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ABSTRACT

The gravitational influence of a planet on a nearby disk provides a powerful tool for detecting and studying
extrasolar planetary systems. Here we demonstrate that gaps can be opened in dynamically cold debris disks at the
mean-motion resonances of an orbiting planet. The gaps are opened away from the orbit of the planet itself,
revealing that not all disk gaps need contain a planetary body. These gaps are large and deep enough to be
detectable in resolved disk images for a wide range of reasonable disk-planet parameters, though we are not aware
of any such gaps detected to date. The gap shape and size are diagnostic of the planet location, eccentricity and
mass, and allow one to infer the existence of unseen planets, as well as many important parameters of both seen
and unseen planets in these systems. We present expressions to allow the planetary mass and semimajor axis to be
calculated from observed gap width and location.

Key words: planet–disk interactions – planets and satellites: detection

1. INTRODUCTION

The detection of excess infrared radiation from a number of
stars indicate the presence of debris disks around them, some of
which, such as those around Fomalhaut and Beta Pictoris, have
been observationally resolved. The first extrasolar debris disk
ever discovered was found around Vega using IRAS, from the
thermal emission of circumstellar dust which revealed a strong
infrared excess beyond 12 μm (Aumann et al. 1984). The
excess radiation was immediately linked to the possible
presence of solid dust particles with radii greater than
0.12 cm and temperatures of approximately 85 K, located at a
mean distance of 85 AU from the nearby main sequence star
α Lyrae and which were believed to be debris left-overs from
the formation of this stellar system (Aumann et al. 1984). This
discovery sparked interest in studying debris disks outside our
own solar system and the first optical image of an exosolar
debris disk emerged later in the same year. Using ground-based
optical coronagraphy, Smith & Terrile were able to directly
image a flattened disk of cold, solid material around β Pictoris
(Smith & Terrile 1984).

Interactions between planets and disks have been studied in
great detail for gas-rich disks with the main motivation being
understanding planet formation (see the review paper by Kley
& Nelson 2012). The study of geometric structures in
protoplanetary disks has offered insights into the formation
and evolution of planetary systems. Such structures, which are
mostly believed to be signposts of planet formation, reveal
themselves as density variations across the disk and have been
inferred from Spectral Energy Distributions and high-resolution
millimeter and submillimeter interferometry observations.
There is strong theoretical and observational evidence for gaps
(see for instance, Debes et al. 2013) as well as density
enhancements that appear as complex features such as spiral
patterns (e.g., Brown et al. 2009; Muto et al. 2012; Juhasz et al.
2014) and dust traps (e.g., Isella et al. 2013; van der Marel et al.
2013) in protoplanetary disks and that can create asymmetric
structures. Observations of protoplanetary disks have revealed
that asymmetric disks are common. Such asymmetries are
interpreted as being either due to density perturbations of a

stellar or planetary companion (e.g., Kraus et al. 2013) or
having a geometric nature (e.g., Brown et al. 2009; Jang-
Condell & Turner 2013). Investigating the sources of density
enhancements and depletions can result in a better under-
standing of the processes of formation and evolution of single
and multiple planetary systems in gas-rich disks.
In a protoplanetary disk, drag against the gas causes solid

particles to collapse into a dynamically cold disk in which the
particle orbital eccentricities and inclinations are very low. The
gas is eventually blown away by stellar radiation once the star
is born and leaves behind a nearly circular, coplanar solid
particle disk.This disk may include planets as well as smaller
planetesimals or other bodies, like the solar system’s asteroid
belt. Dynamical interactions of planets with these second
generation disks have not been studied as extensively as gas-
rich disks. In this paper, we shall focus on this later stage in
which little or no gas remains. Such gas-poor disks include for
example, the Fomalhaut (Cataldi et al. 2015), Vega (Wilner
et al. 2002) and β Pictoris (Kalas & Jewitt 1995) disks.
Structures in the Fomalhaut disk, for example, cannot be due to
gas-dominated processes because of its low gas content
(Cataldi et al. 2015), but must arise from other processes.
We will show that the interaction of a planet with a debris

disk can create structures that are not radially symmetric about
the star. Non-axisymmetric structures have been commonly
observed in debris disks. For instance, observations of the
debris disk around β Pictoris revealed a warp in the inner disk
around ∼70−150 AU (e.g., Burrows et al. 1995; Heap
et al. 2000). Dynamical modeling had suggested that the warp
could be explained by a misaligned planet (e.g., Mouillet
et al. 1997; Augereau et al. 2001) which was later confirmed
when a 9±3 Jupiter-mass planet was found on an inclined
orbit 8−9 AU from the central star (Lagrange et al. 2010).
Asymmetries in debris disks have also been attributed to mean-
motion resonances (MMRs). For instance, N-body simulations
of a collisional debris disk by Nesvold & Kuchner (2015) show
a peak in the disk’s surface brightness at 1:1 MMR with the
planet. A second peak is observed in their simulation of a 3
Jupiter-mass planet and falls between the 3:2 and 2:1 MMR
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with the planet, indicating a depletion of planetesimals at the
two resonances. Formation of overdensities in debris disks has
also been explained by migrating dust (e.g., Wilner et al. 2002)
or migrating planets (e.g., Wyatt 2003). While migrating
inward due to Poynting–Robertson (PR) drag, dust grains can
become trapped in resonances with a planet interior to their
orbit or get scattered, thus forming asymmetric structures in the
disk. The same scenario applies to particles that are captured in
a migrating planet’s resonances.

Structures in dust disks in which particles are strongly
affected by the radiation pressure of the central star as well as
the PR drag have been investigated by some authors (see for
instance Kuchner & Holman 2003; Wyatt 2006; Krivov
et al. 2007). However, not much emphasis has been placed
on the dynamical interactions of planets with planetesimal belts
with regards to understanding of the MMR gaps and how they
can be used to extract information about the planets causing
them. For instance, Chiang et al. (2009) briefly discuss gap
formation at MMRs with a planet interior to the Fomalhaut disk
in an attempt to constrain the mass of Fom b, but do not
provide further details on how such gaps could yield
measurements of planetary parameters. On the other hand,
N-body numerical simulations by Reche et al. (2008) show gap
structures similar to what we shall discuss in the present work,
but were not addressed by the authors. Here we address the
question of what structure might be induced in a gas-poor
extrasolar planetesimal disk by a non-migrating planet, and in
particular what observational signatures might indicate the
presence of an unseen planet in the system and how they can be
used to constrain the planet’s mass and orbital parameters. It
must be noted that for the rest of this paper, whenever the term
“debris disk” is used, it means disks with particles having size
distributions in the range of about 1 m to 100 km that are nearly
unaffected by the central star’s radiation pressure. Such
particles can be gravitationally perturbed due to the presence
of one or more planets in the system which could result in
either their removal (like the Kirkwood Gaps in our solar
system) or accumulations (like the Hilda family of main belt
asteroids). Studying these resonances is not only an indirect
way of detecting unseen extrasolar planets, it can also help put
constraints on some parameters of the planets which are
creating them, such as their mass, semimajor axis and
eccentricity.

The astonishingly detailed image of a disk around HL Tau, a
Sun-like star approximately 450 light-years away in the
constellation Taurus that was recently obtained by the Atacama
Large Millimeter Array (ALMA), is a perfect example of
structures being formed in disks due to planets (NRAO 2014).
Although the disk imaged around HL Tau is a protoplanetary
disk different from the second generation debris disks we
concentrate on in the present work, the ALMA image of
HL Tau illustrates the increasing resolving power that can be
achieved with state of the art telescopes. With ALMA soon
starting its full operation, more detailed images of debris disks
will become available, revealing more and more detailed
structures such as those discussed here.

This paper is organized as follows. In Section 2, we briefly
describe the dynamics of MMRs and the theoretical calcula-
tions of their maximum libration widths. Our method is
presented in Section 3 in which we explain the code that is used
to generate the simulations as well as the initial conditions. We
present the different results obtained for interior versus exterior

MMRs in Section 4, followed by discussions in Section 5.
Finally, a summary and conclusions are provided in Section 6.

2. THE DYNAMICS OF MEAN-MOTION RESONANCES

The existence of gaps in the solar system’s asteroid belt was
first noted by American astronomer Daniel Kirkwood in 1867
who saw non-uniformities in the number distribution of
asteroids in the main belt as a function of semimajor axis,
with some ranges having few or no asteroids (Kirkwood 1867).
We now understand that gravitational interactions between the
asteroids and Jupiter result in the removal of planetesimals
from these orbits, making gaps to appear in the disk where a
particle’s orbital period would be a simple fraction of that of
Jupiter’s (Murray & Dermott 1999). The close link between
orbital period of an asteroid and its semimajor axis means that
these “MMR” occur over narrow ranges of semimajor axes,
often depleting them of their original complement of bodies.
However, if one were to take an image of our asteroid belt

from outside the solar system, the Kirkwood gaps would not be
observable due to the eccentricity of the asteroids blurring the
edges of the gaps (see Figure 1). Though asteroids are removed
from a number of resonances in the main belt, the eccentricities
of the remaining asteroids are large enough to blur the edges of
the resonances and make the gaps invisible. We will show that
this is not always the case, and that under realistic conditions,
visible gaps can be opened in particle disks by resonances. This
means that gaps in extrasolar disks do not necessarily contain
planets, as often assumed. Planets can also generate other
resonant structures that both indicate their presence and provide
diagnostic information about their mass, eccentricity and
position. Therefore, not only is the observation of gaps in
debris disks an indirect way of detecting undiscovered
extrasolar planets, it can also be used to constrain some
parameters of the perturbing body if the gap widths and
locations can be measured.
Two objects are said to be in MMR if the following relation

holds:
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the orbital elements of the particle being perturbed (the
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Equation (1) can, equivalently, be written in terms of the two
objects’ semimajor axes, a and a¢, as
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where k=+1 for exterior resonance (i.e., a a¢ > ) and k=−1
for interior resonance (i.e., a a¢ < ).
Following the discussion and derivations presented in

Murray & Dermott (1999), to lowest order the resonant
argument of the disturbing function, f, can be written as

j j j j , 31 2 3 4 ( )f l l v w= ¢ + + ¢ +

where λ and l¢ are the mean longitudes and ω and v¢ are the
arguments of periapse. Also, j p q1 = + , j2=−p and j3 and j4
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are either zero or −q, depending on the relative locations of the
two objects.

When a particle in a debris disk orbits in an MMR with a
perturbing body, such as a planet, its orbit is perturbed in a
consistent manner when the relative planet-asteroid geometry
repeats itself. This often destabilizes the smaller body so that it
either collides with the planet, crashes into the star, goes into a
highly elliptical orbit or gets ejected. In either case, a gap
forms in the disk whose width, amaxd ¢ , can be approximated
by the maximum libration width of its resonance. This
can be calculated analytically at low eccentricities using
Equation (4):
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with G denoting the universal gravitational constant, M the
mass of the perturbing body, fd (α) a term containing Laplace
coefficients and coming from three-body expansion of the two

objects’ orbital elements and a

a

k( )a = ¢ . Equation (4) is given
as Equation (8.76) in Murray & Dermott (1999). Figure 2
shows the maximum libration widths at various eccentricities
for the 2:1, 3:2, and 3:1 interior resonances with Jupiter. It is
clear from this figure that in the case of first order resonances,
the libration widths increase with eccentricity, except at very
low eccentricities for which they become very large.
An MMR affects a narrow range of semimajor axes. The

resulting resonant gaps will be visible in an optical or other
telescopic image of the disk if (1) the resonance tends to
destabilize particles (often but not always the case), (2) the

Figure 1. Orbits of known solar system asteroids interior to Jupiter’s as of 2015 June 27 plotted using data obtained from the Asteroids Dynamic Site (AstDyS 2015).
No Kirkwood gap due to MMR with Jupiter (shown with the black circle) can be seen in the disk (top panel) or the histogram (bottom panel) which shows the
distribution of asteroids per distance from the Sun. This is due to the eccentricities of the asteroids that bring them in and out of the gaps. The theoretical locations of
the three strongest resonances are shown on the histogram with vertical dotted lines.
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eccentricity of the particles near the edges of the resonance is
small enough to keep them from blurring the edges of the gap,
and (3) the width of the gap is not smaller than the resolution of
the telescope. The radial excursion, Δr, of the particles in the
disk, given by Δr∼2ae, should be smaller than the resonance
width. Thus the formation of MMR gaps is favored in
dynamically cold particle disks, which have small eccentri-
cities. It is the relatively high average eccentricities of asteroids
that obscure the Kirkwood gaps in our own main asteroid belt.
From Figure 2, it is also clear that very low eccentricity disks
may have very large resonant gaps since the resonance width
increases sharply as the disk average eccentricity, eave¢ ,
approaches zero; hence very dynamically cold disks are good
candidates for observing particularly large resonant gaps.

3. SIMULATIONS

3.1. The Method

Our simulations are performed with a symplectic integrator
based on the Wisdom–Holman algorithm (Wisdom & Hol-
man 1991). A fixed timestep of 50 days is used for all simulations.
The output is recorded at 10,000 year intervals and the total
simulation time is taken to be 1 million years in length unless
otherwise noted. A single planet on a circular or slightly elliptical
orbit perturbs the disk, which orbits a 1 solar-mass star. Particles
are removed if they have a close encounter with the planet or
reach a distance less than 10 solar radii or greater than 1000 AU.

The gravitational effects of the star and planet are included
but interactions between the particles themselves are ignored.
Thus our simulations are applicable to low-mass debris disks,
where the mass of the disk is much less than that of the planet.
We also neglect the effects of the PR drag for simplicity; hence
our simulations represent gas-poor planetesimal or debris disks
composed of solid bodies 1 m to 100 km across and which are
relatively free of dust. The presence of strongly reflecting or
emitting dust can markedly affect the appearance of a disk,

particularly if collision among the dust particles is considered.
For instance, a study conducted by Stark & Kuchner (2009)
shows that the ring structures created by the trapping of dust in
resonance with a planet are smeared out by collisional
interactions of the dust particles. On the other hand, Wyatt
(2005) has argued that the collisional lifetime of dust in debris
disk candidates is short enough that dust does not drift very far
before its destruction. Here we model dynamically cold
planetesimal disks which are dust-poor. However, we note
that the observational characteristics of such disks will be
dominated by much-smaller dust (which has different
dynamics) in dust-rich systems. The mechanisms of dust
production and removal in these disks are complex and their
modeling is outside the scope of this paper. Nonetheless, it is
reasonable to expect that at least some dust-poor systems exist,
and it is to those that we turn our attention here.
The simulations are performed at scales appropriate to our

solar system (i.e., the perturbing planet is placed at Jupiter’s
semimajor axis, ∼5.204 AU from the star). The physics
involved scale with distance, however, and so our results are
applicable to disks and planets in general, even if located at
different distances from their parent stars. For clarity then, our
figures are scaled so that the planet is at a unit distance. The
exception to the scalability of our results is only the timescales
for opening up the gaps, which are expected to be longer for
larger systems or ones with less massive central stars.

3.2. Simulated Debris Disks

In order to investigate structures in debris disks that are
caused by MMRs with a planet, we perform simulations of test
particles in a flat disk (particle inclinations i 0 .0¢ =  ), contain-
ing 10,000 particles per 1 AU of the disk radial thickness.
Running on a single CPU, the simulations take 12 hr to
complete for a disk with 20,000 particles and could last up to 4
days for three times the number of particles. The total

Figure 2. Maximum libration widths for 2:1, 3:2, and 3:1 main belt resonances with Jupiter. The vertical dotted lines are the locations of nominal resonances
(calculated using Equation (2)) and the horizontal dotted line shows Jupiter’s eccentricity.
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simulation time also depends on the planet’s mass since more
particles are ejected at the beginning of the simulations with
more massive planets. The initial particle eccentricities are
those of the forced eccentricity induced by the planet at each
particle’s semimajor axis with their apses aligned with the
planet’s. The forced eccentricity represents the eccentricity that
the particle orbits are subject to due to the simple presence of
the perturbing planet. By setting the initial conditions of the
disk to this value, we create a disk which will be minimally
perturbed by the planet. This choice represents a scenario
where the planet and the disk have been in the same relative
geometry for a significant fraction of the age of the system.
Other choices result in a more heavily perturbed disk, with
results that are highly dependent on the choice of the initial
conditions. Such scenarios might be appropriate to cases of
recent planetary migration but are not considered here. We note
that for the case of a planet on a perfectly circular orbit, the
forced eccentricity is also zero and the disk particles are started
on circular orbits.

For simplicity, we assume that the planetary system contains
one planet only and we choose the planet’s semimajor axis to
be that of Jupiter (a= aJ= 5.204 AU), though as noted earlier
the choice of this scale is arbitrary and the results apply equally
to disk-planet systems of all sizes. Furthermore, in all of our
simulations, we assume that the planet orbits in the same plane
as the disk (i.e., i= 0°.0). However, we also tried some
simulations with a small planet inclination (i= iJ= 1°.304,
Jupiter’s inclination). The results show no noticeable difference
between the two cases. Therefore, even if the planet does not
orbit exactly in the disk plane, we still expect the same features
and to obtain similar results for small orbital inclinations.

The simulations are performed for the case of both interior
and exterior resonances; and in both cases, the disk is placed
1 AU away from the planet (2.204< aDisk< 4.204 for the
interior resonance and 6.204< aDisk< 12.204 for the exterior
case). The values for the disks’ inner and outer edges are
chosen such that the three resonances being considered, the 2:1,
3:2, and 3:1, fall within the debris disks. A range of planet
masses is used, going from as small as M1.0 Å to 9.0MJ, where
MÅ and MJ are the mass of the Earth and Jupiter respectively.
Furthermore, to study the effect of the planet’s eccentricity on
MMR gaps, two different planet eccentricity values are
considered: e=0.0 and e=0.0489, the eccentricity of Jupiter
(eJ), though we leave further investigations of eccentricity
effects to a follow-up paper.

4. RESULTS

As noted before, we choose our total simulation time to be a
million years, which we find to be sufficient for the disks to
achieve a quasi-steady state. Yet we observe gaps forming on
much shorter timescales for more massive planets (e.g., only
100,000 years, for a 5 Jupiter-mass planet exterior to the disk).
More massive planets open gaps more quickly as would be
expected, but we have not investigated this trend in the present
work. At the end of the simulations, the disks are examined for
structures, particularly those that would be observationally
discernible in a telescopic image. Moreover, in order to be able
to compare the widths of the gaps that are produced in the
simulations with the analytical calculations of the maximum
libration widths through Equation (4), we make histogram plots
of the number of particles per heliocentric distance. The disk is
divided azimuthally into four equal segments since the MMR

gaps turn out to be azimuthally asymmetric, particularly in the
case of the perturbing body having zero eccentricity.
It must be noted that although we calculate what the

resonance widths should be analytically for the 3:2 and the 3:1
resonances as well as the 2:1, due to the narrower gaps these
resonances produce we only measure the widths of the 2:1 gaps
in our simulations. However, as we shall discuss in Section 5.6,
we do observe a narrow feature at the 3:1 resonance.

4.1. Interior Resonance

Interior resonance refers to the case in which the planet is
exterior to the disk and hence the resonances occur interior to
the planet’s orbit. In this case, the 2:1 MMR opens gaps in two
regions: one at inferior conjunction with the planet and one at
opposition. This can be seen in Figure 3 (a) which shows the
case of a 4.0MJ planet on a circular orbit gravitationally
interacting with the disk. The locations of the three prominent
resonances are marked; the gap occurs at the 2:1 MMR with the
planet. If we were to follow the double-arced gap over time, we
would see it move around the star at the same rate as the planet.
The appearance of such a gap in an image of a disk would both
indicate the presence of a planet as well as its location (that is,
along a line drawn through the deepest parts of each arc),
though which side of the disk the external perturber is on
cannot be unambiguously determined. This double-arc shape is
a result of the removal of particles from the 2:1 interior
resonance (see for example Figure 8.4(a) of Murray &
Dermott 1999).
In order to measure the width of the gap seen in the

simulation, we make a histogram for each of the four colored
segments (separated by intervals of π/2, starting with

4 4p q p- < < ) shown in Figure 3(a) for the number of
particles as a function of their distance from the central star.
This is shown in Figure 3(a) where the colors of the first four
histograms correspond to the same colors used in Figure 3(a)
while the last histogram shows the distribution of all the
particles from the four segments put together. For simplicity,
we will concentrate on the gap in the region closest to the
planet (marked in red in Figure 3(a) and the top histogram of
Figure 3(b)).
The dotted lines in Figure 3(b) are the theoretical locations of

the three resonances that are being considered, calculated using
Equation (2), while the dashed lines show the theoretical width
of each resonant gap, obtained from Equation (4). In addition to
the gaps that appear at the 2:1 MMR, the histograms also show
a slight decrease in the number of asteroids in the region
corresponding to the 3:1 MMR with the planet, although it is
considerably narrower compared to the 2:1 resonance. The
decrease at the 3:1 resonance in the sector nearest the planet is a
difference of about 50% which is 5 times the Poisson error for
the bin and hence is statistically significant at this resolution.
On the other hand, the 3:2 resonance which is closer to the
planet cannot be seen since large numbers of particles in the
outer edge of the disk have been removed due to strong
gravitational interactions with the planet. To obtain a measure
of the width of the 2:1 gap, we make a Gaussian fit to the
histogram where the gap appears for comparison to the analytic
results which we discuss in Section 5.3.
Figure 3 belongs to the case in which the planet perturbing

the disk has zero eccentricity. When the planet’s eccentricity is
increased to 0.0489, features are seen in the disk that are similar
to those of the zero eccentricity case. Additionally, the feature
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at the 3:1 MMR broadens. This feature, unlike the 2:1 gap,
does not orbit the central star at the same rate as the planet. This
is shown in Figure 4 for a planet with e=eJ=0.0489. We
attribute this to the generation of tightly wound spiral waves at
a Lindblad resonance in the disk, a phenomenon we explore in
more detail in Section 5.6.

4.2. Exterior Resonance

Resonance structures are different depending on whether the
disk is internal or external to the orbit of the planet. For the case
of exterior resonance (i.e., the planet being interior to the disk),
we find the shape of the gap to be different. Instead of forming
two arc-like sectors, the gap formed due to resonant
interactions with a planet on a circular orbit is a single arc
whose center aligns with the planet. This is shown in
Figure 5(a) for a planet with M=4.0MJ. The arc again co-
rotates with the planet and provides an indicator of the location
of the perturbing body even if it were not visible in an image of
the disk. We note again that the most prominent gap appears
where the 2:1 MMR with the planet is (shown by the filled
square). The different shape of the gap can also be explained in
the same manner as for the interior resonance and is illustrated
in Figure 8.4(c) of Murray & Dermott (1999). Thus the

differing gap shapes for interior versus exterior resonances
allow a great deal of information about a perturbing planet to
be gleaned from images of a disk that displays gaps, even if the
planet itself remains unseen.
Following the same analysis that is done for the interior

resonance, we make a Gaussian fit to the gap that can be seen in
the histogram for the region closest to the planet (see top panel
of Figure 5(b)) to obtain the width and the mean location of the
2:1 MMR gap. We discuss the results of these measurements in
Sections 5.3 and 5.4.
Figure 5 is obtained when the perturbing body (the planet)

has no eccentricity. When the planet’s orbital eccentricity is
increased to that of Jupiter, the arc in the 2:1 gap remains easily
visible but extends further, becoming more annular in shape.
This is shown by Figure 6. In addition, the 3:1 feature observed
in the case of the interior resonance (Figure 4) also becomes
more prominent, and is explained in Section 5.6.

5. DISCUSSION

The main purpose of this study is to provide the means of
determining the properties of a perturbing planet in the case
where an MMR gap is observed in a debris disk. This includes
both the characterization of detected planets, as well providing

Figure 3. Simulation showing interior resonance structures formed by interactions of planetesimals in the disk with a 4.0MJ planet on a circular orbit exterior to the
disk. (a) Interior resonances result in formation of two arcs of gaps in the disk. The dashed line shows the periastron of the planetʼs orbit and the symbols represent the
three resonances considered while the filled circle is the planet. Different colors represent the different segments for which we make histograms of the distributions of
particles in the disk (see Figure 3(b)). (b) Distribution of particles in the disk and MMR structures due to a planet exterior to the disk. The colors in the first four panels
correspond to the same colors in Figure 3(a) for the different segments (from top to bottom: regions separated by intervals of 2p , starting with 4 4p q p- < < ).
The last panel shows the overall number distribution of the particles in the disk. The dotted lines are the theoretical locations of the 2:1, 3:2, and 3:1 resonances with
the dashed lines defining the width of each gap calculated analytically. A Gaussian fit is made to the top histogram where the gap is to obtain a measure of the gap
width from the simulations. The bin size is 0.006 a, in the unit of the planetʼs orbital radius.
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information on the mass and location of planets which remain
as-yet unseen. We consider now how the results of our
simulations provide insight into this issue.

5.1. Asymmetries in MMR Gaps

Our simulations suggest that the shape of an MMR gap is
different for interior and exterior resonances. Therefore, by
looking at the shape of a gap in a planetesimal disk we are not
only able to immediately determine which side of the disk the
perturbing planet is, the azimuthal asymmetry of the MMR
gaps also allows us to easily distinguish between gaps formed
due to MMRs with a planet that lies outside the gaps and those
formed by planets in the gaps for which the gaps are
azimuthally symmetric (such as the ones seen in the HL Tau
disk). The only exception, according to our simulations, is the
case of exterior resonance with a planet having non-zero orbital
eccentricity for which we obtain nearly annular gaps at the 2:1
resonances. We note here that it is possible that increasing the
eccentricity of the planet would result in the gap to eventually
become completely annular, although we do not see that in a
single sample simulation with e=0.1. However, even in this
case, we still observe an asymmetric feature at the 3:1 MMR
with the planet. The presence of this additional gap at the 3:1
resonance, which occurs for both interior and exterior
resonances, is indicative of the planet having non-zero
eccentricity. We leave examining the effect of planet
eccentricity on debris disk structure to a future paper.

5.2. Minimum and Maximum Detectable Planet Masses

We find that planets as small as M M1.0= Å can produce
MMR gaps (see Figure 7), but the practical lower limit on the
mass of the planet that can open a detectable gap depends on the
resolving capabilities of the observational facility taking the
images. We are not aware of any disk with features meeting the
above descriptions (i.e., disks with observed azimuthally
asymmetric MMR gaps) that have yet been reported, but given
the resolutions obtained by current facilities, we expect such
features to be discovered in the near-future. For illustration, the
disk around HL Tau has a radius of 80AU (Kwon et al. 2011)
and the recent ALMA image of the disk shows gap features as
small as 5 AU across (Tamayo et al. 2015). For comparison, a 3
Jupiter-mass planet on a circular orbit just outside the edge
of a planetesimal disk of similar size as the HL Tau disk would
create a 2:1 resonance gap that isW 0.013 3.0 0.020( )= ´ + ´
80.0 4.7 AU~ wide, comparable to the observed gaps that
have been associated with planet formation, and easily
distinguishable. It must be noted that ALMA probes particles
that are ∼1mm and smaller in size, but here we model much
larger bodies. Nonetheless, millimeter-size particles are nearly
unaffected by the PR drag and thus we obtain similar results
when we consider disks that are entirely composed of 1 mm
dust and when collisional dust production is ignored. Yet future
work is needed to study MMR gaps when collision among
millimeter and sub-millimeter particles and radiative forces are
taken into consideration. On the other hand, if the planet
becomes very massive, the edge of the disk thins under its

Figure 4. Same as Figure 3 but with planet’s eccentricity increased to e e 0.0489J= = . (a) Same as Figure 3(a) except that the planetʼs orbital eccentricity is
increased to ∼0.05. The extra feature at the 3:1 MMR is likely launched by Lindblad resonances and appears whenever the planet is given non-zero eccentricity. (b)
Histogram plots for the disk shown in Figure 4(a) also indicate the presence of an extra gap at the 3:1 resonance with the planet.
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perturbations as larger mass planets excite the particles and move
them to higher eccentricity orbits. In our simulations, the disk
becomes too heavily eroded to distinguish the 2:1 MMR at 6
−7MJ, making this the practical upper limit for the use of this
technique for characterizing extrasolar disk-planet systems.

5.3. Libration Width Versus Planet Mass

More massive planets are expected to open wider MMR gaps
in disks. In Figure 8 we illustrate this effect by plotting
libration width versus planet mass for interior (left) and exterior
(right) resonances with planet’s eccentricity e=0.0, shown by
the top two panels, while the bottom two panels show our
results when the planet’s eccentricity is increased to
e=0.0489. The different colors and symbols used and their
least-square linear fits in each panel represent results obtained
analytically using Equation (4) and from the simulations. It is
clear that particularly in the case of interior resonances (left two
panels), there is nearly perfect agreement between the 2:1
MMR gap widths obtained from the simulations and the ones
calculated analytically while there is an offset between the
measured and analytic results in the case of exterior resonances
(right panels). Furthermore, as expected, increasing the planet’s
mass also increases the width of the MMR gap in all cases.
Thus the mass of the perturbing planet, seen or unseen, can be
estimated from the width of the resonant gap it produces.

Equations (6) through (9) are obtained from least square fits
to the values we get from our simulations (see Figure 8). These
equations allow one to easily calculate the planet’s mass if the

2:1 MMR gap width can be measured observationally. To
simplify the calculation, we normalize our results again, this
time making the observed mid-location of the gap equal to one
unit of distance. We do this so that the equations that are
provided from this point forward can also be applied to cases
where the planet is unseen but an MMR gap is detected in the
debris disk.

(A) Interior Resonance with e=0.0:

M W
1

0.015
0.012 , 6o( ) ( )= -

(B) Interior Resonance with e=0.0489:

M W
1

0.012
0.025 , 7o( ) ( )= -

(C) Exterior Resonance with e=0.0:

M W
1

0.009
0.009 , 8o( ) ( )= -

(D) Exterior Resonance with e=0.0489:

M W
1

0.008
0.020 , 9o( ) ( )= -

where M is the planet mass (in Jupiter masses, MJ) and Wo is
the observed width of the gap (in units of the distance between
the star and the observed gap).

Figure 5. Structures formed by resonance interactions of planetesimals with a 4.0MJ planet on a circular orbit interior to the disk. (a) Exterior resonance with a planet
on a circular orbit results in the formation of a gap that appears as a single arc in the region of the disk closest to the planet. (b) Distribution of particles in the disk for
each segment marked in Figure 5(a).
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The error bars are calculated by taking three main sources of
uncertainty into account that are added in quadrature:

1) The Gaussian fit to the histogram is made by least-square
fitting using Interactive Data Language and the goodness
of fit is recorded as one source of uncertainty. This value
is generally small in the examples we tried.

2) Since the Gaussian fit is made to points that mark half the
bin size, the measurements have uncertainties that are
affected by the choice of the bin size (taken to be 0.006
times the planet’s distance from the star in this work).
However, the uncertainty in each bin position goes as n ,
where n is the number of particles in the bin; and since we
chose the bin size such that on average each bin contains
not more than 0.25% of the total number of particles in the
disk, the uncertainty due to the finite size of the bin is
usually not significant.

3) Examining the shapes of the MMR gaps in our
simulations revealed that gaps are not always perfectly
Gaussian in shape. This is illustrated, for instance, in the
top panel of Figure 3(b) where the gap is higher at one
end. Therefore, in order to find the width of the gap, the
Gaussian fit is made three times by normalizing to either
side and also without normalization. The standard
deviation between the three values obtained is then taken
as the uncertainty in the gap width and is the dominant
source of uncertainty in our calculations. It must be noted
that our results for the gap widths are shown in terms of

each gap’s standard deviation while an observer measur-
ing the width of the gap might define the edges by
measuring the peak brightness in the disk near the edge,
then locating the radius in the gap at which the brightness
of the disk is half that value. This method of using the
“half-maximum radius” is used by Chiang et al. (2009) for
simulations of the Fomalhaut disk. Nevertheless, the two
quantities are related by a simple formula shown by
Equation (10):

FWHM 2 2 ln 2 , 10( )s= ´

where FWHM is the full width at half maximum and σ is the
standard deviation (Wo in our equations).

5.4. Resonant Location Versus Planet Mass

Examining the 2:1 MMR gaps in our histograms suggest that
there is a shift in the position of the gap (the peak of the
Gaussian fit) from the nominal resonance location (the dotted
lines on the histograms). In fact, our simulations show that the
offset from the gap’s theoretical position is proportional to the
mass of the planet. This is shown in Figure 9 where the top and
bottom panels are for interior and exterior resonances,
respectively. The red squares show the location of the 2:1
resonance with a zero-eccentricity planet while the diamond
symbols in green are for the case of higher eccentricity planet
with e=0.0489 and the dotted lines denote the location of the
nominal resonance calculated using Equation (2) for interior

Figure 6. Same as Figure 5(a) but with planet’s eccentricity increased to e e 0.0489J= = . (a) Same as Figure 5(a) except that the planet is given some eccentricity
(e 0.05~ ). Similar to the case of the interior resonance with the perturbing planet on a non-circular orbit (Figure 4(a)), an extra gap appears in the disk with location
corresponding to the 3:1 MMR with a planet interior to the disk. (b) Histograms corresponding to the different segments of the disk shown in Figure 6(a).
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and exterior resonances. The uncertainties in the observed gap
locations are calculated in the same manner as those for the gap
widths, explained in Section 5.3.

In addition to a shift in the resonance location, we note from
Figure 9 that the MMR gaps always tend to shift toward the

planet as can be seen from the negative slope in the top panel
and the positive slope in the bottom panel. We find that there is
small contribution from the planet’s eccentricity in shifting the
locations of the MMR gaps. In addition, our results indicate
that the location of the 2:1 gap agrees better with the theoretical

Figure 7. Though MMR gaps are not obvious in this example with a M1.0 Å perturbing planet, examining the last histogram reveals two dips at the 2:1 and 3:2 MMR
with the planet. Such small gaps might not be detectable in a telescopic image of the disk; nevertheless our simulations show that even an Earth-mass planet is able to
open gaps in disks through MMRs. (a) No MMR gap is obvious in this simulated disk due to the small mass of the perturbing planet (M M1.0= Å). (b) Histograms for
the four segments are noisy, but putting them together averages the noise out and reveals two narrow gaps at the 2:1 and 3:2 MMR with the planet.

Figure 8. Libration width vs. planet mass. Left panels: interior resonance with e=0.0 (top) and e=0.0489 (bottom). Right panels: exterior resonance with e=0.0
(top) and e=0.0489 (bottom).W andWo are the theoretical and the simulated width of the gap, respectively, and are given in units of the observed mid-location of the
gap (ao¢). The vertical axis is the full width of the gap, 2s of the fitted Gaussian for the simulations.
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prediction for the higher eccentricity planet in the exterior
resonance case.

5.5. Finding the Planet’s Semimajor Axis based on the
Observed Gap Width and Location

If the mid-location and the width of an MMR gap can be
obtained through observations, this information can be used to
calculate the planet’s semimajor axis. This could be useful for
calculating the orbit of a known planet or determining the
location of an unseen one. This calculation is done by first
measuring the distance from the star to the center of the gap,
ao¢ and then finding the gap width in units of the observed
star-gap separation. Then Equations (6) through (9) can be used
to obtain the planet’s mass. The theoretical location of the gap,
a¢, (i.e., the nominal resonant location) can then be found
through the following equations:

(A) Interior Resonance with e=0.0:

a M a0.003 0.002 , 11o ( )¢ = - + + ¢

(B) Interior Resonance with e=0.0489:

a M a0.002 0.015 , 12o ( )¢ = - - + ¢

(C) Exterior Resonance with e=0.0:

a M a0.004 0.001 , 13o ( )¢ = - + ¢

(D) Exterior Resonance with e=0.0489:

a M a0.001 0.002 , 14o ( )¢ = - + ¢

where M and a¢ have units of Jupiter mass (MJ) and ao¢,
respectively. Finally, the semimajor axis of the planet can be
calculated using Equation (2). Equations (11) through (14)
were obtained by subtracting the observed gap location from its
theoretical location in our simulations. This is shown by Figure
10 which can be used to obtain the theoretical MMR gap
location from which the planet’s semimajor axis is found.

5.6. The Effect of Planet’s Orbital Eccentricity and Lindblad
Resonances

When the planet is given a small but non-zero eccentricity,
the 2:1 MMR properties remain largely unaffected. However,

Figure 9. Effect of planet’s mass and eccentricity on the resonant location for interior (top) and exterior (bottom) resonances. The red squares and the green diamonds
show the theoretical gap locations for cases with e=0.0 and e=0.0489, respectively while the dotted lines show the locations of the observed gaps.
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tightly wound spiral waves originating from the 3:1 MMR
appear in some cases. These features are potentially valuable
sources of information about the disk’s properties, but are far
more challenging to detect in real telescopic images than the
gaps associated with the MMRs that we have been discussing
so far. In fact, they often appear at scales below those shown in
the previous figures, their primary visible tracer being a narrow
arc-like gap at the 3:1 interior or exterior resonance.

We interpret these features as forced eccentricity waves
originating at Lindblad resonances (Shu 1984). These waves
are similar to those seen in Saturn’s rings (e.g., Holberg
et al. 1982; Lane et al. 1982) and have the characteristic
decrease in wavelength as one moves away from the resonance
(Murray & Dermott 1999). This is illustrated by Figure 11
which shows a series of density waves originating from the 3:1
resonance.

These waves are seen to be produced primarily at the 3:1
MMR for both internal and external planetary perturbers and
are likely the reason we see an extra feature at the 3:1
resonance with the planet whenever the planet is given non-
zero eccentricity in our simulations (see Figures 4 and 6).
These coincide with the location of the m=2, k=±1, p=0
inner/outer Lindblad resonances, which are associated with

similar waves in Saturn’s rings. Though such structures are a
rich source of information about the planet and the disk itself,
the propagation of waves in real systems depends on effects
such as self-gravity and collisions (Fridman Gorkavyl 1999)
which are not modeled here, and we will leave their
examination for future work.
Although the 3:1 MMR gaps are narrower and more difficult

to measure than the 2:1 gaps, if they can be detected, their
relative location with respect to that of the 2:1 resonance can be
used to also distinguish interior from exterior resonances as the
3:1 resonance gap is formed farther from the planet than the
2:1. We will leave detailed examination of resonant interaction
between disk particles and higher eccentricity planets to a
follow-up paper.

5.7. Disk Optical Depth and Gap Contrast

Though the gap widths can easily be measured in
simulations, this may prove more difficult observationally. In
particular, the optical depth in the gap versus the disk as a
whole will determine the amount of contrast in the image.
Figure 12 shows the ratio of the average disk surface density to
that at the deepest part of the 2:1 MMR gap (the “contrast”), as
a function of planet mass. Note that the contrast we refer to

Figure 10. Shift in the gap location vs. the planet’s mass for interior (top) and exterior (bottom) resonances for two different planet eccentricities. The symbols used
are the same as those in Figure 9. a¢ and ao¢ are the theoretical and observed location of the gap, respectively.
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here is the contrast in planetesimal surface density, not dust
surface density, because we are considering dust-poor systems.
Because of the difficulty of defining the edges of the gaps, we
do not try to define an edge-to-center contrast. Though higher
mass planets form larger gaps, the contrast is somewhat
diminished by particles “bleeding” in from the edges of the
gaps. There is a trend for the contrast to increase with mass for
a planet that is interior to the disk (Figure 12, bottom panel) but
there is little effect for an external perturber (Figure 12, top
panel). Thus the gap contrast itself can provide a measure of the
planet mass in some cases, though this approach is observa-
tionally more difficult. Nonetheless, the contrast remains at
large values through the range of planet masses considered
here, indicating that the MMR features discussed here should
be detectable if the disks themselves are.

We note from our results that the contrast grows almost
linearly with planet mass, except for exterior resonance with a

planet on a circular orbit in which case there seems to be an
exponential trend. However, we feel it is unwarranted to fit an
exponential to this case for two reasons: First, the appearance
of exponential growth is only present for one of the four cases
(exterior resonance with a planet having e= 0) and rests on
only the two rightmost points. Moreover, those two points are
near the largest masses beyond which the gaps disappear due to
heavy erosion of the disk edge; and so the graphs should not be
extrapolated beyond the presented maximum value.
Simulated observations of the disks shown earlier in

Figures 3(a) and 5(a), are illustrated in Figures 13 and 14
assuming an inverse-square dependence of particle emission on
distance from the central star. It must be noted again that in this
study, we assume that disks are optically thin and are largely
free of collisionally produced or other sources of dust. These
simple figures are free of additional noise that would certainly
be present in real observations. The pixel size is chosen to

Figure 11. Spiral patterns appear commonly in our simulations when the perturbing planet has non-zero orbital eccentricity. These are likely forced eccentricity waves
originating at Lindblad resonances. Our simulations indicate that these waves are generated at a location corresponding to the the 3:1 MMR with the planet, marked by
a diamond on this figure.
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match ALMA’s highest resolution at 1 mm wavelengths
(15 mas for the 16 km configuration) at the distance of HLTau
(140 pc) if the disk’s outer radius is 100 AU. Since the MMR
gaps can still be seen in these images, we conclude that the
MMR features described here are nominally within the reach of
current observational facilities.

6. SUMMARY AND CONCLUSIONS

We investigated the dynamical effects of a planet on a
planetesimal disk through MMRs for both interior and exterior
resonances. Our purpose is to use the observed properties of
MMR structures to characterize the planet producing them,
even if that planet remains as-yet undetected.

Structures arising from MMRs can be highly diagnostic of
the properties of the planet disturbing the disk particles. MMR
gaps become wider as the planet’s mass increases; there is a
linear relationship between the gap width and the perturbing
planet’s mass that agreed well with theoretical calculations.
Therefore, measurement of the width of a 2:1 MMR gap would
help determine the perturbing planet’s mass, even if it remains
unseen. We find gaps at the 2:1 and 3:2 MMRs even for a
planet as small as M1.0 Å, although their small widths make

them observationally more challenging to detect than those at
Jupiter masses. On the other hand, at planet masses beyond
6−7MJ, the resonance structures are destroyed as the disk is
eroded by the planet’s growing Hill Sphere.
We found an offset in the gap’s position in the disk from the

nominal resonant location with more massive planets causing a
larger shift in the observed location of the gap. Thus if the
planet’s location is already known, the shift from the theoretical
location of the 2:1 MMR gap can be used to confirm the
planet’s mass, which can alternatively be calculated using the
gap width. On the other hand, for cases in which the planet
remains undetected, we proposed a set of equations that take
the planet’s mass, calculated using the gap width, to determine
the planet’s location based on that of the observed 2:1 gap.
We further extended our studies to simulations of systems in

which the perturbing planet has non-zero orbital eccentricity. In
this case, disk structures due to MMRs become more
complicated and the 2:1 MMR gaps formed by an internal
perturber become more annular in shape. Moreover, an extra
arc-like feature was seen at the 3:1 MMR with the planet when
the planet’s eccentricity was increased and is associated with
spiral waves generated at Lindblad resonances. Thus the
appearance of an arc-shaped gap at the 3:1 resonance with the

Figure 12. MMR gap contrast vs. planet’s mass (in Jupiter mass) for interior (top) and exterior (bottom) resonances.
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planet is indicative of the planet having non-zero eccentricity.
If detected, it could also be used to distinguish interior from
exterior resonance. This would be helpful, particularly for the
case of exterior resonance with a non-zero eccentricity planet
for which we found the 2:1 gaps to be azimuthally symmetric.
We obtained nearly perfect agreement between the 2:1 gap
widths measured analytically and through our simulations for a
planet exterior to the disk with 0 or 0.0489 orbital eccentricity.
On the other hand, the difference between the two measure-
ments seems to grow with mass for a planet on a circular orbit
interior to the disk while a systematic shift is seen when the
planet’s eccentricity is increased to that of Jupiter’s in this case.
All the simulations we report on here were performed for flat

disks with the perturbing planet in the same orbital plane, but
we found no significant difference in our results when the
planet, and thus the particles, were given a small orbital
inclination.
The results of our simulations indicate that the shapes of the

gaps opened by the 2:1 MMRs are different for interior versus
exterior resonances, with the former making two sectors at the
planet’s (inferior) conjunction and opposition while the latter
forms a single arc at (superior) conjunction. Since direct
detection of extrasolar planets still remains observationally
challenging, detection of such structures in a planetesimal disk
allows one to not only infer the presence of an unseen planet,
the two distinct gap shapes would also make it possible to
easily determine the relative location of the planet with respect
to the disk and to distinguish MMR gaps from azimuthally
symmetric gaps formed by a planet that is embedded in the
disk. As ALMA and other facilities continue to advance the
frontiers of extrasolar planetary science, the ability to detect
and characterize unseen planets based on their effects on a
more-easily observable disk will become an increasingly
powerful tool.

The authors wish to thank the anonymous referee for
valuable comments. This work was supported in part by the
Natural Sciences and Engineering Research Council of Canada
(NSERC).
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