
Statistics of Radioactive Decay 
 
Introduction 
 
The purpose of this experiment is to analyze a set of data that contains natural variability 
from sample to sample, but for which the probability distribution function (i.e. the Poisson 
Distribution) is well known. You will compare your measurements to theoretically derived 
functions, and test the compatibility of your measurements and the theory. The data are 
obtained by measuring the decay of a radioactive source using a Geiger counter. 
 
 
Goals: 

• gain familiarity with the specific form and use of the Poisson distribution 
• gain experience with the use of a Geiger counter for measuring radioactive decay 

events 
 
 
Theory 
 
The disintegrations from a radioactive substance occur at random. If the number of counts is 
measured for a pre-specified time interval, and then the measurement is repeated over the 
same time interval, it is likely that that number will be different every time you perform a 
new measurement.  It can be shown that in such cases of random decay the frequency 
distribution  P n( ) describing the probability of observing n disintegrations in some time 
interval t is given by the Poisson distribution.  This has been discussed in your lectures.  The 
Poisson distribution is given by 

 
P n( )= μne−μ

n!
 

where μ is the mean of the distribution. 
 
The standard deviation σ of this distribution is given by: σ = μ  

 
For large values of μ, the Poisson distribution approaches a Gaussian (normal) distribution: 

 
P n( )= 1

2πμ
e− n−μ( )2 2μ  

                              
The Poisson Distribution – discussion 
 
In previous experiments, we discussed random experimental errors which resulted from 
limitations of the experiment itself due to imperfections of apparatus or technique.  There is 
another class of error which is due to the random nature of the process being studied, and this 
second category is the subject of our current experiment.  This is often associated with 



“counting” experiments (an important category in modern day physics) and follows the rules 
of Poisson Statistics.   
 
Consider an experiment to measure radioactive decay.  One could count the number of 
decays in a series of (say) 10-s intervals.  Since radioactive decays are random in time, the 
number of decays will not be repeatable between successive measurements. There will be a 
mean value, but rarely will any measurement actually produce this value.  For example, 
suppose the true mean was 9 counts. Then due to the intrinsic natural variability, it may be 
possible to measure as low as only 1 or 2 counts, or perhaps as high as 20 counts, using the 
same experimental setup, because of the random nature of the process.  The Poisson 
distribution gives you the probability  P n( ) that you will obtain n counts when the mean 

count over many measurements is μ. 
  
Notice that n is an integer in this distribution (i.e. you either count something or you don’t). 
 
Also, this distribution is very non-symmetric (skewed) when μ is small.  This is very 
different to the distributions that you have normally met so far, for which you assumed you 
could have a + or – error with equal probability.  Part of the reason that the distribution is 
skewed is that you can’t have a negative number of counts.  However, when μ is large (say > 
30) the Poisson distribution approaches a Gaussian distribution with a mean μ and a standard 
deviation μ . 
 
If you are doing a counting experiment in the laboratory (e.g. scattering, γ -ray spectroscopy, 
or α-particle absorption), you can say that the best estimate of the mean number of counts is 
the measured mean value n , and the best estimate of the standard deviation about this mean 
is n .   The point here is that you can never know the true mean μ because that would 
require an infinite number of measurements. 
 
 
The Geiger-Muller (GM) Counter 
 
The GM counter is a combination of two devices: 
 
- a GM tube for the detection of radioactivity 
 
- an instrument that amplifies and counts the electrical signals received from the GM tube 
 
The tube has a very thin glass window facing the radioactive source. This permits the 
electrons emitted from the source to pass into the interior with minor absorption and 
scattering. The GM tube consists of an outer cylindrical conductor and a central wire 
maintained at a positive potential with respect to the outer cylinder. As an energetic particle 
crosses the detector it will ionize a gas molecule in the chamber. The resulting electron and 
ion are accelerated by the potential, each towards the electrode with opposite sign. For large 
enough potential difference the electron released in the ionization process will ionize another 
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molecule and this will result in an avalanche of charges that could be detected as an electrical 
signal. The range of voltages applied to the GM tube that will generate a signal for an 
incoming ionizing particle is called the Geiger-Muller region. In other words the sensitivity 
of the amplifier connected to the tube is such that counts are only detected when the tube is 
operating in the Geiger-Muller region. Different tubes have different characteristics. In our 
experiment we will use a tube with a range of 300-1000V. 
 
The radioactive source used in this experiment is Thallium 204, a radioactive isotope with a 
half-life of 3.8 years. When it disintegrates, an electron with energy of 0.77 MeV is emitted. 
It thus has sufficient energy to penetrate the tube and produce a count. 
 
 
Experiment: 
 
Apparatus: 
 
• Geiger-Muller tube, stand and shelf 
• High voltage source and counter 
• Tl204 source 
• timer 
 
 
Procedure 
 
Part I 
 
Among your equipment you will find two semicircular pieces of plastic. One is unmarked; 
this is the non- radioactive blank. The other is the radioactive source. Record the number and 
letter on the source in your lab book. 
 
Check that the high voltage controls are set at minimum values, and switch the power on. 
The “test” switch should be off, and the “count” switch should be on. Switch on the preset 
timer, and set it to 10 seconds. Put the source and the blank together on the tray and put it on 
shelf number 4. 
 
Increase the voltage to 500 V. Start the timer and record the number of counts in 10 seconds. 
If necessary move the source to another shelf and repeat until the number of counts is 
between 800 and 4000.  If you still cannot achieve a value of at least 800, record for a little 
longer, e.g. 15 or 20 or even 30 seconds. 
 
Measure the number of counts in your chosen time interval. Repeat 45 times. 
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Part 2 
 
Set the source far from the detector so that the number of counts obtained in 10 seconds is 
small.  This will represent your “background level”, and is due to natural radioactivity around 
you – in the walls, due to cosmic ray particles etc. Typically you should get values of the 
order of 1, 2, 3, 4, with less frequent occurrences of numbers like 5, 6, 7 etc.  If you find you 
are getting lots of 5’s and 6’s, say, reduce the recording time to say 5 seconds.  If you are 
getting mainly 0’s and 1’s, increase your recording time.   Measure the number of counts in 
your selected recording period. Repeat 45 times. Note that the recording interval you choose 
does not have to be the same as in Part I. 
 
Analysis 
 
Analyze the “background counts” first, then the “source” results, as follows. 
 
a)  Background counts. 
 
1) Plot the data in a histogram format (i.e. abscissa = number of counts, ordinate = number 

of measurements yielding that number of counts). Use a bin size of one count. You are 
encouraged to do this with a spread-sheet (like Excel) if possible. 

 
2) Determine the mean,  n , and then plot the expected Poisson distribution for this mean 

value over top of your own data.  Ensure that the area under your experimental curve and 
your theoretical curve are the same (remember that the formula given earlier for the 
Poisson distribution was normalized to unit area). Also check the standard deviation, and 
check if it is similar to n . (Note: this might be a good chance for you to learn how to 
use the “standard deviation” option on your calculator, or you might use the same 
function in your spread-sheet package.  (It is STDEV in Excel) 

 
3) You will have recorded 45 successive counts e.g. 2, 3, 2, 1, 4, 3, .. etc.  Sum the points in 

groups of 3.  In the above example, your first point will be 2+3+2 = 7, and the next point 
will be 1+4+3 = 8, etc. This will simulate using a longer averaging interval – e.g. if you 
used 10 second intervals, summing 3 successive values will give you an equivalent rate 
for a 30-second interval.  You will now only have 15 points.  Calculate your new mean 
and standard deviation. Check again whether the standard deviation is similar to  n  
(rigorous comparison is not necessary – a qualitative comparison will do for now).  Plot 
the expected Poisson distribution, using your new mean.  Comment on the symmetry of 
your graph relative to the first one. Also plot the theoretical distribution assuming it is a 
Gaussian. 
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b)  Radioactive Source counts. 
 
The case where you deal with the radioactive source can be considered as an extension of the 
“background case” to the situation of much higher count rates. What do you expect the 
distribution to start to look like at high count rates? 
 
1. Plot the data in a histogram format (i.e. abscissa = number of counts, ordinate = number 

of measurements yielding that number of counts). Note that this time you will need to 
experiment with the best choice of bin-size. Describe why you use the choice of bin-size 
that you do. (Again, you might also find it useful to use a spreadsheet). 

  
2. Determine the mean, and the standard deviation, and check that the relation  σ = n  still 

seems valid. Then plot the expected theoretical distribution (for this mean value and 
standard deviation) over top of your own data. (Should this be a Poisson distribution, or a 
Gaussian, or are they equivalent? Discuss).  Ensure that the area under your experimental 
curve and your theoretical curve are the same. 

 
3. From your histogram, estimate the probability of getting a single number of counts n 

which lies between  n  and  n + 50 .  Now repeat the same determination, but this time 
using your theoretical fitted curve. In this case you may assume that your standard 
deviation squared is an exact estimate of the true variance, so you may treat your 
distribution as a normal distribution with known variance.  Remember you are looking at 
the likelihood of obtaining a single value in this range. Will you use the standard 
deviation σ, or σ 45 , in your calculations? You may use your “normal-distribution” 
table in your lecture notes if you like. 

 
4. Divide the data into three groups (a,b,c) of 15 measurements, and find the mean and its 

standard deviation for the three sets.  For example, for set a 

      
  
na = ni

i=1

15

∑
⎛

⎝⎜
⎞

⎠⎟
15 and

 
σna

= ni −na( )2
i=1

15

∑ 15−1( )15( ). 
 Test the hypothesis that these 3 data sets are statistically equivalent by determining 

whether the 3 means are really the same number, statistically speaking.  Do this by 
computing the mean of the 3 means,  nall , and the corresponding  χ2: 

  
χ 2 =

na −nall( )2
σna

2 +
nb −nall( )2

σnb

2 +
nc −nall( )2

σnc

2 . 

 From the  χ
2  distribution, the most likely value of  is 2.   Why?  χ 2

 If you have access to Excel (use CHIDIST) or MATLAB (or equivalent), you can get the 
probability that your value of .  If this probability is not too small, say greater than 
10%, then you have shown that the hypothesis is true (statistically speaking of course!). 

χ 2 > 2
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