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Chapter 7. Atomic Physics 
 

Notes: 
• Most of the material in this chapter is taken from Thornton and Rex, Chapter 8. 

7.1 The Pauli Exclusion Principle 
We saw in the previous chapter that the hydrogen atom could be precisely understood by 
considering the Schrödinger equation, including the electrostatic potential energy that 
accounts for the interaction between the nucleus and the electron. We then discovered 
that the family of stationary states, which are the solutions of the Schrödinger equation 
can be completely characterized by three quantum numbers  n, , and m . However, we 
also found that the state of the electron is further characterized by its intrinsic spin, which 
acts in a way akin to the angular momentum in that it provides an extra magnetic moment 
and is quantized similarly. But comparisons between the Ŝ  and L̂  operators should 
probably not be pushed too far, as for the electron the spin is half-integer with s = 1 2  
independent of any other parameter, while  0 ≤  ≤ n −1  and always an integer. As a 
result, the states of the hydrogen can only be fully specified by combining the previous 
three quantum numbers for the solutions of the Schrödinger equation and the magnetic 
spin quantum number ms , forming the  n,,m,ms( )  foursome. As we will now discover 
there is another very important aspect of the spin that is absolutely essential for 
understanding the structure of many-electron atoms.  
 
Although it would be in principle possible to solve the Schrödinger equation for more 
complicated atoms, the presence of several interaction terms between the different 
electrons makes the problem analytically intractable and basically impossible to solve. 
The exact determination of the stationary states, their energy, angular momentum, etc. 
must then be accomplished using computers. It is, however, possible to qualitatively 
understand the structure of many-electron atoms using the results obtain for the study of 
the hydrogen atom and another fundamental principle that we owe to the Austrian 
physicist Wolfgang Pauli (1900-1958).  
 
The so-called Pauli exclusion principle, which stems from Pauli’s efforts to explain the 
structure of the periodic table, can be stated as follows 
 
Two identical fermions cannot occupy the same state.   
 
Remember that fermions have half-integer spins; the electron with s = 1 2  is therefore 
one. As Pauli initial enunciation of his principle in 1925 happened as he was studying the 
atomic structure, it can then stated more specifically for atomic electrons with 
 
No two electrons in an atom can share the same set of quantum numbers  n,,m,ms( ) .  
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The structure of atoms and that of the periodic table can be explained with this principle 
and the further assumption that atomic electrons tend to occupy the lowest available 
energy states.   
 
To see how this works, let us consider the next simplest atom after hydrogen, i.e., helium. 
The helium atom (He) is composed of a nucleus made of two protons and two neutrons 
for a total charge of +2e  (a neutron has the same mass as a proton but no charge) and 
two electrons. As was the case for the hydrogen atom we can expect that the lowest 
energy state for an electron will consists of a 1s wave function with the electron spin 
quantum number either 1 2  or −1 2 , i.e.,  n,,m,ms( ) = 1,0,0,±1 2( ) . The second 
electron is also likely to occupy a similar state, but because of the Pauli exclusion 
principle, which forbids two electrons from occupying the exact same state, the quantum 
numbers can only be  n,,m,ms( ) = 1,0,0,1 2( ) ; note the opposite sign of ms  for the two 
electrons. We are thus left with the picture of the helium atom having its two electrons in 
1s states, where one electron has its spin “up” and the other its spin “down.” The 
complete ground state of the helium atom is then denoted by 1s2 , where the ending 
superscript specifies the number of electrons in the given state (in this case, 1s).  
 
What would be the electronic structure for the next simplest atom, i.e., Lithium (Li), 
which contains three electrons (and a nucleus made of three protons and four neutron)? It 
should now be clear that the Pauli exclusion principle will forbid the lowest atomic state 
to be something like 1s3 , since this would imply that two electrons would have to share 
the same ms  number (i.e., the ending superscript cannot be greater than two for a ns  
orbital). To minimize energy two electrons will still occupy the inner shell 1s2 , while the 
third one will reside on the next unoccupied orbital with favourable energy. In this case 
the next available lowest-energy electron state is 2s. The lithium atom ground state is 
therefore 1s22s1 . One would be justified to ask why couldn’t the ground configuration be 
1s22p1  instead? Indeed, this appears to be supported by the fact that our solution for the 
hydrogen atom asserted that s and p orbitals for a given n  number have the same energy 
En . The answer lies with the consideration of the precise shapes of the different orbitals. 
An s orbital is said to be more penetrating than a p orbital. That is, the radial wave 
function for   = 0  is more concentrated closer to the nucleus than that for   = 1 . This 
implies that an electron on a 2p orbital in the lithium atom is more likely to have the 
nuclear charge of +3e  screened by the two electrons on the 1s orbitals and “feel” an 
effective charge of   +e . On the other hand, an electron on the more penetrating 2s 
orbital is not as screened and will see more of the nuclear charge (i.e., the effective 
charge is greater than +e ), which results in a lower potential energy due to its stronger 
interaction with the nucleus. The 1s22s1  state is thus of lower energy than the 1s22p1  
state and the correct choice for the ground state of lithium.       
 
Just as the orbitals are designated by letters depending on the values of the    quantum 
number, e.g., s, p, d, f, etc., shells are associated to the different values of the principal 
quantum number n . More precisely, levels of  n = 1, 2, 3, 4,…  are given the capital 
letters K, L, M, N, … The aforementioned  n  orbitals are then called subshells. It 
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follows that both electrons of the helium atom occupy the K shell, which is then filled or 
closed, while lithium has two electrons in the K shell and one lone electron in the L shell 
on the 2s subshell. Two electrons occupying the same orbital, as for the 1s subshell of the 
K shell for helium and lithium, as said to be paired. We could then continue to “build up” 
atoms by adding and pairing electrons in the L shell in the same manner. We would then 
readily find the following configurations: 1s22s2  for beryllium (Be, 4 protons and 5 
neutrons), 1s22s22p1  for boron (B, 5 protons and 6 neutrons), 1s22s22p2  for carbon (C, 6 
protons and 6 neutrons), 1s22s22p3  for nitrogen (N, 7 protons and 7 neutrons), and so on 
until we fill the 2p subshell and L shell for neon (Ne, 10 protons and 10 neutrons) at 
1s22s22p6 . We note that the  n  subshell can harbour at most  2 2+1( )  electrons, where 
the leading factor of two accounts the two spin states available to an electron.   
 
Before we go too far with this process and consider atoms with increasing numbers of 
electrons, we must recognize that our discussion is quantitative and does not account for 
several internal interactions and couplings that affect the energy levels of atomic orbitals. 
For example, the magnetic moments stemming from orbital angular momenta and spins 
can interact through spin-orbit coupling and contribute to the energy of a given state. 
Such effects are not accounted in our treatment of the hydrogen atom, which underlies 
much of our discussion. The energy ordering of subshells within a single shell or between 
adjacent shells does not follow a simple s, p, d, etc., listing. A careful analysis reveals the 
ordering given in Table 8.1 below.     



 

 -       -  119 

Exercises 
 
1. Use Table 8.1 to determine the ground state configuration of potassium (K, consisting 
of 19 protons and 20 neutrons). 
 
Solution. 
 
Potassium has 19 electrons, which we must place in subshells of increasing energy. The 
K and L shells are successively filled without interruption and will use up 
2( ) + 2 + 6( ) = 10  electrons (for the 1s2( ) + 2s2 + 2p6( )  subshells). Likewise, the next 8 

electrons will occupy the 3s2  and 3p6  subshells, but Table 8.1 tells us that final lone 
electron does not go to a 3d but a 4s orbital. The ground state configuration for potassium 
is therefore 1s22s22p6 3s2 3p6 4s1 .  

7.2 The Periodic Table 
With the understanding of the electronic structure of atoms we acquired it is now 
relatively easy to understand the structure of the periodic table, which was first 
introduced by the Russian chemist Dmitri Ivanovich Mendeleev (1834-1907) in 1869 
(well before the advent of quantum mechanics). Figure 1 shows the table, with the 
electronic configuration specified for every element.  
 
The periodic table is organized in groups, along the different columns, for elements 
sharing the same chemical properties. A careful look of any given column will show that 
the corresponding elements all have the same or similar subshell status. That is, they all 
have the same number of electrons occupying a given    subshell, irrespective of the n  
number. The rows are known as periods and correspond to the filling of subshells. As one 
goes from the first element on the left to the last on the right of a period, one or more than 
one subshell can be successively filled. Periods are characterized by the number of shells 
(or energy levels) of electrons surrounding the nucleus. Here is a brief description of 
some important groups. 
 
Group 1 - Alkalis  

This group, to which hydrogen belongs, are characterized by having one s electron in the 
outer subshell. Since s electrons tend to extend relatively far from the nucleus and, 
furthermore, can easily be stripped off the atom (thus forming a positive ion of charge 
+1e ) these elements are highly reactive. Because of this tendency to give or share an 
electron it is said that alkalis have a valence of +1. This also results in them being good 
electrical conductors. All elements in this group, except hydrogen, are refereed to as 
alkali metals. 
 
Group 2 - Alkaline Earths 
Alkaline earths elements have their outer s subshell filled. Although we might assume 
that they would then be more stable than alkalis, the fact that s orbitals are extended and 
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their electrons easily removed render them quite chemically reactive. They have a 
valence of +2  and are good electrical conductors. 
    
Groups 3 to 12 – Transition Metals (or Transition Elements) 
The three rows where the 3d, 4d, and 5d subshells are being filled (i.e., elements 21-30, 
39-48, and 72-80) form the transition metals group. Several of these atoms (e.g., iron 
(Fe), cobalt (Co), and nickel (Ni)) have strong magnetic moments due to the presence of 
unpaired electrons in the d subshell. These electrons will see their spins aligned therefore 
producing the ferromagnetic properties of the elements. 
 
The rare earths elements consisting of the lanthanides (elements 58-71) and actinides 
(elements 90-103) can also be included in this group. This is because these elements have 
unpaired electrons in the f subshells (for n = 4  and n = 5 , respectively) leading also to 
large magnetic moments.   
 
Group 17 - Halogens  

All elements of this group have five electrons in their outer p subshell, and therefore have 
a valence of −1. This characteristic renders them very chemically reactive; Fluorine (F) 
is the most reactive element in existence. Halogens will especially bond efficiently with 
alkalis, which have a valence of +1, to form compound such as NaCl. 
 
Atoms in groups 13 to 16 are composed of metals (e.g., aluminum (Al), tin (Sn), and 
bismuth (Bi)), non-metals (carbon (C), nitrogen (N), and oxygen (O)), and metalloids 
(often semiconductors) exhibiting some properties of metals and non-metals (e.g., boron 
(B), silicon (Si), Arsenic (As), and tellurium (Te)).   

7.3 The Combination of Angular Momenta 
We saw that transitions metals have high magnetic moments because of the effect of 
unpaired electron’s spin. To understand how this comes about we must first understand 
how angular momenta, orbital and intrinsic spin, combine or add up to form the total 
angular momentum Ĵ . We will consider the simple case for the combination of the spin 
Ŝ  and orbital angular momentum L̂  of a single electron. We first note that the two 
momenta add vectorially     
 
 Ĵ = L̂+ Ŝ.  (7.1) 
 
We remember that both the orbital and spin angular momenta are quantized such that 
 

 

 

L =  +1( ), Lz = m

S = s s +1( ), Sz = ms
  (7.2) 
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where  m ≤   and ms ≤ s . We therefore expect that the total angular momentum will 
also be quantized in a similar manner with 
 

 
 

J = j j +1( )
Jz = mj,

  (7.3) 
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and mj ≤ j . From equations (7.2) and (7.3) we can write 
 
  Jz = m +ms( ),   (7.4) 
 
or  mj = m +ms . It is important to realize that different values for  m , ms , or mj  imply a 
different orientation for the corresponding vectors. We therefore expect that there will be 
several possibilities for both the orientation of the total angular momentum Ĵ  as well as 
its magnitude J .  
 
To get a better sense of this let us consider the case where   = 1 ,  m = −1, 0,  and 1 , and 
s = 1 2 , ms = −1 2  and 1 2 . Considering equation (7.4) tells us that the following values 
for mj  are realized 
 
 

 

mj = 3 2,1 2
m=1
ms=±

1
2

  ,1 2,−1 2
m=0
ms=±

1
2

  ,−1 2,− 3 2
m=−1
ms=±

1
2

   .  (7.5) 

 
These values for the magnetic total quantum number can be grouped as follows to find 
the realized values for j  according to equation (7.3) 
 

 
j = 3
2
, mj =

3
2
, 1
2
,− 1
2
,− 3
2

j = 1
2
, mj =

1
2
,− 1
2
.

  (7.6) 

 
This result can be generalized to any pair of angular momenta of any kind (i.e., any 
mixture of orbital, spin, or “intermediate” total angular momenta) with    
 

 
Ĵ = Ĵ1 + Ĵ2

j1 − j2 ≤ j ≤ j1 + j2
mj ≤ j,

  (7.7) 

 
where successive values for J  differ by 1. It can easily be verified that equations (7.6) 
are verified when Ĵ1 = L̂1  and Ĵ2 = Ŝ1 .       
 
Let us now come back to the case of a transition metal atom and see if we can better 
understand its high magnetic moment relative to elements of other groups. For example, 
we consider the case of titanium (Ti), which has the Ar[ ]3d2 4s2  electronic configuration 
( Ar[ ]  means that the inner core of titanium corresponds to the filled electronic 
configuration of argon, which is 1s22s22p6 3s2 3p6 ). The d subshell of titanium is thus 
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incomplete with only two electrons. For reasons that we will not discuss here, the ground 
state for such an atom with two unpaired electron on an outer subshell is realized when i) 
the spin is maximized, ii) the orbital angular momentum is also maximized, and iii) the 
total angular momentum is minimized, while always keeping in mind that the Pauli 
exclusion principle must be verified. The total spin is then Ŝ = Ŝ1 + Ŝ2 , which implies that 
s = 0 or 1 . Because of the first rule above we choose s = 1 . Likewise, the total orbital 
angular momentum is L̂ = L̂1 + L̂2  with  1 = 2 = 2  and therefore   = 0, 1, 2, 3,  and 4 . 
We may be tempted to choose   = 4  in order to maximize the orbital momentum, but this 
would go against the Pauli exclusion principle since it implies that  m1 = m2 = 2  
(remember that  1 = 2  and s1 = s2 ). We must therefore settle for   = 3 , which in turn 
implies that the total angular momentum Ĵ = L̂+ Ŝ  can span the values j = 2, 3,  and 4 . 
Evidently, Ĵ  is minimized for j = 2 , which is a state possessing a significant magnetic 
moment for mj ≠ 0 . 
 
Finally, the state (or configuration) of an atom is expressed with the following notation 
 
 2s+1Lj ,   (7.8) 
 
where 2s +1 is called the multiplicity of the state, and L  is a capital letter used for the 
orbital corresponding to   . For example, the ground state of titanium we determined 
earlier is defined with 3F2 .  
  
Exercise 
 
2. Determined the notation for the ground state of carbon given that its configuration is 
1s22s22p2 .  
 
Solution. 
 
We have two unpaired p electrons for which we maximize the spin with s = 1 . The 
possible values for the total orbital angular momentum are   = 0, 1,  and 2 , with the 
maximum allowed by the Pauli exclusion principle of   = 1 . It follows that 
j = 0, 1,  and 2 , for a minimum of j = 0  and a ground state denoted by 3P0 .   

 
 
 
 
 
 
 


