~x~y(JE) over that into the entrance surface.Since J~z must be small if the comet is to enter the visibility cylinder, it is easy to showthat _J~x~y(Jv)= _J~x~y(JE) � _J(Jv)= _J(JE). The 
ux into the visibility cylinder is also reducedby a factor of Jv=JE due to the smaller cross-section of the visibility cylinder.The visible 
ux is also reduced by the possibility that a comet passing through the visi-bility cylinder will do so in less than one orbit. If �J �> Jv , the comet's angular momentumcould move through and out the other side of the visibility cylinder between perihelionpassages, and the comet would thus fail to become visible. Ignoring the dependence of this



APPENDIX C. THE FLUX OF LONG-PERIOD COMETS 171phenomenon on J~z , the fraction of comets becoming visible is just the area of the visibilitycylinder divided by the rectangle 2Jv�J , where �J = _J(Jv)� . Assumed that Jv � JE ,certainly true for Oort cloud comets, the probability of a comet passing within Jv becomingvisible is �J2v =2Jv _J(Jv)� .Combining these three factors, one �nds that the 
ux into the visibility cylinder �v is�v = _J(Jv)_J(JE) JvJE �J2v2Jv _J(Jv)�E ; (C.9a)= �J2v2JE _J(JE)� : (C.9b)Considering only the region where the loss cylinder is full (a �> 25 000 AU), the expres-sions JE = ZkL7 (Equation C.6), _JE� = e2EkL7 (Equation 3.30), and J2v = 2GM�qv canbe used express Equation C.9b as�ov � �J2v2e2Ek2ZL14�E = qvM2�100�3e2E�20Za7�E : (C.10)where the superscript o indicates the 
ux in the region a � a=. Using the expressione2E = (L2 � J2E)=L2, the 
ux can be reduced to�ov(a; qv)da � 8�23 g0qv(GM�)�+7=2a��1=2 da: (C.11)Note that this expression does not depend on the characteristics of the entrance surface,as would be hoped. It is also independent of �0, removing the possibility of measuring thelocal matter density directly from the 
ux of visible comets.For an Oort cloud with � = �3:5, the 
ux into the visible cylinder from the outer cloudwill fall as a�4. This decrease is due in part to the increasing likelihood of a comet \jumpingover" the visibility cylinder between perihelion passages as �J becomes large. The 
ux intothe visibility cylinder is plotted in Figure 5.3, along with a plot of the distribution of theoriginal inverse semimajor axes of the V1 comets.
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