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The Intrinsic Distribution and Selection Bias of
Long-Period Cometary Orbits

Peter E. JuPP, Peter T. KiM, Ja-Yong KOO, and Paul WIEGERT

A question that arises in the study of cometary orbits is whether or not the directed normals to the orbits are uniformly distributed on the
celestial sphere. Previous studies by statisticians have not taken selection effects into account and have tended to reject uniformity. Here
a plausible selection mechanism is proposed that gives rise to a one-parameter family of distributions on the sphere. Data on long-period
comets are analyzed using this one-parameter family. A nonzero selection effect is detected, and its size is estimated. Subject to this selection

effect, uniformity of the directed normals can no longer be ruled out.
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1. INTRODUCTION

The orbits of periodic comets are elliptical, with the sun at
one focus. Two important features of a cometary orbit are the
perihelion direction (the direction from the sun to the point of
closest approach of the comet) and the directed normal (the di-
rection normal to the orbit, the sense of rotation of the comet
being taken into account by, say, a right-hand rule). Note that
the perihelion direction and the directed normal are both di-
rections, that is, unit vectors. There are astronomical reasons
for believing that observations of cometary orbits are subject to
considerable selection effects. Thus interest lies in the intrinsic
distribution of the orbits, that is, the distribution prior to se-
lection by any observational biases. The aim of this article is
to investigate the intrinsic distribution of the directed normals,
and, in particular, to test it for uniformity.

Among investigators into the distribution of cometary orbits
by statisticians, Mardia (1975) considered the perihelion direc-
tions; Watson (1983, pp. 28-32), Hall, Watson, and Cabrera
(1987), and Fisher, Lewis, and Embleton (1993, p. 161) consid-
ered the directed normals; and Jupp and Mardia (1979), Jupp
and Spurr (1983), Jupp (1995), and Mardia and Jupp (2000,
pp- 283, 288-289) considered the joint distribution of the di-
rected normals and the perihelion directions. We concentrate
here on the directed normals.

One of the earlier in-depth statistical investigations in the
astronomical literature was made by Tyror (1957), who stud-
ied the distribution of long-period perihelion directions. Later
studies by Everhart (1967a,b) and Kresédk (1982) gave detailed
discussions of possible sources of observational bias, to ob-
tain information about the intrinsic distribution of cometary
orbits. However, these authors did not provide an explicit sta-
tistical model for selection effects. An extensive investigation
and more up-to-date analyses from the astronomical stand-point
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were made by Wiegert and Tremaine (1999; see also the refer-
ences cited therein).

It is thought that all comets were formed within the solar
system and were subsequently flung out into a large disc by the
gravitational action of the planets. This disc was coplanar with
the planets, but extended out to tens of thousands of astronomi-
cal units. (An astronomical unit is defined as the mean distance
from the center of the earth to the center of the sun.) It is thought
that comets with large orbits (and hence long periods) then had
the planes of their orbits changed randomly by the gravitational
effect of passing stars (Weissman 1980). The resulting set of
comets constitutes the Qort cloud (Oort 1950), a spherical re-
gion of space extending out around the solar system to a dis-
tance hundreds of times further from the sun than the orbit of
Pluto. It is believed that long-period comets may reside in the
Oort cloud (or other “reservoirs” in the solar system) for bil-
lions of years before becoming visible from the neighborhood
of the earth. For astronomical reasons given by Wiegert and
Tremaine (1999, p. 84), the best source of information on the
Oort cloud is the set of long-period single-apparition comets,
and thus these comets have been the subject of a great deal of
study. We therefore restrict our attention to this set of comets.

In this article we give a more careful statistical analysis than
has been given before, concentrating on the directed unit nor-
mals and introducing a plausible selection mechanism that gives
rise to a one-parameter family of distributions. The directed
normals are observations on $2, the unit sphere in 3-space. Be-
cause the comets are part of the solar system and are affected
by the gravitational attraction of the sun and giant planets, it
is sensible to use the (heliocentric) ecliptic coordinate system,
which is indicated in Figure 1. The origin of this system is the
sun. The first axis is aligned (traditionally, among astronomers,
but arbitrarily) parallel to the vernal equinox, which is the di-
rection from the earth to the sun at the spring equinox. This
direction lies in the intersection of the ecliptic plane (the plane
of the earth’s orbit round the sun) with the equatorial plane of
the earth. The second coordinate axis is orthogonal to the first
and lies in the ecliptic plane. The third axis is perpendicular to
the first two. Ecliptic longitude is measured in the ecliptic plane
eastwards from the vernal equinox. Ecliptic colatitude is mea-
sured from the celestial north pole toward the ecliptic plane.

In Section 2 we carry out an exploratory analysis of the di-
rected normals in terms of ecliptic colatitudes and longitudes.
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Figure 1. Ecliptic Coordinate System. The origin is at the sun, and
the vernal equinox is indicated by V. The solid arrows are the unit co-
ordinate vectors. The point D on the celestial sphere is at the end of
the directed unit normal (dashed) to a cometary orbit. The arrow on the
great circle given by the plane of the orbit indicates the sense of rotation.
The ascending node of the orbit is indicated by A. The angles i and 2
are the inclination of the orbit and the longitude of A.

Equal-area and quantile—quantile (Q—-Q) plots indicate that, al-
though longitudinal symmetry is present, the observed distrib-
ution of colatitude is inconsistent with the distribution of colat-
itude given by the spherical uniform distribution or a Watson
distribution. In Section 3 these exploratory findings are con-
firmed by some well-known tests. Q—Q plots of the colatitudes
of the directed normals reveal that the distribution of the colati-
tudes of the directed normals has heavier tails than the distribu-
tion of the colatitudes obtained from the spherical uniform dis-
tribution but lighter tails than the uniform distribution on [0, 7).
This is consistent with the way in which cometary astronomers
sample the sky, because they tend to look mainly near the eclip-
tic. This motivates a model for the selection process involving a
one-parameter family of distributions on the sphere. In Section
4 we estimate the parameter by maximum likelihood. Informal
and formal analyses in Section 5 show that, subject to selection
according to our model, the data are consistent with a uniform
intrinsic distribution.

2. EXPLORATORY DATA ANALYSIS

The data come from the 658 single-apparition long-period
cometary orbits found in the catalog of Marsden and Williams
(1993). Of these, 315 are prograde (i.e., revolve in the same
direction as the earth about the ecliptic polar axis, so that the
directed normal points to the north of the ecliptic plane), and
343 are retrograde (i.e., revolve in the opposite direction, so that
the directed normal points to the south of the ecliptic plane).

Catalogs of cometary orbits usually specify each orbit in
terms of six measurements. important measurements are the in-
clination and the longitude of the ascending node. The incli-
nation, i, is the angle between the plane of the comet’s orbit
and the ecliptic plane, with { = 0 corresponding to prograde
motion in the ecliptic plane (and { = 7 corresponding to ret-
rograde motion in the ecliptic plane). The longitude of the as-
cending node, L, is the ecliptic longitude of the point at which
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the comet crosses the ecliptic in the “upward” direction (toward
the ecliptic north pole). The directed normal to the plane of a
cometary orbit is given by

(sinisin §2, —sinicos 2, cosi)’,

where the superscript >’ denotes transpose. Recently, Wiegert
and Tremaine (1999, pp. 87-88) performed some elementary
data analysis on i and Q. In a statistical context, it is useful to
transform the coordinates (i, €2) to the standard spherical polar
coordinates (6, ¢) on 52 by
(4
6 =1, ¢:Q-E (mod 27),

where 8 € [0, r) and ¢ € [0, 277). Thus 6 is the colatitude mea-
sured from the north pole (0,0, 1)’ of § 2 ¢ isthe longitude, and
the directed normal to the plane of the corresponding cometary
orbit is

(cos ¢ sin @, sin ¢ sind, cosg)’.

Figure 2 gives histograms of these polar coordinates. The
histograms reveal some nonuniformity, particularly in the co-
latitude. This is studied in greater detail in Sections 2.3 and 3.1.

2.1 Equal Area Projection

One method of representing data on §? is via an equal-area
projection onto a disc. The importance of an equal-area pro-
jection is that it maps the (spherical) uniform distribution on
S% to the (ordinary) uniform distribution on the disc. A stan-
dard equal-area projection of the unit sphere onto a disc of ra-
dius 2 is Lambert’s equal-area projection (Watson 1983, p. 21;
Mardia and Jupp 2000, pp. 160-151), which maps the point
(cos¢ sinb, sing sinf, cos@)’ in 52 to the point

2sin(@/2)(cos ¢, sin @)

in the plane, where 8 € [0, m) and ¢ € [0, 27). This projection
sends the “north pole” to the origin. An alternative equal-area
projection maps (cos ¢ sind, sin ¢ siné, cos8)’ in % to

2sin((r — 8)/2)(cos ¢, sing)

and so sends the “south pole” to the origin. In the former (latter)
case, the upper (lower) hemisphere of $? gets mapped into a
disc of radius +/2, and the lower (upper) hemisphere into an
annulus with inner and outer radii +/2 and 2.

Figure 3 plots equal-area projections of the 658 directed nor-
mals. Panel (a) is a plot with the north ecliptic pole at the center,
and panel (b) is a plot with the south ecliptic pole at the cen-
ter. Inspection of these plots suggests some bunching near the
ecliptic poles, with almost uniform distribution in between.

2.2 Longitudinal Symmetry

Initial assessment of the degree of longitudinal (i.e., circu-
lar) symmetry can be carried out graphically. Figure 4(a) uses a
Q-Q plot to compare the observed longitude ¢ with that of the
uniform distribution on [0, 27r). The plot indicates that circu-
lar symmetry in ¢ is reasonable, in agreement with the conclu-
sions of Jupp and Spurr (1983), Jupp (1995), and Wiegert and
Tremaine (1999, p. 88). In Section 3 we perform a formal test
to confirm this.
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Figure 2. Histograms of Polar Coordinates in Radians: (a) Longitude; (b) Colatitude.

2.3 Classical Models

Traditional parametric analysis of spherical data often in-
volves using the von Mises-Fisher and/or the Bingham distri-
butions. The equal-area plots in Figure 3 suggest that the data
have antipodal symmetry. Support for this comes from the simi-
larity of the numbers of observations in prograde and retrograde
orbits, together with the circular symmetry of the distribution
of longitude. This suggests that it might be appropriate to fit a
Bingham distribution. The circular symmetry of the longitude
and the clustering near the ecliptic poles indicate that a bipolar
Watson distribution (cf. Mardia and Jupp 2000, p. 181) would
be a reasonable choice.

If the data come from a bipolar Watson distribution, then
1 — cos? 4 is distributed approximately as an exponential distri-
bution (cf. Fisher et al. 1993, p. 168). Nevertheless, as displayed

graphically in Figure 4(b), the non-linearity in the Q—Q plot of
the colatitude strongly suggests a lack of fit. Furthermore, the
Q-Q plot in Figure 4(c) of the observed colatitudes of the di-
rected normals against the colatitudes of the spherical uniform
distribution, which has density sin# on [0, ), indicates a de-
parture from spherical uniformity. In Section 3 we confirm this
by a formal test.

The main conclusion of this exploratory data analysis is that
there is evidence of spherical nonuniformity, longitudinal uni-
formity, and clustering of the data at the ecliptic poles, but that
a bipolar Watson distribution does not provide a good fit to the
data.

3. SELECTION EFFECTS

Formal testing of the long-period comet data supports the
findings of Section 2. For testing spherical uniformity, we use

Figure 3. Equal-Area Projections of Directed Normals. (a) View from the north ecliptic pole; (b) view from the south ecliptic pole. Both plots are

images of the complete sphere.
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Figure 4. Quantile Plots of Colatitude (6) and Longitude (¢) of the Directed Normals. (a) Longitude against the uniform distribution on [0, 2r );
(b) 1— cos?6 against an exponential distribution; (c) colatitude against sin(@) (from the spherical uniform distribution); (d) colatitude against the

uniform distribution on [0, it ).
Bingham’s (1974) test. Let

1 n
M, ==Y XX.
n nj_zl s

where X; = (cos¢; siné;, sing;sinf;, cosd;)’ for i = 1,...,n.
Then, under uniformity,

7.5nftrM2 — (2/3)uM, +1/3} ~ x3  asn— o0,
where x2 denotes a chi-squared distribution with v degrees of
freedom and tr denotes the trace of a square matrix (see Giné
1975, pp. 1263-1264; Mardia and Jupp 2000, p. 232). For the
comet data,

7.5 x 658{tr Mzsg — (2/3) trMesg + 1/3} = 29.520
and
P(x? > 29.520) = .0001,

so that, if complications due to sampling bias and other factors
are ignored, the null hypothesis of spherical uniformity can be
rejected soundly. Note that because the equal-area plots in Fig-
ure 3 suggest that the data have antipodal symmetry, it would
not be sensible to test uniformity using the Rayleigh test (cf.
Mardia and Jupp 2000, p. 207).

To test longitudinal symmetry (i.e., uniformity of ¢), we use
Watson’s U test, a test of circular uniformity that is consis-
tent against all alternatives (cf. Mardia and Jupp 2000, pp. 103—
105). Applying this test to the longitudes of the directed nor-
mals yields

U? = .073.

Because P(U? > .073) ~ .464 [from Watson’s 1961 large-
sample asymptotic result quoted as (6.3.37) of Mardia and Jupp
2000, p. 104], longitudinal symmetry cannot be rejected at any
reasonable significance level.

3.1 A Selection Mechanism

Inspection of the quantile plot of observed colatitude against
the uniform distribution on [0, ) displayed in Figure 4(d)
shows that the middle portion of the quantile plot is almost lin-
ear. Furthermore, comparison with the quantiles of colatitude
obtained from the spherical uniform distribution in Figure 4(c)
suggests that the distribution of the directed normals lies “be-
tween” the uniform distribution on [0, ) and the distribution
of colatitude obtained from the spherical uniform distribution.
This provides a clue for modeling the distribution of the di-
rected normals of the long-period comets.

Comet-seekers do not sample the entire sky evenly when
looking for comets. They bias their observations toward the
ecliptic plane. Smaller additional biases may arise from the par-
ticular properties of individual comets, which may make them
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easier or harder to detect. For example, a comet that reaches
peak brightness when in the daytime sky is much less likely
to be observed than one that does so in the nighttime sky.
Thus the empirical distribution of long-period single-apparition
comets reflects certain biases inherent in comet surveys them-
selves. Comet seekers searching the solar system for small bod-
ies typically do not point their telescopes randomly into the
sky, rather, they bias their search toward an “observational win-
dow.” The chances of success of any search program are en-
hanced by looking near the ecliptic, because most asteroids
and comets with shorter periods lie near this plane. Although
it is not thought that the orbits of long-period single-apparition
comets are clustered near the ecliptic, those comets of this kind
that spend more time in the vicinity of this observational win-
dow are more likely to be discovered, because most search ef-
fort will be concentrated there. As a result, it is expected that
the observed sample of long-period comets will be biased to-
ward those comets with orbits near the ecliptic, and so with
directed normals lying near the ecliptic poles.

As a simple way of quantifying the foregoing notion, we in-
troduce, for each ¢ in [0, 1], the corresponding observational
window, A, defined by

A = {w:(w;,wz.w3)'652:lw3[ <el

Thus A, is the band between the two small circles,

{(v 1 -szcos¢.\ﬁ—szsin¢,s)/:0§¢5271}
and

[(—\/ 1 —e2cos¢p, —v'1 —szsin¢,—e)/:0§¢§2n},

which lie on either side of the ecliptic. Note that when ¢ =1,
the observational window is the entire sphere.

A plausible model for the probability g(6, ¢; €) that a comet
with directed normal at (cos¢ sind, sin¢gsin@, cosf)’ is ob-
served assumes that this selection probability is proportional
to the arc length of the portion of the orbit that is inside the
observational window A.. This leads to

1 if sinf <¢
arcsin(e/ sin8)
/2

To see this, consider Figure 5. Let L denote the length of the
portion of the cometary orbit that falls within the observa-
tional window. Then L = 4AC. Furthermore, because the ob-
servational window A, is defined by |sinf| < &, we have that
BC = arcsine. Application of the spherical sine rule to the
spherical triangle ABC gives

g6, p.e)= (1

if siné > .

sin(L/4) _ sin(arcsin &)
sin(/2)  sin(6)

L . e
— =arcsmn|{ —— J.
4 sin@

Thus the selection probability is given by

L 2 €
— = —arcsin{ —— |.
2 0w sin@

s0 that
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directed normal
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Figure 5. The Length of the Portion of the Path of a Cometary Orbit
Inside the Observational Window A, of Width 2¢. The points N and S
are the north and south ecliptic poles.

Let f(6, ¢) denote the probability density with respect to the
uniform distribution [i.e., with respect to (4m)~ " sin@dodg) of
the intrinsic distribution of the directed normals,

(cos ¢ sin@, singsinf. cosh)’.

Then the probability density (with respect to the spherical uni-
form distribution) of the directed normals that are observed is

h@,¢;e)=c(e)f(0,0)g(0.¢: ¢), 2)

where c(¢) is a normalizing constant.

Note that (2) implies that the functions (8, ¢) and g(6, ¢: ¢€)
are not jointly identifiable, so that it is not possible to infer both
the density f(8, ¢) of the intrinsic distribution and the proba-
bilities g(8, ¢; ¢) of selection. Nevertheless, if suitable assump-
tions are made about one of f(0,¢) and g(f, ¢: ¢) then it is
possible to make inference about the other. In particular, if the
intrinsic distribution of directed normals is uniform on the ce-
lestial sphere then (2) reduces to

gl ifsing <e

ho.¢,e)=4 2 . € e
——arcsin s if sinf > ¢.

e sin

(3)

The fact that, in this case, c(¢) = ¢~} can be obtained by cal-
culating the derivative of 1/¢(e) with respect to ¢ and showing,
through substitution, that it is unity. Note that when ¢ = | the
density (3) reduces to the density of the uniform distribution on
the sphere.

It might be argued that our model (2) for the selection proba-
bilities is too simple to be very realistic, first because no account
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has been taken of the fact that (in accordance with Kepler’s sec-
ond law) the angular velocity of a comet about the earth is not
constant (an effect that is particularly pronounced for orbits of
high eccentricity), and second because one might expect there
to be a mixture over ¢ of windows A.. However, models taking
these aspects into account would be considerably more com-
plicated than our simple one-parameter model. In Section 5 we
show that our model for the observed distribution [based on in-
trinsic uniformity together with selection probabilities (2)] fits
the data very well. It therefore does not seem worth considering
more-complicated models. It should also be mentioned that the
observed sample of single-apparition long-period comets has
been obtained by a variety of astronomers over a span of cen-
turies, and with no single underlying observational plan.

4. MAXIMUM LIKELIHOOD ESTIMATION OF
WINDOW SIZE

Because ¢, the window size, is unknown, it must be esti-
mated. One way to do so is by maximum likelihood. From (3),
the log-likelihood function of & based on unit vectors Xj. .. ., X,

18
£ )
sin Gj

4)
The maximum likelihood estimate £ of ¢ is £ = .84. Figure 6
plots the log-likelihood function. The interpretation of the max-
imum likelihood estimate £ = .84 in terms of the observational
window A; is that the colatitude of orbits that can be completely
observed ranges from 57° to 123°.

2
I(e; Xy, ...,Xy) = —nloge + Z log(—arcsin
T

sinfj>¢

4.1 Bootstrap Confidence Interval

Because the log-likelihood (4) is not differentiable, standard
likelihood-based confidence intervals for ¢ are not appropri-
ate. Consequently, confidence intervals for ¢ were obtained by

mle:

log-likelihood
-465 -4680 -455 -450

-470

475

-480

Figure 6. The Log-Likelihood Function in Terms of the Window
Size ¢.
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Table 1. Bootstrap Confidence Intervals for &

Method 90% 95%
Percentile (.675,.985) (.673,.988)
Bias-corrected (.692,.988) (.675,.999)

bootstrapping, using both percentile bootstrapping and bias-
corrected accelerated bootstrapping. (The theory of such inter-
vals can be found in Efron and Tibshirani 1993, chaps. 13-14.)
A grid size of 1,000 was used for the interval (0, 1], and the re-
sampling size for the bootstrap was 2,000. Table 1 summarizes
the 90% and 95% bootstrap confidence intervals.

Table 1 shows that the two methods of bootstrapping provide
very similar answers. The interesting point is that none of these
intervals contains 1.0. Further, an independent Monte Carlo test
(using 999 replicate samples) of £ = 1 gave a p value of .002.
These results strongly suggest that selection bias exists.

5. THE INTRINSIC DISTRIBUTION OF
LONG-PERIOD COMETS

An informal assessment of the goodness of fit of the data to
the fitted distribution (3) with £ = .84 is given by the plot in
Figure 7(a) of the fitted cumulative distribution function of 6.
This plot shows also the cumulative distribution functions of the
uniform distribution on [0, 7r) (straight line) and of the colati-
tudes of the spherical uniform distribution (outer curve). Note
that the fitted cumulative marginal distribution function of the
colatitude resembles that of the colatitudes from the spherical
uniform distribution for values near 0 and 7, whereas in the
middle portion of the domain, the fitted cumulative distribution
function is almost linear. Note also that the empirical cumula-
tive distribution function of colatitude lies between the cumu-
lative distribution function of the uniform distribution on [0, 7)
and that of the colatitude obtained from the spherical uniform
distribution. Thus the fitted distribution (3) with & = .84 can
be regarded as combining features of these two distributions.
Figure 7(b) is a Q—Q plot of the empirical quantiles of colati-
tude against the quantiles of (3) with € = .84. The fit is much
better than those to the uniform distribution on [0, ) and to
the distribution of colatitude obtained from the spherical uni-
form distribution, which are shown in the Q—Q plots displayed
in Figures 4(c) and 4(d). These impressions will now be con-
firmed by formal goodness-of-fit tests.

We use Watson’s U? to assess goodness of fit of the colatitude
data to three distributions: the uniform distribution on [0, ),
the distribution of colatitude obtained from the spherical uni-
form distribution, and the fitted distribution with density (3) and
& = .84. The findings are summarized in Table 2. The p values
[from Watson’s 1961 large-sample asymptotic result, quoted as
(6.3.37) of Mardia and Jupp 2000, p. 104] for the uniform dis-
tribution on [0, 7r) and the distribution of the colatitudes from
the spherical uniform distribution are both negligible. On the

Table 2. U? Goodness-of-Fit Test

Distribution
Uniform on [0, ) Spherical uniform (3) withé = .84
U2 1.79 .52 A2
p value .00 .00 18
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Figure 7. (a) Cumulative Marginal Distribution Function for 8 With ¢ = .84 and (b) Q-Q Plot of the Cumulative Marginal Distribution Function
With ¢ = .84 Against Empirical Quantiles. In (a), the outer lines refer to the uniform and spherical uniform distributions, and the connected line

indicates the empirical probabilities.

other hand, the fitted distribution given by the density (3) with
& = .84 is a good fit to the observed colatitudes. Combining this
test of goodness of fit of the colatitudes of the fitted distribution
with the U? test of longitudinal symmetry considered in Sec-
tion 3 gives a goodness-of-fit test of the fitted distribution on
the sphere. For our data, the combined p value is .29. Thus, by
taking selection into account according to (3) with & = .84, the
data are consistent with a uniform intrinsic distribution.
[Received April 2002. Revised May 2003.]

REFERENCES

Bingham, C. (1974), “An Antipodally Symmetric Distribution on the Sphere,”
The Annals of Statistics, 2, 1201-1225.

Efron, B., and Tibshirani, R. (1993), An Introduction to the Bootstrap. New
York: Chapman & Hall.

Everhart, E. (1967a). “Comet Discoveries and Observational Selection,” Astro-
nomical Journal, 72, 716-726.

(1967b), “Intrinsic Distributions of Cometary Perihelia and Magni-
tudes,” Astronomical Journal, 72, 1002-1011.

Fisher, N. 1., Lewis, T., and Embleton, B. J. (1993), Staristical Analysis of
Spherical Data. Cambridge, U.K.: Cambridge University Press.

Giné, E. (1975), “Invariant Tests for Uniformity on Compact Riemannian Man-
ifolds Based on Sobolev Norms,” The Annals of Statistics, 3, 1243-1266.

Hall, P., Watson, G., and Cabrera, I. (1987), “Kernel Density Estimation With
Spherical Data,” Biometrika 74, 751-762.

Jupp, P. E. (1995), “Some Applications of Directional Statistics to Astronomy,”
in New Trends in Probability and Statistics, Vol. 3, eds. E. M. Tiit et al.
Utrecht: VSP, 123-133.

Jupp, P. E., and Mardia, K. V. (1979), “Maximum Likelihood Estimation for
the Matrix von Mises—Fisher and Bingham Distributions,” The Annals of Sta-
tistics, 7, 599-606.

Jupp. P.E., and Spurr, B. D. (1983), “Sobolev Tests for Symmetry of Directional
Data,” The Annals of Statistics, 11, 1225-1231.

Kresak, L. (1982), “Comet Discoveries, Statistics and Observational Selec-
tion,” in Comets, ed. L. Wilkening. Tucson, AZ: University of Arizona Press,
pp. 56-82.

Mardia, K. V. (1975), “Statistics of Directional Data” (with discussion), Journal
of the Royal Statistical Society, Ser. B, 37, 349-393.

Mardia, K. V., and Jupp, P. E. (2000), Directional Statistics. Chichester, U.K.:
Wiley.

Marsden, B. G., and Williams, G. V. (1993), Catalogue of Cometary Orbits
(8th ed.). Cambridge, MA: Minor Planet Center, Smithsonian Astrophysical
Observatory.

Oort, J. H. (1950), “The Structure of the Cloud of Comets Surrouding the Solar
System, and a Hypothesis Concerning Its Origin,” Bulletin of the Astronomi-
cal Institute of the Netherlands, X1(408), 91-110.

Tyror, J. G. (1957), “The Distribution of the Directions of Perihelion of Long-
Period Comets,” Monthly Notices of the Royal Astronomical Society, 117,
369-379.

Watson, G. S. (1961), “Goodness-of-Fit Tests on a Circle,” Biometrika, 48,
109-114.

Watson, G. S. (1983), Statistics on Spheres. New York: Wiley.

Weissman, P. R. (1980), “Stellar Perturbations of the Cometary Cloud,” Nature,
288, 242-243,

Wiegert, P., and Tremaine, S. (1999), “The Evolution of Long-Period Comets,”
Icarus, 137, 84—-121.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



