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ABSTRACT
The logarithmic potential is of great interest and relevance in the study of the dynamics
of galaxies. Some small corrections to the work of Contopoulos & Seimenis who used the
method of Prendergast to find periodic orbits and bifurcations within such a potential are
presented. The solution of the orbital radial equation for the purely radial logarithmic potential
is then considered using the precessing ellipse (p-ellipse) method pioneered by Struck. This
differential orbital equation is a special case of the generalized Burgers equation. The apsidal
angle is also determined, both numerically and analytically by means of the Lambert W and the
polylogarithmic functions. The use of these functions in computing the gravitational lensing
produced by logarithmic potentials is discussed.
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1 I N T RO D U C T I O N

The logarithmic potential is of great interest in connection with
the study of the dynamics of elliptical galaxies and galactic haloes.
Introduced by Richstone (1980) to model stellar systems with con-
centric axisymmetric oblate spheroidal potential surfaces, it is one
of the few axisymmetric galactic potentials with an equally simple
mass distribution function. As a result, it has been studied exten-
sively (e.g. Binney & Spergel 1982; Binney & Tremaine 1987).

Richstone (1982) did an extensive survey of orbits within scale-
free logarithmic potentials (i.e. with zero core radii). The effect of
the core radius and the presence or absence of a central mass has
been examined by Gerhard & Binney (1985), Pfenniger & de Zeeuw
(1989) and Miralda-Escude & Schwarzschild (1989). Evans (1993)
examined the axisymmetric case of galaxies embedded in extended
dark matter haloes. Lees & Schwarzschild (1992) examined triax-
ial halo models. Karanis & Caranicolas (2001) examined how the
core radius and the angular momentum are related to transitions
from regular motion to chaos in logarithmic potentials. Touma &
Tremaine (1997) developed a symplectic map to study the dynam-
ics of orbits in non-spherical potentials, with particular emphasis
on the logarithmic potential. Periodic orbits in triaxial logarithmic
potentials have been examined analytically (Belmonte, Boccaletti
& Pucacco 2007; Pucacco, Boccaletti & Belmonte 2008) and nu-
merically (Magnenat 1982).

Beyond galactic dynamics, the potential also has applications to
the problem of gravitational lensing. Beyond astrophysics, appli-

�E-mail: valluri@uwo.ca

cations of the logarithmic potential occur in the solution of pla-
nar boundary value problems in potential theory (Evans 1927) and
boundary value problems in analytic function theory. In elementary
particle physics, Quigg & Rosner (1977) use the logarithmic poten-
tial to show that the quarkonium level spacings are independent of
quark mass, in the non-relativistic limit. In this paper, the analysis of
(Contopoulos & Seimenis 1990, hereafter CS) is re-examined. CS
applied the analytical techniques of Prendergast (1982) to find ap-
proximate solutions to the equations of motion for particles moving
within a logarithmic potential. The Prendergast method was intro-
duced to approximate some complex differential equations, such as
the Duffing equation, and new applications for this method are still
being found today. We then elaborate on the work of CS, turning our
attention to the radial orbital equation, using the non-linear Burgers
equation to determine an approximate analytic solution from which
the apsidal angle is determined. It is also determined by finding the
roots of the Lambert W and the polylogarithmic functions.

In Sections 2 and 3, the Prendergast method is revisited. We per-
formed a thorough study of the pioneering work of CS and present
a slight elaboration as well as a few minor corrections to their
equations. In Section 4, we briefly study Struck’s (2006) precessing
ellipse (p-ellipse), introduced in his fine work on precessing orbits
in a variety of power-law potentials, some shallower than the 1/r
Keplerian one. These potentials include the logarithmic potential of
zero as well as non-zero core softening length. We present an inte-
grable equation that provides us with values for the apsidal angles
of the orbits considered. In Section 5, we discuss the deflection of
light in a logarithmic potential and gravitational lensing. Finally,
Section 6 summarizes our conclusions and any further work to be
considered.
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2 U N P E RT U R B E D S O L U T I O N S

Here we begin by re-establishing the results of CS with some minor
corrections, before going on to use these solutions in subsequent
sections. Where alterations to their values are given, they are indi-
cated by asterisks.

Following the notation of CS, our expression for the logarithmic
potential is

V (x, y) = ln

(
x2 + y2

U 2
+ C2

)
, (1)

where C is the core radius and U describes the ellipticity of the
potential. Though of mathematical interest over a wider range of
parameters, models with U > 1.08 or U < 1/

√
2 = 0.707 are

unphysical in that they require negative mass densities (Evans 1993).
As a result, only values of 0.707 < U < 1.08 are of interest to galactic
dynamics. The CS method begins by finding a solution for arbitrary
values of U in the one-dimensional case (y ≡ ẏ ≡ 0), and adding
the motion in the second dimension as a perturbation.

By finding the derivative of equation (1) and introducing it in the
relevant second-order orbital differential equation, it is possible to
develop two equations of motion – one for the x component and the
other for the y component:

x ′′ + 2U 2x

U 2x2 + y2 + C2U 2
= 0 , (2)

y ′′ + 2y

U 2x2 + y2 + C2U 2
= 0 (∗), (3)

where the (∗) indicates the equation contains a correction to a typo
in CS’s original.

The subsequent solution is developed using the method of
Prendergast (1982). Developed for second-order non-linear ordi-
nary differential equations, Prendergast applied the technique to the
van der Pol oscillator and Duffing’s equation. CS applied it to the
orbital equation in the logarithmic potential.

The method begins by assuming a solution for x and y of the
following form:

x = N

D
, y = M

D
, (4)

where N, M and D are Fourier series of the form

N =
∑
k=odd

Nk cos(kωt),

D = 1 +
∑

l=even

Dl cos(lωt),
(5)

and which are truncated at an appropriate order. In the unperturbed
one-dimensional case, y = ẏ = 0 and M = 0.

In determining the solution for x, we substitute equations (4) into
equation (2), and solve for a new equation of motion,(
N ′′D2 − 2N ′D′D − ND′′D + 2ND′2)
× (

U 2N2 + M2 + C2U 2D2
) + 2U 2ND4 = 0.

(6)

A solution is essayed of the form

N = A cos(ωt), D = 1 + B cos(2ωt), (7)

with the constants A, B and ω to be determined, though we require
B �= 0 for a non-trivial rational approximation.

Finally, we substitute the proposed solutions (7) into equation (6)
and set equal to zero the coefficients of cos (ωt) and cos (3ωt). This

Table 1. A comparison of our results with those of Contopoulos & Seimenis
(1990). Where a corrected value appears, the original value appears in
brackets below it.

x0 A B ω

1 0.001 0.001 000 006 6.2497E−6 14.142
2 0.01 0.010 006 216 94 0.000 621 693 5078 14.089
3 0.02 0.020 048 955 06 0.002 447 752 803 13.935
4 0.03 0.030 160 977 74 0.005 365 924 678 13.689
5 0.04 0.040 368 177 27 0.009 204 431 71 13.368
6 0.05 0.05068761968 0.01375239358 12.989
7 0.06 0.061 127 008 08 0.018 783 468 08 12.569
8 0.07 0.071 685 497 91 0.024 078 541 58* 12.125

(0.024 074)
9 0.08 0.082 355 498 42 0.029 443 73* 11.668

(0.029 436)
10 0.09 0.093 124 932 32* 0.034 721 47* 11.211

(0.093 124) (0.034 708)
11 0.1 0.103 979 4453* 0.039 794 453* 10.761

(0.103 977) (0.039 775)
12 0.125 0.131 392 83* 0.051 142 64* 9.696

(0.131 388) (0.051 102)
13 0.15 0.159 049 8684* 0.060 332 456* 8.747

(0.159 040) (0.060 266)
14 0.175 0.186 818 5967* 0.067 534 838* 7.921

(0.186 803) (0.067 443)
15 0.2 0.214 624 6114* 0.073 123 057* 7.210*

(0.214 602) (0.073 008) (7.209)
16 0.225 0.242 430 1778* 0.077 467 457* 6.597

(0.242 400) (0.077 332)
17 0.25 0.270 217 96* 0.080 871 84* 6.068

(0.270 180) (0.080 719)

gives us two equations:

ω2k1 + 0.75B4 + 3B3 + 6B2 + 4B + 2 = 0 ,

ω2k2 + 0.5B4 + 3B3 + 3B2 + 4B = 0 , (∗)
(8)

where k1 and k2 are as given below:

k1 = 3.5625A2B2 + 7B2C2 + 2.125C2B4

− 2BC2 + 3.5C2B3 − 0.75A2 − C2,
(9)

k2 = 0.1875A2B2 + 1.25A2B − 0.25A2

+ 6.5C2B3 − 3.5B2C2 + 2BC2 + 0.25C2B4. (∗)
(10)

The third equation needed to determine A, B and ω is given by the
initial condition

(1 + B)x0 − A = 0 , (11)

where x0 ≡ x(t = 0).
We now solve these equations for A, B and ω with the given values

of x0. The solutions, as well as all mathematical manipulations pre-
sented in this paper, unless otherwise mentioned, were determined
using the software package MAPLE 15. The solutions have ω2 > 0
and are presented in Table 1.

We note that for motion solely in the x-direction the value of U
is irrelevant, and it appears neither in equation (8) nor in the initial
conditions.

An example of an unperturbed solution is shown in Fig. 1 with
values corresponding to line 17 in Table 1.
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Figure 1. A typical solution showing x versus time for the unperturbed
solution based on the values of line 17 in Table 1. The solid line is the
numerical solution from MAPLE 15, the dotted line is our approximation and
the dashed line is the difference between the two.

3 P E RT U R B E D S O L U T I O N S

Purely radial orbits such as those of Section 2 are unlikely in prac-
tice. Here the search is for solutions to the motion where the y
component of the motion is close to the unperturbed motion dis-
cussed previously. In this case, M is no longer identically zero and
we look for solutions of the form

M = M0 + δM, D = D0 + δD, N = N0 + δN, (12)

where the subscript 0 indicates the unperturbed solution. The next
step is to solve the differential equation, introduced as equation (8)
in CS,(

U 2N2D2 + C2U 2D4
)
δM ′′

− (
2U 2N2DD′ + 2C2U 2D3D′) δM ′

+ (
2U 2N2D′2 − U 2N2DD′′ − C2U 2D3D′′

+ 2C2U 2D2D′2 + 2D4
)
δM = 0.

(13)

The proposed solutions from equation (5) are substituted into equa-
tion (13) and solutions of the form

δM =
∞∑

k=−∞
Ck cos ((ν + k) ωt) (14)

are searched for, where ν is a constant. CS determined from Flo-
quet’s (1883) work that values outside the range 0 ≤ ν ≤ 1/2 are
unstable, and thus ν(x0) = 0 and ν(x0) = 1/2 bracket the stable
region. They found no solution in the case of ν = 0, but solutions
do exist for the case ν = 1/2, discussed below.

In order to get a finite number of non-trivial solutions, equa-
tion (14) must be truncated after a finite number of terms. Following
CS we consider

δM =
2∑

k=−3

Ck cos

((
k + 1

2

)
ωt

)
, (15)

which leaves us with six values of Ck to be determined.

The main goal here is to solve for the six constants Ck. In order
to do this, we substitute equation (15) and its derivatives into equa-
tion (13), as well as the corresponding substitutions for N and D.
From this point onwards, we diverge from the treatment of CS, as
here we have used different methods to find this equation’s solu-
tions. Here we have used MAPLE 15 and MATHEMATICA 8 as the tools
for equation solving.

(1) Using MAPLE’s COMBINE function, equation (13) was solved
for one value of Ck. The solution revealed many cosine terms with
different frequencies, and some terms that were totally independent
of the cosine.

(2) The three lowest frequencies of cosine (including the inde-
pendent terms when present) were factored out of each individual
Ck term. The terms relating to a single frequency were collected,
yielding three separate equations. The cosine was then factored out,
and the remainder of the equations set equal to zero.

(3) Steps (1) and (2) were repeated for each individual term of
Ck. The result was 18 equations where there were three equations
for each Ck (each of the three equations representing a different
frequency of cosine). Using these equations, a 6 × 6 matrix results,
where rows 1, 3 and 5 represent equations with k values of −3, −1,
1 and rows 2, 4 and 6 represent equations with k values of −2, 0, 2,
respectively:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 0 S13 0 S15 0

0 S22 0 S24 0 S26

S31 0 S33 0 S35 0

0 S42 0 S44 0 S46

S51 0 S53 0 S55 0

0 S62 0 S64 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

In other words, the columns are in increasing order from −3 to 2,
which demonstrates which equations contain which k values.

We now solved the equations in sets of three for the values of Ck.
In essence, we constructed equations from the matrix (e.g. S11 +
S13 + S15 = 0 and so forth down the rows). Rows 1, 3 and 5 were
used to solve for C−3, C−1 and C1. Similarly, rows 2, 4 and 6 were
used to solve for C−2, C0 and C2. The two homogeneous sets of
three equations were transformed to two non-homogeneous systems
of order 2 with C−1 and C0 set equal to unity for mathematical
convenience.

Once all six coefficients were determined, the values for x(t) and
y(t) could be determined for specific sets of values of A, B and ω

from Table 1. We then use the relations u = 1
r

and r =
√

x2 + y2

to solve for u.
Fig. 2 shows two examples of a perturbed solution. In the left-

hand panel, a parametric plot in t of x versus y for parameters U =
2/3, C = 0.1, and other values corresponding to line 1 in Table 1
are shown. Here the initial value of y is taken to be 10−4 to justify
our assumption that it is small. The two solutions are so similar that
the graphs overplot each other and cannot be distinguished. The
right-hand panel shows a much larger orbit based on the parameters
in line 17 of Table 1. Here the Prendergast solution does not contain
enough frequency information to completely reproduce the box
orbit but captures some of the character of the true solution, such as
the x and y amplitudes and period.
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The logarithmic potential 2395

Figure 2. Two solutions showing x and y as a parametric curve in t. The left-hand panel shows the Prendergast and real solutions based on the values of
line 1 in Table 1. The two solutions are plotted on top of each other at this resolution and cannot be distinguished. The right-hand panel shows a larger orbit,
corresponding to the values of line 17 in Table 1. The solid curve is the numerical solution from MAPLE 15 over four cycles and the dotted line is the Prendergast
approximation.

4 THE APSIDAL ANGLE AND P-ELLIPSE
O R B I T S

In this section, we turn our interest to the approximate solution of
the radial orbital differential equation. We are primarily interested
in the precession of the apsidal angle, and so we will consider the
problem now in terms of the anomaly θ rather than the time t. If one
wishes to determine the relationship between these two variables, a
Kepler-like equation would need to be solved.

CS considered the x and y equations of motion, but here we
consider u = 1/

√
x2 + y2 = 1/r with an eye to later using this

result to determine the apsidal angle for the purely radial logarithmic
potential. In this case, we examine the case where U ≈ 1 and C �
1. We start with the radial orbital differential equation, which is of
the form

d2u

dθ2
+ u = − 1

h2u2
f

(
1

u

)
, (17)

where h is the angular momentum. We note that the force function
f ( 1

u
) is equal to −dV/dr, which can be obtained by differentiating

equation (1).
The Prendergast method works very well for the solutions of the

logarithmic potentials from equation (1) indicated in Section 2 for
the x and y equations of motion and further elaborated in Section 3.
However, the method does not seem to be well suited for purely
radial logarithmic potentials with different initial conditions, and
the solution does not agree with that obtained by pure numerical
integration of the orbital differential equation. The p-ellipse approx-
imate solutions of the orbital equation, pioneered by Struck (2006),
are a much better way of not only deriving an accurate approximate
solution of order e2 (where e is the orbital eccentricity), but also
obtaining the values for the apsidal precession to a high accuracy.
We present a detailed analysis of the orbital equation for the ra-
dial logarithmic potential with or without the inclusion of the core
scalelength. In our analysis, the factor 0 ≤ C ≤ 1 gives a measure
of the core scalelength (Struck 2006).

For the case of large orbits, or negligible core size softening
length, the equation of motion is given by

uu′′ + u2 = c , (18)

where the parameter c, in the notation of Struck, depends both on
the constant scale mass M∗ and on the core scalelength ε of the
potential, the gravitational constant G and the angular momentum
h. The above equation is similar to equation (17), and of the form

u′′ + u = c

u
. (19)

Struck suggested an approximate solution of equation (19):

u = 1

p
{1 + e cos [(1 − b) φ]}1/2 , (20)

where p = a(1 − e2) is the semilatus rectum (a being the semi-
major axis) (e.g. Murray & Dermott 1999; Valluri et al. 2005), e
is the orbital eccentricity and (1 − b) is the factor associated with
the precession rate. Henceforth, for convenience, we set k = 1 −
b in our analysis, and we will use θ instead of φ as was used by
Struck.

Struck finds that orbits obtained from a numerical integration of
the above differential equation look like p-ellipses and considers
the approximate solution given in equation (20).

Substituting the solution of equation (20) into the differential
equation, we find

− k2

2p2

[
− e2 − 1

2 (1 + e cos kθ )
+ 1 + e cos kθ

2

]
+ 1 + e cos kθ

2p2
= c,

(21)

∴ uu′′ + u2 = k2

2p2

1 − e2 + 1
p2

(
1 − k2

4

)
(1 + e cos kθ )

2(1 + e cos kθ )
= c .

(22)
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The left-hand side of equation (22) simplifies to

uu′′ + u2 = − 1

2p2
(1 + e cos kθ ) + 1

p2
(1 + e cos kθ )

+ 1

2p2

(
1 − e2

) 1

1 + e cos kθ
= c ,

(23)

where c1 = 1
2p2 + 1

2p2 = 1
p2 and k2 = (1 − b1)2 = 2 are the first

approximations to c and k, respectively (Struck 2006). In a more
accurate approximation of order e2, we find that the constant terms
reduce to

k2

4p2

(
1 − e2

) − k2

4p2
+ 1

p2
= c . (24)

Next, comparing the terms involving cos kθ , we find that the
coefficient of cos kθ is given by

− k2

4p2
e
(
1 − e2

) − k2e

4p2
+ e

p2
= 0 . (25)

On simplification, one obtains

k2 = 2

1 − 1
2 e

= 2

(
1 + e

2
+ e2

4

)
. (26)

For e = 0, k2 = 2 in accordance with Struck (2006).
In the case of non-negligible core size, one has a similar though

modified differential equation of the form(
uu′′ + u2

) (
1 + u2

) = c . (27)

The solution given in equation (20) upon substitution into the above
differential equation leads to the expression[

− k2

4p2
(1 + e cos kθ ) + 1 + e cos kθ

p2
+ k2

4p2

(
1 − e2

)
1 + e cos kθ

]

×
(

1 + 1 + e cos kθ

p2

)
= c (28)

which, upon comparison of terms independent of cos kθ , simplifies
to

1

p2

(
1 − k2e2

4

)(
1 + 1

p2

)
+ k2

4p2

(
1 − e2

)(
1 + 1

p2

)(
−e2

2

)

+ k2

4p2

(
1 − e2

)(− e2

2p2

)
= c . (29)

Comparing the coefficients of cos kθ , we get the more general
dependence of k2:

k2 = 2

⎛
⎝1 +

e2

2 + 1
p2

1 + 1
p2 − e2

2

⎞
⎠ . (30)

If the terms of order e2 are ignored,

k2 = 1 − b1 = 2

(
1 + 2

p2

1 + 1
p2

)
, (31)

where b1 is the first approximation of the precession factor.
Furthermore, of order e4

c = 1

p2

(
1 + 1

p2

)
− k2e2

4p2

(
3

2
+ 1

p2
+ 2

p2

)

+ k2e4

8p2

(
1 + 2

p2

)
(32)

in agreement with Struck.

It is interesting to note that the orbital differential equation asso-
ciated with apsidal precession is a special case of the generalized
Burgers partial differential equations (GBEs) and seems to charac-
terize these equations similar to the way Painleve equations repre-
sent the Korteweg–de Vries type of equations (Sachdev 1991). This
variety of equations can be expressed as equations (33) and (34),
where f (x) and g(x) are sufficiently smooth arbitrary functions, a, e
and c are real constants, and the solutions of y are Euler–Painleve
transcendents (Kamke 1943):

yy ′′ + ay ′2 + f (x)yy ′ + g(x)y2 + ey ′ + c = 0 . (33)

In the case where f (x) and g(x) are constants, we have the Euler–
Painleve equation

yy ′′ + ay ′2 + byy ′ + cy2 + dy1−α = 0 . (34)

For α = 1, b = 0, the substitution y = u1/2 leads to the differential
equation

−1

4

u′2

u
+ 1

2
u′′ + cu + d + a

4

u′2

u
= 0 . (35)

For a = 1 the u′2
4u

terms cancel, and the following equation results:

1

2
u′′ + cu + d = 0 . (36)

It is important to observe that the orbital differential equation
does not have the ay′2 term in contrast to the GBEs. This term
contains terms of order e2 and the correction does not turn out to be
significant. Hence, the p-ellipse is a natural approximate solution
of the GBEs and is an Euler–Painleve transcendant (Kamke 1943).

As a rough estimate of the mean error in neglecting the u′2
4u

term,
we evaluate the following integrals that occur in the evaluation of
this term:

−2k2e2

16p

1

e2

[∫ π

0
(1 + e cos kθ )

1
2 dθ −

∫ π

0
(1 + e cos kθ )−

1
2 dθ

]
.

(37)

Substituting kθ = x we have

I1 =
[

1

π

1

k

∫ kπ

0
(1 + e cos x)

1
2 dx

]

=
[

1 + 1

2
e

sin kπ

kπ
− 1

8kπ
e2

(
kπ

2
+ sin 2kπ

4

)
+ · · ·

] (38)

and

I2 = 1

π

1

k

∫ kπ

0

dx

(1 + e cos x)
1
2

=
[

1 − 1

2
e

sin kπ

kπ
+ 3

16
e2 + 3

16
e2 sin 2kπ

2kπ
+ · · ·

]
.

(39)

Hence, we obtain for the difference of the two integrals,

I1 − I2 ≈
[
e

sin kπ

kπ
− e2

4
− 2e2

16

sin 2kπ

kπ
+ · · ·

]
. (40)

An approximate mean error (ME) due to the presence of the term
u′2
4u

is

ME =
∣∣∣∣− 2k2

16π

1

p

[
−0.9e

kπ
− e2

4
+ e2

16
+ · · ·

]∣∣∣∣ . (41)

Recalling p = a(1 − e2) and taking k ≈ 1.45 and e ∼ 0.9, we have

ME = 2.9

16π

1

0.19a

∣∣∣∣−0.81

4
− 2.43

16

∣∣∣∣ . (42)

We find that ME is ∼1 per cent for a = 1, e = 0.3 (k = 1.79); ME
increases with higher e and decreases with larger a.
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Table 2. Some values of the apsidal angle from the p-
ellipse prescription (C = 0) with varying eccentricity.

a e k θ (rad)

0.75 0.1 1.813 63 1.732 22
0.75 0.5 1.875 98 1.674 64
0.75 0.9 1.990 02 1.578 67

1 0.1 1.734 95 1.810 77
1 0.5 1.811 08 1.734 65
1 0.9 1.982 50 1.584 66

1.5 0.1 1.623 62 1.934 93
1.5 0.5 1.788 58 1.756 47
1.5 0.9 2.172 05 1.446 37
6 0.1 1.437 15 2.185 99
6 0.5 1.535 20 2.046 37
6 0.9 1.984 41 1.583 14

Interestingly, when kθ = π or kθ = 0,

u′2

4u
= 0 , (43)

showing that this correction term does not contribute to these angles,
as shown below:

−(1 − e2)

(1 − e) (1 − e)
1
2

+ 1 + e

(1 − e)
1
2

= −(1 − e2) + (1 + e2)

= 0 .
(44)

Next, we calculate the apsidal angle for the orbits in a logarithmic
potential. The apsidal angle is the angle at the force centre between
the smallest and largest apses, that is, between the pericentre and
apocentre. Hence, the behaviour of the logarithmic potential is simi-
lar to that of the n > 2 power-law potentials. Thus, there will always
be a single minimum regardless of the value of the constant c. As
c increases, the location of the minimum simply shifts to larger x
values.

Only bound orbits are possible for this potential. As x → ∞, V(x)
also approaches infinity due to the ln (x) term, so there is always an
inner and an outer turning point no matter how large the total energy
of the system is. Stable circular orbits are possible at the minimum
of the effective potential.

The approximate p-ellipse orbits are, on first appearance, only
good to first order in e. However, Struck, in his thorough analysis,
has shown that the orbital fits are excellent over several orbital
periods. In fact, the value of k = 1 − b which more accurately
depends on e is still fairly close to the more exact value, as partly
due to the slow variation of c with e. The apsidal angle has been
calculated for various values of e and is shown in Table 2.

We now calculate the apsidal angle by using the Lambert W
function, a function that is creating a renaissance in solving many
interesting problems involving roots and limits of integration, as
well as others.

We begin by defining the energy E of an orbit through the sum-
mation of its kinetic and potential energies:

E = 1

2

[(
dr

dt

)2

+ r2

(
dθ

dt

)2
]

+ V (r) , (45)

where r2 dθ
dt

= h is the angular momentum, and dr
dθ

can be broken
into dr

du
du
dθ

.
Our main goal is to solve for du

dθ
as this will provide us with an

integrable function from which we can ultimately obtain a value
for θ .

Working in the regime where C � 1 and U ≈ 1, V(r) can be
simplified further and we obtain the following:

dθ

du
= h√

2E + 2 ln u2 − u2A
, (46)

where A = h2 + 2C2 and E = 0.5 + ln rc, where rc is the radius
of the circular orbit. The value of uc = 1/rc is taken here at values
between 1 and 1.8, examining a range around the nominal value
(E ≈ 0, h = e−1/2) of uc = e1/2 ≈ 1.648.

Where dθ /du passes from positive to negative reveals the location
of the apses; thus, the limits of integration of equation (19) are its
corresponding roots. We can solve for these roots by setting the
denominator equal to zero, and manipulating it so that it can become
solvable using the Lambert W function (Valluri, Jeffrey & Corless
2000). We start by reworking the denominator into the following
form:

ln u2 − u2

2
A = −E . (47)

The roots are given by the expression

u =
√

−2Wj (−A
2 e−E)

A
, (48)

where Wj represents the Lambert W function and j represents the
chosen branch. We solve for the two roots by using the −1 and the
zero branches.

Having the apocentre rM and pericentre rm distances in hand
allows a determination of the orbit eccentricity through

rM

rm

= 1 + e

1 − e
. (49)

We note that solutions with imaginary eccentricity, which have
two complex solutions that are conjugates of each other, would be
manifested by a plunging of the orbit into the force centre (Hagihara
1931; Chandrasekhar 1983).

Integrating equation (46) with the two roots as end-points of the
integral yields an answer that represents the apsidal angle for the
particular orbit with a specific value of uc.

Fig. 3 shows the apsidal angle calculated by this method, for
different values of C, E and h.

Table 3 shows how values of uc ranging from 1 to 1.8 yield similar
apsidal angles with values near 2π

3 . For comparison, Touma &
Tremaine (1997) use the epicyclic approximation for near-circular
orbits to determine that their g(α, y) (which is twice the apsidal
angle as defined here) equals 2π/

√
2 = 4.444 28 = 2 × 2.221 44, a

value close to the one arrived at here. However, a comparison with
the numerically derived result, also listed in Table 3, shows that the
method proposed here is much more accurate: the two differ only in
the fifth decimal place. As a comparison, we also show the apsidal
angle for various values of small e using the p-ellipse approximation
in the column labelled ‘Numerical’.

From equation (26), we have

k =
√

2
(

1 − e

2

)−1/2
∼

√
2
(

1 + e

4
+ · · ·

)
. (50)

The apsidal angle is given by

π

k
= π√

2

(
1 − e

2

)1/2
∼ π√

2

(
1 − e

4
− 1

32
e2 + · · ·

)
. (51)

It is of interest to note that the roots can be found without any
approximation for C in terms of the polylogarithmic function. For
arbitrary C, one obtains from equation (45) an exact expression

− 1

C2u2
(ln C2 − E) − 1

C2u2
ln

(
1 + 1

C2u2

)
= h2

2C2
(52)
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Figure 3. The apsidal angle in radians as a function of the core radius C and the energy E. Four different angular momenta are presented in different colours.
See text for more details.

Table 3. The apsidal angle as calculated for different
values of uc = 1/rc.

uc θ

Lambert W Numerical Difference
approximation

1.0 2.063 10 2.063 00 0.000 10
1.1 2.071 22 2.071 16 0.000 06
1.2 2.078 68 2.078 62 0.000 06
1.3 2.085 58 2.085 54 0.000 04
1.4 2.092 01 2.092 00 0.000 01
1.5 2.098 03 2.097 97 0.000 06
1.6 2.103 68 2.103 61 0.000 07
1.7 2.109 01 2.108 96 0.000 05
1.8 2.114 05 2.113 97 0.000 08

for finding the roots of u2. Now if we define k ≡ ln C2 − E and
x ≡ − 1

C2u2 , equation (52) reduces to

kx + x ln(1 − x) = h2

2C2
, (53)

k + ln(1 − x) = h2

2C2

1

x
, (54)

k − Li1(x) = h2

2C2

1

x
. (55)

Here equation (55) is the functional equation of the polylogarithmic
Li1(x) = −ln (1 − x) Lewin (1981) and

x = − 1

C2u2
= − r2

C2
. (56)

5 G R AV I TAT I O NA L L E N S I N G

The use of the Lambert W and the polylogarithmic functions to find
the roots of equations such as equations (47) and (53) may have
wider applicability. For example, we can use a similar approach
to compute the deflection of a light ray by a logarithmic poten-
tial, useful in the context of gravitational lensing (Zwicky 1937;
Cowling 1983; Schutz et al. 1990; Blundell et al. 2010) suggested
that extragalactic nebulae offer a much better chance than stars for
the observation of gravitational lens effects. Zwicky’s idea was that

some of the massive and more concentrated nebulae may be ex-
pected to deflect light by as much as half of an arcminute. Nebulae,
in contrast to stars, possess apparent dimensions which are resolv-
able to very great distances. Zwicky was following up on the work
of Einstein (1936) on stars acting as a gravitational lens. According
to Zwicky, observations on the deflection of light around nebu-
lae may provide the most direct determination of nebular masses
(Smith 1936). Zwicky (1937) estimated the probability of detecting
nebular galaxies which act as gravitational lenses and pointed out
the possibility of ring-shaped images, flux amplification and un-
derstanding the large-scale structure of the Universe. The lensing
equation can be generalized to three dimensions and cosmological
distances by correction of the redshift-related distance (Schneider,
Ehlers & Falco 1992).

For arbitrary K one has the following expression to determine the
roots in the case of light deflection for a logarithmic potential:

V (r) = K ln
(
r2 + C2

)
, (57)

where K is a dimensionless constant and r = 1
u

.
For light deflection in the logarithmic potential considered, the

differential equation for the given logarithmic potential is of the
form

d2u

dθ2
+ u = K

(
C2u

1 + C2u2
− 1

u

)
= −K

u(1 + C2u2)
. (58)

The differential equation for small values of C � 1 reduces to

∴ d2u

dθ2
+ u − KC2u = −K

u
. (59)

In the relativistic formulation (Hartle 2003), the differential equa-
tion for light deflection is(

dθ

du

)2

= 1
1
b2 − u2 + 2Mu3

, (60)

∴ u′′ + u = 3Mu2 , (61)

where b is the impact parameter.
Assuming the photon is a non-relativistic particle that travels at

speed c and it is far from all sources of gravitational attraction
(Hartle 2003), we can determine the light deflection �θ produced
by a logarithmic potential as

�θ = 2
∫ u1

0

du√
1 − u2 + K ln

(
1
u2 + C2

) . (62)
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Table 4. The deflection angle �θ (in arcseconds) as
a function of k and C.

K C �θ

1.0 0.004 44
10−8 0.5 0.007 03

0.0005 0.004 91

1.0 2256.33
0.005 0.5 2861.51

0.0005 3202.15

1.0 69 637.4
0.25 0.5 95 986.9

0.0005 109 909

1.0 104 102
0.5 0.5 150 674

0.0005 173 731

1.0 142 042
1 0.5 218 327

0.0005 251 802

1.0 178 640
2 0.5 292 967

0.0005 334 185

Figure 4. The deflection angle in arcseconds as a function of C and K. See
text for more details.

Solving for the roots of the denominator, one obtains

1 − u2 + K
[
ln
(
1 + C2u2

) − ln u2
] = 0 . (63)

Solving for K � 1 by using the Lambert W function, we get

u2 = 1(
1
K

− C2
)Wj

{(
1

K
− C2

)
e

1
K

}
, (64)

where j denotes the branch of the Lambert W function.
The deflection angle is related to the Einstein angle θE (Hartle

2003) which sets the characteristic angular scale for gravitational
lensing phenomena. Gravitational lensing can be used to detect mass
or energy in the Universe, whether visible or not. Table 4 shows the
deflection angle for a range of values of K and C. Small K values
produce small deflections, while smaller values of C produce larger
ones, though with a weaker dependence. Fig. 4 shows the variation
graphically.

Analogous calculations can be done for time-delay in light sig-
nals due to lensing galaxies Ohanian & Ruffini (1994). Intensity

fluctuations caused by lumpy dark matter may provide direct obser-
vational existence for it. It is worth noting that the entire analysis
can not only be done for the purely radial logarithmic potential, but
also for equation (1) of the logarithmic potential, by considering
the x and y components separately as was done for the gravitational
potential (Bourassa & Kantowski 1975).

6 C O N C L U S I O N S

We have revisited and expanded the work of CS on orbits within a
logarithmic potential. We did a comprehensive review of the Pren-
dergast method used by CS. We performed an analytic and numeri-
cal study of the constants C−3, C−2, C−1, C0, C1 and C2 via a matrix
which resulted in 18 equations for the six coefficients for the orbital
Fourier-type series solution for values of U ranging from 0.1 to 1
which gave the unperturbed as well as perturbed solutions with bet-
ter precision. The apsidal angle for the case of galactic orbits for a
planar scale-free spherical logarithmic potential was obtained from
the p-ellipse solution of the orbital differential equation and also the
Lambert W function. Both the Lambert W and the polylogarithmic
functions may have applications in problems involving exponential
and/or logarithmic potentials such as gravitational lensing.

The Prendergast method, although not used as widely as others,
has been quite useful in our analysis in Sections 2 and 3, and is likely
to prove useful in the study of many types of galactic potentials.

Gravitational lensing can be used to detect mass in the Universe,
whether dark or visible (Hartle 2003; Narlikar 2010). In general
relativity, all energy curves space–time, and a constant vacuum
energy produces a detectable curvature. Gravity may prove a useful
tool for detecting and studying dark energy. The lensing due to the
gravitational field of a black hole of background stars and galaxies
(Thorne 1994) can be significant and the effects of a logarithmic
potential warrant further study in this connection.
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APPENDIX A: PERTURBED EQUATIONS

The following are the expressions for the components of equa-
tion (16):

S11 = E6 − U 2E1 (ν − 3)2 ω2;

S13 = 0.5E7 − 0.5U 2E2ω
2 (ν − 1)2 − 0.5U 2E4ω (ν − 1) ;

S15 = 0.5E8 − 0.5U 2E3ω
2 (ν + 1)2 − 0.5U 2E5ω (ν + 1) ;

S22 = E6 − U 2E1 (ν − 2)2 ω2;

S24 = 0.5E7 − 0.5U 2E2ω
2ν2 − 0.5U 2E4ων;

S26 = 0.5E8 − 0.5U 2E3ω
2 (ν + 2)2 − 0.5U 2E5ω (ν + 2) ;

S31 = 0.5E7 − 0.5U 2E2ω
2 (ν − 3)2 + 0.5U 2E4ω (ν − 3) ;

S33 = E6 − U 2E1 (ν − 1)2 ω2;

S35 = 0.5E7 − 0.5U 2E2ω
2 (ν + 1)2 − 0.5U 2E4ω (ν + 1) ;

S42 = 0.5E7 − 0.5U 2E2ω
2 (ν − 2)2 + 0.5U 2E4ω (ν − 2) ;

S44 = E6 − U 2E1ω
2ν2;

S46 = 0.5E7 − 0.5U 2E2ω
2 (ν + 2)2 − 0.5U 2E4ω (ν + 2) ;

S51 = 0.5E8 − 0.5U 2E3ω
2 (ν − 3)2 + 0.5U 2E5ω (ν − 3) ;

S53 = 0.5E7 − 0.5U 2E2ω
2 (ν − 1)2 + 0.5U 2E4ω (ν − 1) ;

S55 = E6 − U 2E1 (ν + 1)2 ω2;

S62 = 0.5E8 − 0.5U 2E3ω
2 (ν − 2)2 + 0.5U 2E5ω (ν − 2) ;

S64 = 0.5E7 − 0.5U 2E2ω
2ν2 + 0.5U 2E4ων;

S66 = E6 − U 2E1 (ν + 2)2 ω2.

In the above expression for S22, the bracketed term (ν − 2) has
been corrected from the original form with (ν − 1) in CS.

The corresponding values of E are

E1 = C2
(
0.375B4 + 3B2 + 1

) + 0.5A2
(
0.5B2 + B + 1

)
;

E2 = C2
(
3B3 + 4B

) + A2
(
0.375B2 + B + 0.5

)
;

E3 = C2
(
0.5B4 + 3B2

) + 0.5A2
(
0.5B2 + B

)
;

E4 = 2ωB
(
A2 + 2C2 + C2B2

) + ωB2
(
0.5A2 + 2C2B

)
− ωB3C2;

E5 = ωB2
(
A2 + 2C2 + C2B2

) + ωB
(
A2 + 4C2B

)
;

E6 = U 2ω2B
(
A2 + 3A2B + 10C2B + 2.5C2B3

) + 0.75B4

+ 6B2 + 2;

E7 = U 2ω2B
(
2A2 + 2.5A2B + 4C2 + 13C2B2

) + 6B3 + 8B;

E8 = U 2ω2B
(
A2 − A2B + 2C2B + 2C2B3

) + B4 + 6B2.

In the above expression for E4, the term with 0.5A2 has been
corrected from its original form of 0.5A in CS.
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