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Chapter 4. Rotation and Conservation of Angular 
Momentum 

 
Notes: 

• Most of the material in this chapter is taken from Young and Freedman, Chaps. 9 
and 10. 

4.1 Angular Velocity and Acceleration 
We have already briefly discussed rotational motion in Chapter 1 when we sought to 
derive an expression for the centripetal acceleration in cases involving circular motion 
(see Section 1.4 and equation (1.46)). We will revisit these notions here but with a 
somewhat broader scope. 
 
We reintroduce some basic relations between an angle of rotation θ  about some fixed 
axis, the radius, and the arc traced by the radius over the angle θ . Figure 1 shows these 
relationships. First, the natural angular unit is the radian, not the degree as one might 
have expected. The definition of the radian is such that it is the angle for which the radius 
r  and the arc s  have the same length (see Figure 1a). The circumference of a circle 
equals 2π  times the radius; it therefore follows that 
 

 
 
1 rad = 360

2π
= 57.3.  (4.1) 

 
Second, as we previously saw in Chap. 1, the angle is expressed with 
 

 θ = s
r

 (4.2) 

 
and can be seen from Figure 1b. 
 
We can define an average angular velocity as the ratio of an angular change Δθ  over a 

Figure 1 – The relations between an angle of rotation  about 
some fixed axis, the radius , and the arc  traced by the radius 
over the angle . 



 

 - 62 - 

time interval Δt   
 

 ω ave,z =
Δθ z

Δt
.  (4.3) 

 
For example, an object that accomplishes one complete rotation in one second has an 
average angular velocity (also sometimes called average angular frequency) of 2π  
rad/s. If we make these intervals infinitesimal, then we can define the instantaneous 
angular velocity (or frequency) with 
 

 
ω z = limΔt→0

Δθ z

Δt

=
dθ z

dt
.

 (4.4) 

 
That is, the instantaneous angular velocity is the time derivative of the angular 
displacement. The reason for the presence of the subscript “ z ” in equations (4.3) and 
(4.4) will soon be made clearer. It should be noted that an angular displacement Δθ  can 
either be positive or negative; it is a matter of convention how the sign is defined. We 
will define an angular displacement as positive when it is effected in a counter-clockwise 
direction, as seen from an observer, when the fixed about which the rotation is done is 
pointing in the direction of the observer. This is perhaps more easily visualized with 
Figure 2. 

4.1.1 Vector Notation 
Since a rotation is defined in relation to some fixed axis, it should perhaps not be too 
surprising that we can use a vector notation for angular displacements. That is, just as we 
can define a vector Δr  composed of linear displacements along the three independent 

Figure 2 – Convention for the sign of 
an angle. 



 

 - 63 - 

axes in Cartesian coordinates with 
 
 Δr = Δxex + Δyey + Δzez ,  (4.5) 
 
we can do the same for an angular displacement vector Δθ  with 
 
 Δθ = Δθ xex + Δθ yey + Δθ zez .  (4.6) 
 
It is understood that in equation (4.6) Δθ x  is an angular displacement about the fixed 
x-axis , etc. The notation used in equations (4.3) and (4.4) is now understood as meaning 
that the angular displacement and velocity are about the fixed z-axis . An example is 
shown in Figure 3, along with the so-called right-hand rule, for the angular velocity 
vector 
 

 ω = dθ
dt
.  (4.7) 

 
The introduction of a vector notation has many benefits and simplifies the form of several 
relations that we will encounter. A first example is that of the infinitesimal arc vector dr  
that results for an infinitesimal rotation vector dθ  of a rigid body (please note that we 
have intentionally replaced s  for the finite arc in equation (4.2) with dr  and not ds ). Let 
us consider the special case shown in Figure 4 where an infinitesimal rotation dθ = dθ zez  
about the z-axis  is effected on a vector r = r ex  aligned along the x-axis . As can be seen 
from the figure, the resulting infinitesimal arc dr = dr ey  will be oriented along the 
y-axis . We know from equation (4.2) that  
 
 dr = rdθ ,  (4.8) 
  
 

Figure 3 – Shown is the vector representation for an 
angular velocity about the , along with the so-
called right-hand rule.  
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but how can we mathematically determine the orientation of the infinitesimal arc from 
that of the rotation and radius? To do so, we must introduce the cross product between 
two vectors. 
 
Let a  and b  two vectors such that 
 

 
a = axex + ayey + azez
b = bxex + byey + bzez .

 (4.9) 

 
Then we define the cross product 
 
 a × b = aybz − azby( )ex + azbx − axbz( )ey + axby − aybx( )ez .  (4.10) 
 
It is important to note that  
 
 a × b = −b × a.  (4.11) 
 
It is then straightforward to establish the following 
 

 
ex × ey = ez
ey × ez = ex
ez × ex = ey ,

 (4.12) 

 
and 
 
 ei × ei = 0,  (4.13) 
 
where i = x, y, or z . Coming back to our simple example of Figure 4, and considering 
equations (4.8) and (4.12) we find that 
 
 dr ey = dθ zez × r ex .  (4.14) 
 
Although equation (4.14) results from a special case where the orientation of the different 
vectors was specified a priori, this relation can be generalized with 

zdθ dr
r

x

y

(+z)

Figure 4 - Infinitesimal rotation of a rigid body about the . 
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 dr = dθ × r,  (4.15) 
 
as could readily verified by changing the orientation of r  and dθ  in Figure 4. We 
therefore realize that the infinitesimal arc dr  represents the change in the radius vector r  
under a rotation dθ ; hence the chosen notation. Moreover, we can find a vector 
generalization of equation (1.44) in Chapter 1 that established the relationship between 
the linear and angular velocities by dividing by an infinitesimal time interval dt  on both 
sides of equation (4.15). We then find 
 
 v =ω × r,  (4.16) 
 
where v = dr dt  and ω = dθ dt . 
 
Just as we did for the angular velocity in equations (4.3) and (4.4) (but using a vector 
notation), we can define an average angular acceleration over a time interval Δt  with 
 

 α ave =
Δω
Δt

 (4.17) 

 
and an instantaneous angular acceleration with 
 

 
α = lim

Δt→0

Δω
Δt

= dω
dt
.

 (4.18) 

  
Combining equations (4.7) and (4.18), we can also express the instantaneous angular 
acceleration as the second order time derivative of the angular displacement 
 

 

α = dω
dt

= d
dt

dθ
dt

⎛
⎝⎜

⎞
⎠⎟

= d
2θ
dt 2

.

 (4.19) 

4.1.2 Constant Angular Acceleration 
We have so far observed a perfect correspondence between the angular displacement dθ , 
velocity ω , and acceleration α  with their linear counterparts dr , v , and a . We also 
studied in Section 2.1 of Chapter 2 the case of a constant linear acceleration and found 
that 
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a t( ) = a   (constant)
v t( ) = v0 + at

r t( ) = r0 + v0t +
1
2
at 2,

 (4.20) 

 
with r0  and v0  the initial position and velocity, respectively. We further combined these 
equations to derive the following relation 
 

 1
2
v2 t( )− v02⎡⎣ ⎤⎦ = a ⋅ r t( )− r0⎡⎣ ⎤⎦.  (4.21) 

 
Because the relationship between θ , ω , and α  is the same as that between r , v , and a , 
we can write down similar equations for the case of constant angular acceleration  
 

 
α t( ) = α    (constant)
ω t( ) =ω 0 +α t

θ t( ) = θ0 +ω 0t +
1
2
α t 2

 (4.22) 

 
and 
 

 1
2

ω 2 t( )−ω 0
2⎡⎣ ⎤⎦ = α ⋅ θ t( )−θ0⎡⎣ ⎤⎦  (4.23) 

 
without deriving them, since the process would be identical to the one we went through 
for the constant linear acceleration case.    

4.1.3  Linear Acceleration of a Rotating Rigid Body 
We previously derived equation (4.16) for the linear velocity of a rotating rigid body. We 
could think, for example, of a solid, rotating disk and focus on the trajectory of a point on 
its surface. Since this point, which at a given instant has the velocity v , does not move 
linearly but rotates, there must be a force “pulling” it toward the centre point of the disk. 
This leads us to consider, one more time, the concept of the centripetal acceleration 
discussed in Chapter 1 (see Section 1.4). It is, however, possible to use equation (4.16) to 
combine two types of accelerated motions. To do so, we take its time derivative  
 

 

dv
dt

= d
dt

ω × r( )

= dω
dt

× r⎛
⎝⎜

⎞
⎠⎟ + ω × dr

dt
⎛
⎝⎜

⎞
⎠⎟

= α × r +ω × v.

 (4.24) 
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On the second line of equation (4.24) we use the fact that the derivative of a product of 
functions, say, f  and g , yields 
 

 d
dt

fg( ) = df
dt
g + f dg

dt
. (4.25) 

 
The same result holds for the scalar or cross products between two vectors a  and b . We 
can verify this as follows 
 

 

d
dt
a ⋅b( ) = d

dt
axbx + ayby + azbz( )

= d
dt

axbx( ) + d
dt

ayby( ) + d
dt

azbz( )

= dax
dt

bx + ax
dbx
dt

+
day
dt

by + ay
dby
dt

+
daz
dt

bz + az
dbz
dt

= dax
dt

bx +
day
dt

by +
daz
dt

bz + ax
dbx
dt

+ ay
dby
dt

+ az
dbz
dt

= da
dt

⋅b + a ⋅ db
dt

 (4.26) 

 
and if we consider the x  component of a × b  (see equation (4.10)) 
 

 

d
dt
a × b( )x =

d
dt

aybz − azby( )
= d
dt

aybz( )− d
dt

azby( )
=

day
dt

bz + ay
dbz
dt

⎛
⎝⎜

⎞
⎠⎟
−

daz
dt

by + az
dby
dt

⎛
⎝⎜

⎞
⎠⎟

=
day
dt

bz −
daz
dt

by
⎛
⎝⎜

⎞
⎠⎟
+ ay

dbz
dt

− az
dby
dt

⎛
⎝⎜

⎞
⎠⎟

= da
dt

× b⎛
⎝⎜

⎞
⎠⎟ x

+ a × db
dt

⎛
⎝⎜

⎞
⎠⎟ x
.

 (4.27) 

 
If we also consider similar solutions for the y  and z , then we have 
 

 d
dt
a × b( ) = da

dt
× b + a × db

dt
.  (4.28) 

 
Returning to equation (4.24), we insert equation (4.16) back into it to get 
 
 a = α × r +ω × ω × r( ).  (4.29) 
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The term within square brackets can be further expanded using the following identity 
(which could be proven combining equation (4.10) and the expansion for the scalar 
product) 
 
 a × b × c( ) = a ⋅c( )b − a ⋅b( )c.  (4.30) 
 
We then find that  
 

 
a = α × r + ω ⋅r( )ω − ω ⋅ω( )r
= α × r + ω ⋅r( )ω −ω 2r.

 (4.31) 

 
Let us now examine the last two terms on the right-hand side of second of equations 
(4.31). First, we break down the position vector into two parts 
 
  r = r + r⊥ ,  (4.32) 
 
where  r  and r⊥  are the parts of r  that are parallel and perpendicular to the orientation of 
the angular velocity vector ω , respectively. The perpendicular component r⊥  is simply 
the distance of the point under consideration from the axis of rotation. It follows that we 
can write for the second term 
 

 
 

ω ⋅r( )ω = ωr( )ω
=ω 2r.

 (4.33) 

 
If we know combine this equation with the third term of equation (4.31), then we find 
that 
 

 

 

ω ⋅r( )ω −ω 2r =ω 2r −ω
2r

=ω 2 r − r( )
= −ω 2r⊥ .

 (4.34) 

 
Equation (4.31) for the linear acceleration of a point on a rigid body becomes 
 
 a = α × r −ω 2r⊥ .  (4.35) 
 
The first term on the right-hand side of this equation is the tangential acceleration due 
to the angular acceleration 
 
 a tan = α × r. (4.36) 
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We should note that only the perpendicular component r⊥  contributes to the magnitude 
of the tangential acceleration, because of the presence of the cross product. We can verify 
this as follows 
 

 
 

α × r = α × r + r⊥( )
= α × r +α × r⊥ ,

 (4.37) 

 
but  α × r = 0  since α  and  r  are parallel to one another. For our rigid body, we then 
rewrite equation (4.35) as 
 
 a = α × r⊥ −ω

2r⊥ ,  (4.38) 
 
while the tangential acceleration becomes 
 
 a tan = α × r⊥  (4.39) 
 
and 
 
 atan =αr⊥ .  (4.40) 
 
The second term on the right-hand side of equation (4.35) is the radial acceleration due 
to the angular acceleration 
 
 arad = −ω 2r⊥ . (4.41) 
 
This acceleration is nothing more than the vector form of the centripetal acceleration 
discussed in Chapter 1 for circular motions. The minus sign in equation (4.41) indicated 
that the acceleration is directed toward the origin (or the axis of rotation). The magnitude 
of the radial acceleration is 
 
 arad =ω

2r⊥ ,  (4.42) 
 
which is the same result obtained with equation (1.46). Accordingly, we could have 
worked out this analysis by first noticing that, for rigid body, equation (4.16) simplifies to 
 

 

 

v =ω × r

=ω × r + r⊥( )
=ω × r⊥ .

 (4.43) 

 
It would have then become clear from the onset that only the perpendicular component 
r⊥  partakes in the analysis. 
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4.1.4 Exercises 
1. (Prob. 9.17 in Young and Freedman.) A safety device brings the blade of a power 
mower from an initial angular speed of ω1  to rest in 1.00 revolution. At the same 
constant angular acceleration, how many revolutions would it take the blade to come to 
rest from an initial angular speed ω 2  that was three times as great (ω 2 = 3ω1 ). 
 
Solution. 
 
We use equation (4.23) (in one dimension) to relate the necessary quantities. That is, 
 

 1
2
ω1

2 =α ⋅2π ,  (4.44) 

 
where the “2π ” corresponds to one revolution (i.e., θ1 = 2π ). We therefore have 
 

 α = ω1
2

4π
.  (4.45) 

 
For the second angular speed we have 
 

 

1
2
ω 2

2 =αθ2

= ω1
2

4π
θ2,

 (4.46) 

 
or 
 

 θ2 = 2π
ω 2

2

ω1
2

= 18π .
 (4.47) 

 
It therefore takes 9.00 revolutions to stop the blade.   
 
2. (Prob. 9.22 in Young and Freedman.) You are to design a rotating cylindrical axle to 
lift 800-N buckets of cement from the ground to a rooftop 78.0 m above the ground. The 
buckets will be attached to the free end of a cable that wraps around the rim of the axle; 
as the axle turns the buckets will rise. (a) What should the diameter of the axle be in order 
to raise the buckets at a steady 2.00 cm/s when it is turning at 7.5 rpm? (b) If instead the 
axle must give the buckets an upward acceleration of 0.400 m/s2 , what should the 
angular acceleration of the axle be? 
 
Solution. 
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(a) We know that the magnitude of the tangential velocity at rim is 
 
 v =ωr  (4.48) 
 
and will also be the speed at which the buckets will rise. We therefore have 
 

 

r = v
ω

= 0.02 m/s
2π ⋅7.5 60  rad/s

= 2.55 cm.

 (4.49) 

 
(b) The angular acceleration can be evaluated with equation (4.40)  
 

 

α = atan

r

= 0.4 m/s2

0.0255 m
= 15.7 rad/s2.

 (4.50) 

4.2 Moment of Inertia and Rotational Kinetic Energy 
We will once again concentrate on a given point on or in our rotating rigid body located 
at position ri , the subscript “ i ” identifies the particle located at that point. We now 
calculate the kinetic energy associated with this particle with 
 

 
Ki =

1
2
mivi

2

= 1
2
mi ω × ri( )2 ,

 (4.51) 

 
where we used equation (4.16) for the velocity. We will now make use of the following 
 
 a × b( ) ⋅ c × d( ) = a ⋅c( ) b ⋅d( )− a ⋅d( ) b ⋅c( ),  (4.52) 
 
and equation (4.51) becomes (with a = c =ω  and b = d = ri ) 
 

 

 

Ki =
1
2
mi ω × ri( ) ⋅ ω × ri( )

= 1
2
mi ω 2ri

2 − ω ⋅ri( )2⎡
⎣

⎤
⎦

= 1
2
mi ω 2ri

2 − ωri,( )2⎡
⎣

⎤
⎦,

 (4.53) 
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and since, as before, 
 
  ri = ri, + ri,⊥  (4.54) 
 
while because  r  and r⊥  are perpendicular to one another 
 
  ri

2 = ri,
2 + ri,⊥

2 ,  (4.55) 
 
we finally find 
 

 Ki =
1
2
miri,⊥

2 ω 2. (4.56) 

 
We now define a new quantity 
 
 Ii = miri,⊥

2  (4.57) 
 
and we rewrite equation (4.53) as 
 

 Ki =
1
2
Iiω

2.  (4.58) 

 
and we see that Ii  serves the same role for the rotational kinetic energy of the particle as 
the mass does for the kinetic energy due to linear motion. If we now sum over all 
particles that compose the rigid body, we find for the total rotational kinetic energy 
 

 
K = 1

2
Ii

i
∑⎛⎝⎜

⎞
⎠⎟
ω 2

= 1
2
Iω 2,

 (4.59) 

 
where we introduced the moment of inertia of the rigid body 
 

 
I = Ii

i
∑

= miri,⊥
2

i
∑ .

 (4.60) 

 
The moment of inertia is a function of the geometry of the rigid body as well as the 
distribution of the matter within it. And as was mentioned above, its role for rotational 
motions is similar to that of the mass when dealing with linear motions. This implies, 
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among other things, that the greater the moment of inertia, the harder it is to start the 
body rotating from rest (or slowing it down when already rotating). 
 
The last of equations (4.60) would only be useful in calculating the moment of inertia for 
cases where the rigid body is made of a discrete arrangement of particles. For a body 
made from a continuous distribution of matter, the summation in equation (4.60) is 
replaced by an integral 
 
 I = r⊥

2 dm∫ ,  (4.61) 
 
where dm  is an infinitesimal element of mass located a distance r⊥  away from the axis 
of rotation. If we define ρ  has the mass density of the body (in kg/m3 ) and dV  as the 
elemental volume where dm  is located, then we can write 
 
 I = r⊥

2ρ dV∫ .  (4.62) 
 
The calculation of this integral for different shapes and geometries of objects is beyond 
the scope of our study. But one important aspect that comes out from such analyses is 
that, for a given body (e.g., a sphere or a cube), the position of the axes about which the 
moment of inertia is calculated (i.e., the axis of rotation in our case) will affect the value 
of the integral in equation (4.62). Examples of moments of inertia for a few rigid bodies 
and axis positions are shown in Figure 5. 

Figure 5 – The moment inertia for different geometries of rigid bodies. 
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4.3 Gravitational Potential Energy of a Rigid Body 
We can proceed in a similar manner to determine the gravitational potential energy of a 
rigid body as we did for the rotational kinetic energy. That is, we once again concentrate 
on a given point on or in our rotating rigid body located at position ri , the subscript “ i ” 
identifies the particle located at that point whose gravitational potential energy is 
 
 Ui = migyi ,  (4.63) 
 
where as usual 
 
 ri = xiex + yiey + ziez ,  (4.64) 
  
or yi = ri ⋅ey . We can determine the total gravitational potential energy by summing over 
all the particles that make the rigid body 
 

 
U = Ui

i
∑

= g miyi
i
∑ .

 (4.65) 

 
Referring to equation (3.56) in Chapter 3, where we defined the centre of mass of a body, 
we can transform equation (4.65) to 
 
 U = Mgycm,  (4.66) 
 
where M = mii∑  is the total mass of the body. The total gravitational potential energy 
of an extended, rigid body is calculated as if all its mass was concentrated at its centre of 
mass. 

4.4 Exercises 
3. (Prob. 9.30 in Young and Freedman.) Four small spheres, each of which you can 
regard as a point of mass 0.200 kg, are arranged in a square 0.400 m on a side and 
connected by extremely light rods. Find the moment of inertia of the system about an axis 
(a) through the centre of the square, perpendicular to its plane; (b) bisecting two opposite 
sides of the square; (c) that passes through the centres of the upper left and lower right 
spheres. 
 
Solution. 
 
(a) The distance from the centre is the same for the four 
spheres; denoting it by r , we have 
   

 Rotation of Rigid Bodies   9-9 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

Then (0 235 m)(67 0 rad/s) 15 7 m/s.v rω= = . . = .  
2 2 2

rad (0 235 m)(67 0 rad/s) 1060 m/sa rω= = . . =  
2

rad
2

1060 m/s 108;
9 80 m/s

a
g

= =
.

 108a g=  

EVALUATE:   In parts (a) and (b), since a ratio is used the units cancel and there is no need to convert ω  to 
rad/s. In part (c), v and rada  are calculated from ,ω  and ω  must be in rad/s. 

 9.30. IDENTIFY and SET UP:   Use Eq. (9.16). Treat the spheres as point masses and ignore I of the light rods. 
EXECUTE:   The object is shown in Figure 9.30a. 
(a)  

 

 2 2(0 200 m) (0 200 m) 0 2828 mr = . + . = .
2 24(0 200 kg)(0 2828 m)i iI m r= ¦ = . .  

20 0640 kg mI = . ⋅  

Figure 9.30a   
 

(b) The object is shown in Figure 9.30b. 
 

 0 200 mr = .  
2 24(0 200 kg)(0 200 m)i iI m r= ¦ = . .  

20 0320 kg mI = . ⋅  

Figure 9.30b   
 

(c) The object is shown in Figure 9.30c. 
 

 0 2828 mr = .  
2 22(0 200 kg)(0 2828 m)i iI m r= ¦ = . .  

20 0320 kg mI = . ⋅  

Figure 9.30c   
 

EVALUATE:   In general I depends on the axis and our answer for part (a) is larger than for parts (b) and (c). 
It just happens that I is the same in parts (b) and (c). 

 9.31. IDENTIFY:   Use Table 9.2. The correct expression to use in each case depends on the shape of the object 
and the location of the axis. 
SET UP:   In each case express the mass in kg and the length in m, so the moment of inertia will be in 

2kg m .⋅  

EXECUTE:   (a) (i) 2 2 21 1
3 3 (2 50 kg)(0 750 m) 0 469 kg m .I ML= = . . = . ⋅  
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r = 0.200( )2 + 0.200( )2

= 0.283 m.
 (4.67) 

 
The moment of inertia is then 
 

 

I = r2 mi
i
∑

= 0.283 m( )2 4 ⋅0.200 kg( )
= 0.064 kg m2.

 (4.68) 

 
(b) In this case again the distance of the four masses to the 
axis is the same with r = 0.200 m , which implies that 
 

I = r2 mi
i
∑

= 0.200 m( )2 4 ⋅0.200 kg( )
= 0.032 kg m2.

 (4.69) 

 
It is half of the value obtained in (a). 
 
(c) Now, two of the masses are located on the axis and have 
r1 = 0  and do not contribute to the moment of inertia. The 

other two have r2 = 0.200( )2 + 0.200( )2 = 0.283 m2 . The 
moment of inertia then becomes 
 
  

 

I = 2mr2
2

= 0.283 m( )2 2 ⋅0.200 kg( )
= 0.032 kg m2.

 (4.70) 

 
4. (Prob. 9.47 in Young and Freedman.) A frictionless pulley has the shape of a uniform 
solid disk of mass 2.50 kg and radius 20.0 cm. A 1.50 kg stone is attached to a very light 
wire that is wrapped around the rim of the pulley, and the system is released from rest. (a) 
How far must the stone fall so that the pulley has 4.50 J of kinetic energy? (b) What 
percent of total kinetic energy does the pulley have? 
 
Solution.  
 
(a) The velocity of the stone v = −vey  (the y-axis  is positive-vertical) is related to the 
angular velocity ω =ωez  of the disk and its radius r  (located in the xy-plane ) with 
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20 0320 kg mI = . ⋅  

Figure 9.30c   
 

EVALUATE:   In general I depends on the axis and our answer for part (a) is larger than for parts (b) and (c). 
It just happens that I is the same in parts (b) and (c). 

 9.31. IDENTIFY:   Use Table 9.2. The correct expression to use in each case depends on the shape of the object 
and the location of the axis. 
SET UP:   In each case express the mass in kg and the length in m, so the moment of inertia will be in 

2kg m .⋅  

EXECUTE:   (a) (i) 2 2 21 1
3 3 (2 50 kg)(0 750 m) 0 469 kg m .I ML= = . . = . ⋅  
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Then (0 235 m)(67 0 rad/s) 15 7 m/s.v rω= = . . = .  
2 2 2

rad (0 235 m)(67 0 rad/s) 1060 m/sa rω= = . . =  
2

rad
2

1060 m/s 108;
9 80 m/s

a
g

= =
.

 108a g=  

EVALUATE:   In parts (a) and (b), since a ratio is used the units cancel and there is no need to convert ω  to 
rad/s. In part (c), v and rada  are calculated from ,ω  and ω  must be in rad/s. 

 9.30. IDENTIFY and SET UP:   Use Eq. (9.16). Treat the spheres as point masses and ignore I of the light rods. 
EXECUTE:   The object is shown in Figure 9.30a. 
(a)  

 

 2 2(0 200 m) (0 200 m) 0 2828 mr = . + . = .
2 24(0 200 kg)(0 2828 m)i iI m r= ¦ = . .  

20 0640 kg mI = . ⋅  

Figure 9.30a   
 

(b) The object is shown in Figure 9.30b. 
 

 0 200 mr = .  
2 24(0 200 kg)(0 200 m)i iI m r= ¦ = . .  

20 0320 kg mI = . ⋅  

Figure 9.30b   
 

(c) The object is shown in Figure 9.30c. 
 

 0 2828 mr = .  
2 22(0 200 kg)(0 2828 m)i iI m r= ¦ = . .  

20 0320 kg mI = . ⋅  

Figure 9.30c   
 

EVALUATE:   In general I depends on the axis and our answer for part (a) is larger than for parts (b) and (c). 
It just happens that I is the same in parts (b) and (c). 

 9.31. IDENTIFY:   Use Table 9.2. The correct expression to use in each case depends on the shape of the object 
and the location of the axis. 
SET UP:   In each case express the mass in kg and the length in m, so the moment of inertia will be in 

2kg m .⋅  

EXECUTE:   (a) (i) 2 2 21 1
3 3 (2 50 kg)(0 750 m) 0 469 kg m .I ML= = . . = . ⋅  
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v =ω × r
=ωr ey ,

 (4.71) 

 
or v =ωr . The conservation of energy before and after the stone starts falling tells us that 
 

 mgy0 = mgy1 +
1
2
mv2 + 1

2
Iω 2,  (4.72) 

 
where m  is the mass of the stone and I = MR2 2  is the moment of inertia of the disk, 
which we determined using Figure 5f. We can then write 
 

 mg y0 − y1( ) = 1
2
mω 2R2 + 1

4
MR2ω 2.  (4.73) 

 
But the kinetic energy of the pulley is given by the last term on the right hand-side of 
equation (4.73), and  
 

 

ω 2 = 4Kdisk

MR2

= 4 ⋅4.50 J
2.50 kg ⋅ 0.200 cm( )2

= 180 rad2 /s2.

 (4.74) 

 
We finally write   
 

 

y0 − y1 =
ω 2R2

2g
1+ M

2m
⎛
⎝⎜

⎞
⎠⎟

= 180 rad2 /s2 ⋅0.04 m2

2 ⋅9.80 m/s2 1+ 2.50 kg
2 ⋅1.50 kg

⎛
⎝⎜

⎞
⎠⎟

= 0.673 m.

 (4.75) 

 
The stone need to fall 0.673 m for 4.50 J of rotational kinetic energy to be stored in the 
disk.  
 
(b) The percent of kinetic energy stored in the pulley is 
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Kdisk

K tot

= MR2ω 2 4
mω 2R2 2 +MR2ω 2 4

= 1
1+ 2m M

= M
M + 2m

= 45.5%.

 (4.76) 

 
It is interesting to note that this figure a constant of time and is only a function of the 
masses of the pulley and stone. 

4.5 Parallel-Axis Theorem  
We already stated in Section 4.2 that the moment of inertia of a rigid body depends on the 
choice of the axis about which it is calculated. There is, however, a useful theorem that 
links the moment of inertia obtained when using an axis that goes through its centre of 
mass, we denote it by Icm , and another that is parallel to it but located some distance d  
away, let us call it Ip . We can conveniently, but in all generality, locate the origin of the 
system of axes at the position of the centre of mass. It follows from this that  
 
 rcm = 0.  (4.77) 
 
We can also, without any loss of generality, choose the z-axis  as that going through the 
centre of mass and about which the moment of inertia is Icm . With this choice, we can 
write for d  = d( )  the location of the parallel axis 
 
 d = aex + bey .  (4.78) 
  
We now use the second of equations (4.60) for the definition of the moment of inertia 
 

 
Icm = miri,⊥

2

i
∑

= mi xi
2 + yi

2( )
i
∑ .

 (4.79) 

 
We can also use the same definition for Ip , but the distance of a point located at ri,⊥  
(relative to the z-axis ) is ri,⊥ − d  from the parallel axis. We therefore have, with 

M = mii∑ , 
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Ip = mi xi − a( )2 + yi − b( )2⎡
⎣

⎤
⎦

i
∑

= mi xi
2 + yi

2( )− 2 axi + byi( ) + a2 + b2( )⎡⎣ ⎤⎦
i
∑

= mi xi
2 + yi

2( )− 2 axi + byi( ) + d 2⎡⎣ ⎤⎦
i
∑

= Icm − 2a mixi
i
∑ − 2b miyi

i
∑ + d 2 mi

i
∑

= Icm − 2Maxcm − 2Mbycm +Md
2,

 (4.80) 

 
or alternatively 
 
 Ip = Icm − 2Md ⋅rcm,⊥ +Md

2. (4.81) 
 
We know from equation (4.77) that rcm,⊥ = 0 , which then yields the final result for the 
parallel-axis theorem 
 
 Ip = Icm +Md

2. (4.82) 
 
For example, let us use this equation to calculate the moment of inertia for the slender rod 
of Figure 5b, where the axis used for Ip  is located at one end of the rod, starting with the 
result of Figure 5a, where the axis used for Icm  goes through the centre of mass. In this 
case d = L 2 , then 
 

 

Ip = Icm +
ML2

4

= ML2

12
+ ML

2

4

= ML2

3
,

 (4.83) 

 
which is the result expected. 

4.5.1 Exercises 
5. (Prob. 9.53 in Young and Freedman.) About what axis will a uniform, balsa-wood 
sphere have the same moment of inertia as does a thin-walled, lead sphere of the same 
mass and radius, with the axis along a diameter? 
 
Solution. 
 
If we the subscripts “1” and “2” for the uniform and thin-walled spheres, respectively, 
then from Figure 5h and i for an axis along a diameter 
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I1,cm = 2

5
MR2

I2,cm = 2
3
MR2.

 (4.84) 

 
We need to determine d  for 
 

 
I1,p = I1,cm +Md

2

= I2,cm .
 (4.85) 

 
We therefore have 
 

 

d 2 = 1
M

I2,cm − I1,cm( )

= 2R2 1
3
− 1
5

⎛
⎝⎜

⎞
⎠⎟

= 4
15

R2,

 (4.86) 

 
or 
 
 d = 0.516R.  (4.87) 

4.6 Angular Momentum and Torque 
We now seek to further expand on the correspondence between linear and rotational 
motions for a rigid body. In what will follow, we will put a further restriction that the axis 
rotation about which the rotation takes place is a symmetry axis. For example, one can 
think of the long axis of a cylinder, as in Figure 5f. While this simplification will ease our 
analysis, the results can be shown to be of greater generality, but this demonstration is 
beyond the scope of our study (see footnote 1 on a later page). 
 
We already know of the correspondences between the following quantities when 
considering translational and rotational motions: 
 

 

x↔θ
v↔ω
a↔α
m↔ I .

 (4.88) 
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But we have yet to find or define analogs to the linear momentum p  and the force F . To 
do so, we start by considering a mass element mi  located at ri  in the rigid body, and for 
which 
 
 v i =ω × ri .  (4.89) 
 
We now first multiply by mi  (to get the linear momentum) and then cross-multiply with 
ri . That is, using equations (4.30) and (4.32), 
 

 

 

ri ×miv i = ri × miω × ri( )
= miri

2ω −mi ω ⋅ri( )ri
= mi ri

2ω − ω ⋅ri( )ri,⎡⎣ ⎤⎦ −mi ω ⋅ri( )ri,⊥
= mi ri

2ω − ri,
2ω( )−ωmiri,ri,⊥

= miri,⊥
2 ω −ωmiri,ri,⊥ .

 (4.90) 

 
(Note that  ri,  can be positive or negative in this equation.) We introduce a new vector 
quantity  
 

 
Li ≡ ri ×miv i

≡ ri × pi ,
 (4.91) 

 
which we sum all over the volume spanned by the rigid body (i.e., over i ). Equation 
(4.90) then becomes 
 

 

 

Li
i
∑ = ωmiri,⊥

2 −ωmiri,ri,⊥( )
i
∑

=ω miri,⊥
2

i
∑ −ω miri,ri,⊥

i
∑ .

 (4.92) 

 
We know from equation (4.60) that the first term on the right-hand side is the product of 
the moment of inertia and the angular velocity Iω , but the last term will cancel out when 
the axis of rotation is an axis of symmetry. That is, 
 
 

 
miri,ri,⊥

i
∑ = 0.  (4.93) 

 
This is because as one effects the sum about the axis of symmetry, for each term  miri,ri,⊥  
there will exist another one such that  mjrj ,rj ,⊥ = −miri,ri,⊥ . It follows that the total 
angular momentum L  is defined as  
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L = Li

i
∑

= Iω
 (4.94) 

 
when the rigid body is rotating about an axis of symmetry.1 We then find a new 
correspondence between linear and angular momentum that is perfectly consistent with 
equations (4.88), i.e., 
 
 p = mv↔ L = Iω.  (4.95) 
 
Pushing the analogy further we could postulate that the analog of the force for rotational 
motion must be the time derivative of the angular momentum since according to 
Newton’s Second Law 
 

 Fnet =
dp
dt
.  (4.96) 

 
We would then define the torque with 
 

 τ = dL
dt
,  (4.97) 

 
which according to equation (4.94) would yield 
 

 

τ = d
dt

Iω( )

= I dω
dt

= Iα ,

 (4.98) 

 
since the moment of inertia I  is constant for a rigid body. Equations (4.97) and (4.98) are 
the correct relations that link the torque and angular momentum for a rigid body rotating 
about an axis of symmetry (although equation (4.97) is true in general). But just as the 
angular momentum is also related to the linear momentum through equation (4.91), there 
is a similar connection between the torque and the force. We thus proceed as follows 
 

 τ = d
dt

Li
i
∑⎛⎝⎜

⎞
⎠⎟
,  (4.99) 

  

                                                
1 Although the result L = Iω  was derived for rotation about symmetry axes and that the 
more general relation is mathematically different, it is always possible to bring this more 
general relation into that simpler form through a judicious orientation of the system of 
axes chosen as a basis for the rigid body (commonly called the principal axes). 
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which, since v i ×miv i = 0 , becomes  
 

 

τ == d
dt
ri × pi( )

i
∑

= dri
dt

× pi
i
∑ + ri ×

dpi
dti

∑

= v i ×miv i
i
∑ + ri ×

dpi
dti

∑
= ri × Fnet,i

i
∑

= τ i
i
∑ .

 (4.100) 

 
The total torque on the rigid body is therefore the sum of the all the torques acting on the 
individual particles that form the rigid body.  
 
We note that the torques on the individual particles result from the net force applied on 
these particles, which is the sum of the corresponding external and internal forces. But if 
the internal forces that characterize the interaction between particles are central forces, 
i.e., if they act along the line that joins a given pair of interacting particles, then the 
torques resulting from these forces will cancel each other (because of Newton’s Third 
Law; see Figure 6). It follows that only external forces are involved in the determination 
of the total torque acting on a rigid body. We can therefore write 
 

 
τ = ri × Fext,i

i
∑
τ ext,i

i
∑ .

 (4.101) 

 
We then find our last correspondence between translational and rotational motions 

Figure 6 – The cancellation of torques 
resulting from the internal forces on a 
pair of particles due to their interaction. 
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 F = ma↔τ = Iα .  (4.102) 
 
It is also important to note that the second and third of equations (4.100) are valid in 
general for a single particle with 
 
 τ = r × Fnet .  (4.103) 

4.6.1 Exercises 
6. (Prob. 10.3 in Young and Freedman.) A square metal plate 0.180 m on each side is 
pivoted about on axis through point O at its centre and perpendicular to the plate. 
Calculate the net torque about this axis due to the three forces shown in Figure 7 if the 
magnitude of the forces are F1 = 18.0 N , F2 = 26.0 N , and F3 = 14.0 N . The plate and all 
forces are in the plane of the page.  
 
Solution. 
 
Using equation (4.103) for the torque w can write 
 

 
τ = r × Fnet
= rFnet sin φ( ),  (4.104) 

 
where φ  is the angle between r and Fnet . We then have 
 

 
τ1 = 18.0 N( ) 2 ⋅0.090 m( )sin −135°( )

= −1.62 N,
 (4.105) 

 
and since the torque is negative, it is directed into the page (i.e., the plate is moving 
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(d) SET UP:   Consider Figure 10.1d. 
 

 EXECUTE:   Flτ =  
sin (2.00 m)sin 60 1.732 ml r φ= = ° =  
(10.0 N)(1.732 m) 17 3 N mτ = = . ⋅  

Figure 10.1d  
 

 

This force tends to produce a clockwise rotation about the axis; by the right-hand rule the vector τG  is 
directed into the plane of the figure. 
(e) SET UP:   Consider Figure 10.1e. 

 

 EXECUTE:   Flτ =  
0r =  so 0l =  and 0τ =  

Figure 10.1e  
 

 

(f) SET UP:   Consider Figure 10.1f. 
 

 EXECUTE:   Flτ =  
sin ,l r φ=  180 ,φ = °  

so 0l =  and 0τ =  

Figure 10.1f   
 

EVALUATE:    The torque is zero in parts (e) and (f) because the moment arm is zero; the line of action of 
the force passes through the axis. 

 10.2. IDENTIFY:   Flτ =  with sin .l r φ=  Add the two torques to calculate the net torque. 
SET UP:   Let counterclockwise torques be positive. 
EXECUTE:   1 1 1 (8 00 N)(5 00 m) 40 0 N m.F lτ = − = − . . = − . ⋅  

2 2 2 (12 0 N)(2 00 m)sin30 0 12 0 N m.F lτ = + = . . . ° = + . ⋅  1 2 28 0 N m.τ τ τ¦ = + = − . ⋅  The net torque is 
28 0 N m,. ⋅  clockwise. 
EVALUATE:   Even though <1 2 ,F F  the magnitude of 1τ  is greater than the magnitude of 2,τ  because 1F  
has a larger moment arm. 

 10.3. IDENTIFY and SET UP:   Use Eq. (10.2) to calculate the magnitude of each torque and use the right-hand 
rule (Figure 10.4 in the textbook) to determine the direction. Consider Figure 10.3. 

 

 

Figure 10.3 
 

Let counterclockwise be the positive sense of rotation. 
Figure 7 – Torques on the metal plate of Prob. 
6. 
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clockwise. For the second force 
 

 
τ 2 = 26.0 N( ) 2 ⋅0.090 m( )sin 135°( )

= 2.34 N,
 (4.106) 

 
the torque is coming out of the page. Finally, for the last torque  
 

 
τ 3 = 14.0 N( ) 2 ⋅0.090 m( )sin 90°( )

= 1.78 N,
 (4.107) 

 
also coming out of the page. 
 
7. (Prob. 10.17 in Young and Freedman.) A 12.0-kg box resting on a horizontal, 
frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes over a 
frictionless pulley. The pulley has the shape of a uniform solid disk of mass 2.00 kg and 
diameter 0.500 m. After the system is released, find (a) the tension on the wire on both 
sides of the pulley and the acceleration of the box, and (b) the horizontal and vertical 
components of the force that the axle exerts on the pulley. 
 
Solution. 
 
(a) From the first two free-body diagrams shown in Figure 8 we have 
 

 
T1 = m1a

m2g −T2 = m2a,
 (4.108) 

 
or when combining these two equations 
 
 T2 −T1 = m2g − m1 +m2( )a.  (4.109) 
 
From the third free-body diagram of the figure we can also write for the torque acting on 
the pulley 
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Figure 10.17 
 

 10.18. IDENTIFY:   The tumbler has kinetic energy due to the linear motion of his center of mass plus kinetic 
energy due to his rotational motion about his center of mass. 
SET UP:   cm .v Rω=  0.50 rev/s 3.14 rad/s.ω = =  21

2I MR=  with 0 50 mR = . .  21
cm cm2K Mv=  and 

21
rot cm2 .K I ω=  

EXECUTE:   (a) tot cm rotK K K= +  with 21
cm cm2K Mv=  and 21

rot cm2 .K I ω=  

cm (0 50 m)(3 14 rad/s) 1.57 m/s.y Rω= = . . =  21
cm 2 (75 kg)(1 57 m/s) 92 4 J.K = . = .  

2 2 2 21 1 1
rot cm cm2 4 4 46.2 J.K I MR Mvω ω= = = =  tot 92 4 J 46 2 J 140 J.K = . + . =  

(b) rot

tot

46 2 J 33%.
140 J

K
K

.= =  

EVALUATE:   The kinetic energy due to the gymnast’s rolling motion makes a substantial contribution 
(33%) to his total kinetic energy. 

 10.19. IDENTIFY:   Since there is rolling without slipping, cm .v Rω=  The kinetic energy is given by  
Eq. (10.8). The velocities of points on the rim of the hoop are as described in Figure 10.13 in Chapter 10. 
SET UP:   3.00 rad/sω =  and 0 600 m.R = .  For a hoop rotating about an axis at its center, 2.I MR=  
EXECUTE:   (a) cm (0.600 m)(3.00 rad/s) 1.80 m/s.v Rω= = =  

(b) 2 2 2 2 2 2 21 1 1 1
cm cm cm cm2 2 2 2 ( )( / ) (2 20 kg)(1 80 m/s) 7 13 JK Mv I Mv MR v R Mvω= + = + = = . . = .  

(c) (i) cm2 3.60 m/s.v v= =  vG  is to the right. (ii) 0v =  

(iii) 2 2 2 2
cm tan cm cm( ) 2 2 55 m/s.v v v v R vω= + = + = = .  vG  at this point is at 45°  below the horizontal. 

(d) To someone moving to the right at cm,v v=  the hoop appears to rotate about a stationary axis at its 
center. (i) 1.80 m/s,v Rω= =  to the right. (ii) 1.80 m/s,v =  to the left. (iii) 1 80 m/s,v = .  downward. 
EVALUATE:   For the special case of a hoop, the total kinetic energy is equally divided between the motion 
of the center of mass and the rotation about the axis through the center of mass. In the rest frame of the 
ground, different points on the hoop have different speed. 

 10.20. IDENTIFY:   Only gravity does work, so other 0W =  and conservation of energy gives 1 1 2 2.K U K U+ = +  
2 21 1

2 cm cm2 2 .K Mv I ω= +  

SET UP:   Let 2 0,y =  so 2 0U =  and 1 0 750 m.y = .  The hoop is released from rest so 1 0.K =  cm .v Rω=  

For a hoop with an axis at its center, 2
cm .I MR=  

EXECUTE:   (a) Conservation of energy gives 1 2.U K=  2 2 2 2 2 21 1
2 2 2 ( ) ,K MR MR MRω ω ω= + =  so 

2 2
1.MR Mgyω =  

2
1 (9 80 m/s )(0 750 m)

33 9 rad/s.
0 0800 m

gy
R

ω . .= = = .
.

 

(b) (0 0800 m)(33 9 rad/s) 2 71 m/sv Rω= = . . = .  

Figure 8 – The free-body diagrams for Prob. 7. 
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τ = r T2 −T1( )
= Iα

= I a
r
,

 (4.110) 

 
since the tangential acceleration is a =αr , with r  the radius of the pulley (see equation 
(4.40)). We can transform equation (4.110) to  
 

 
T2 −T1 =

1
2
Mr2⎛

⎝⎜
⎞
⎠⎟
a
r2

= 1
2
Ma,

 (4.111) 

 
with I = Mr2 2  from Figure 5f. If we now subtract equations (4.109) and (4.111), we 
then have 
 

 

a = 2m2g
2m1 + 2m2 +M

= 2 ⋅5.00 kg ⋅9.80 m/s2

2 ⋅12.0 + 2 ⋅5.00 + 2.00( )kg

= 2.72 m/s2.

 (4.112) 

   
Inserting the first of equations (4.112) into equations (4.108) we find 
 

 

T1 =
2m1m2g

2m1 + 2m2 +M

= 2 ⋅12.0 kg ⋅5.00 kg ⋅9.80 m/s2

2 ⋅12.0 + 2 ⋅5.00 + 2.00( )kg
= 32.6 N

 (4.113) 

 
and 
 

 

T2 =
2m1 +M

2m2 + 2m1 +M
⎛
⎝⎜

⎞
⎠⎟
m2g

=
2 ⋅12.00 + 2.00( )kg

2 ⋅12.0 + 2 ⋅5.00 + 2.00( )kg
⎡

⎣
⎢

⎤

⎦
⎥ ⋅5.00 kg ⋅9.80 m/s2

= 35.4 N.

 (4.114) 

 
It is important to note that the reason for having T1 ≠ T2  is that we account the moment of 
inertia of the pulley with equation (4.111). 
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(b) The last free-body diagram of Figure 8 shows that three forces are acting on the 
pulley, which implies that it must react with a force F  that equals minus the resultant of 
the three forces. That is, 
 

 

F = − T1 +T2 +m2g( )
= − −T1( )ex − −T2 −m2g( )ey
= T1ex + T2 +m2g( )ey
= 32.6ex + 55.0ey( )N.

 (4.115) 

4.7 Combined Translational and Rotational Motions 
Consider two frames of reference: one inertial frame of axes ′x , ′y , and ′z  and a rotating 
frame with axes x, y, and z  tied to a rotating rigid body; this is shown in Figure 9. If we 
choose a point P  in the rigid body located at ri  from the origin of the rotating axes and 
we further located this origin to that of the inertial frame with R , then we can write 
 
 ′ri = R + ri  (4.116) 
 
for the position of P  in the inertial frame. We now inquire about the motion of P  as 
seen by an observer located at the origin of the inertial system with 
 

Figure 9 – A fixed inertial frame with axes , and a 
rotating frame with axes . The vector  locates the 
centre of mass of the rotating rigid body.   

r’

x’

y’

z’
y

z

R
x

Rigid Body

r

P

i

i
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d ′ri
dt

= d
dt
R + ri( )

= dR
dt

+ dri
dt
.

 (4.117) 

 
Upon using equation (4.16) we find that 
 

 
′v i = V + v i
= V +ω × ri ,

 (4.118) 

 
where  
 

 

v i ≡
dri
dt

′v i ≡
d ′ri
dt

V ≡ dR
dt
.

 (4.119) 

 
We therefore find that the motion of a point on the rigid body can be broken in its 
rotation motion about a given centre of rotation and the translational motion of that 
centre relative to an inertial frame of reference. 

4.7.1  With Rotation about the Centre of Mass 
We now constrain the rotation to be about an axis that passes through the centre of mass 
of the rigid body. That is, ′r  is now the position of P  from the centre of mass and R  the 
location of the centre of mass to the origin of the inertial frame of reference.  
 
We have already shown in Section 3.4 of Chapter 3 that the total linear momentum P  of 
the rigid body measured in the inertial frame, obtained by summing over all points such 
as P , equals the total mass M  of the rigid body times the velocity V  of its centre of 
mass. This is again readily verified with equation (4.118) 
 

 

P = mi ′v i
i
∑

= mi V +ω × ri( )
i
∑

= V mi
i
∑ +ω × miri

i
∑

= MV +ω × miri
i
∑ ,

 (4.120) 

 
which, since by definition mirii∑ = 0 , becomes 
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 P = MV.  (4.121) 
 
The next obvious inquiry to make at this point concerns the total angular moment L  
measured in the inertial frame. We do so as follows 
 

 

L = Li
i
∑

= ri′ ×mi ′v i
i
∑

= R + ri( )×mi V + v i( )⎡⎣ ⎤⎦
i
∑

= mi R ×V +R × v i + ri ×V + ri × v i( )
i
∑

= R × P+ mi R × v i + ri ×V( ) + ri ×miv i
i
∑

i
∑ .

 (4.122) 

 
However, the second and third terms can be shown to cancel since 
 

 

mi R × v i + ri ×V( )
i
∑ = mi

d
dt
R × ri( )−V × ri + ri ×V

⎡
⎣⎢

⎤
⎦⎥i

∑

= d
dt
R × miri

i
∑⎛

⎝⎜
⎞
⎠⎟
− 2V × miri

i
∑

= 0,

 (4.123) 

 
because, once again, mirii∑ = 0  by virtue of the definition for the centre of mass. 
Equation (4.122) then yields the important result 
  
 L = R × P+ ri × pi

i
∑ .  (4.124) 

 
That is, the total angular momentum of a rigid body about the origin of an inertial frame 
is the sum of the angular momentum of the centre of mass about that origin and the 
angular momentum of the rigid body about its centre of mass. 

4.7.2 Energy Relations 
We just saw that the overall motion of a rigid body can be advantageously broken down 
into motions about its centre of mass and of its centre of mass relative to the origin of an 
inertial frame. Does the same type of relation exist for the kinetic energy? To answer this 
question we calculate for the point P  
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Ki =
1
2
mi ′vi

2

= 1
2
mi V + v i( )2

= 1
2
mi V

2 + 2V ⋅v i + vi
2( ),

 (4.125) 

 
where we used equation (4.118). Summing the energy over the entire rigid body we get  
 

 
K = 1

2
mi V

2 + 2V ⋅v i + vi
2( )

i
∑

= 1
2
MV 2 +V ⋅ miv i

i
∑⎛⎝⎜

⎞
⎠⎟
+ 1
2

mivi
2

i
∑ .

 (4.126) 

 
However, the second term on the right-hand side can be shown to vanish since 
 

 miv i
i
∑ = d

dt
miri

i
∑⎛⎝⎜

⎞
⎠⎟

= 0

 (4.127) 

 
from the definition of the centre of mass, and  
 

 K = 1
2
MV 2 + 1

2
mivi

2

i
∑ .  (4.128) 

 
Using the result already established with equations (4.51) through (4.59) we can finally 
write 
 

 K = 1
2
MV 2 + 1

2
Icmω

2,  (4.129) 

 
where the moment of inertia relative to (an axis passing through) the centre of mass of the 
rigid body Icm  is given in equation (4.79). Equation (4.129) answers our earlier question 
and implies that the total kinetic energy of the rigid body as seen in an inertial frame is 
the sum of the kinetic energy of a particle of mass M moving with the velocity of the 
centre of mass and the kinetic energy of motion (or rotation) of the rigid body about its 
centre of mass. 
 
Finally, the potential gravitational energy of a rigid body of total mass M  that exhibit 
translational and rotational motion (about any axis of rotation) remains as was described 
in Section 4.3 with 
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 U = Mgycm.  (4.130) 

4.7.3 Exercises 
8. (Prob. 10.22 in Young and Freedman.) A hollow, spherical shell with mass 2.00 kg 
rolls without slipping down a 38.0°  slope. (a) Find the acceleration, the friction force, 
and the minimum coefficient of friction needed to prevent slipping. (b) How would your 
answers to part (a) change if the mass were doubled to 4.00 kg? 
 
Solution. 
 
We will set the x-axis  to be down the incline and let the shell be turning in the positive 
direction. The free-body diagram is shown in Figure 10. 
 
(a) According to the figure we have for the forces acting on the centre of mass and the 
torque acting on the sphere 
 

 
macm = mgsin β( )− fs
Icmα = fsR,

 (4.131) 

 
where we must use the static (and not dynamic) force of friction since the point of the 
sphere contacting the surface is not moving relative to it. But since the sphere is not 
slipping we also have that acm =αR  and from the second of equations (4.131) 
 

 fs =
acmIcm
R2

,  (4.132) 

 
which we can insert in the first of equations (4.131) to get 
 

 acm =
gsin β( )

1+ Icm mR2
. (4.133) 

 
Alternatively, we can evaluate 
 

 fs =
mgsin β( )
1+mR2 Icm

.  (4.134) 

 
For a hollow sphere we have  
 Icm = 2 3mR2  (4.135) 
 
which leads to 
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acm = 3
5
gsin β( )

= 3.62 m/s2

fs =
2
5
mgsin β( )

= 4.83 N.

 (4.136) 

 
The coefficient of static friction is given by 
 

 

µs =
fs
n

= fs
mgcos β( )

= 2
5
tan β( )

= 0.313.

 (4.137) 

 
This coefficient is required to ensure that the sphere does not slip down the incline. 
 
(b) The only part of (a) that would change if the mass of the sphere was doubled is the 
magnitude of the static friction force, which would also double to 9.66 N. 
 
9. (Prob. 10.24 in Young and Freedman.) A uniform marble rolls down a symmetrical 
bowl, starting from rest at the top of the left side. The top of each side is a distance h  
above the bottom of the bowl. The left half of the bowl is rough enough to cause the 
marble to roll without slipping, but the right half has no friction because it is coated with 
oil. (a) How far up the smooth side will the marble go, measured vertically from the 
bottom? (b) How high would the marble go if both sides were as rough as the left side? 
(c) How do you account for the fact that the marble goes higher with friction on the right 
than without friction? 
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EVALUATE:   An object released from rest and falling in free fall for 0.750 m attains a speed of 
2 (0 750 m) 3 83 m/s.g . = .  The final speed of the hoop is less than this because some of its energy is in 

kinetic energy of rotation. Or, equivalently, the upward tension causes the magnitude of the net force of the 
hoop to be less than its weight. 

 10.21. IDENTIFY:   Apply Eq. (10.8). 
SET UP:   For an object that is rolling without slipping, cm .v Rω=  
EXECUTE:   The fraction of the total kinetic energy that is rotational is 

2
cm

2 2 2 2 2
cm cm cm cm cm

(1/2) 1 1
(1/2) (1/2) 1 ( / ) / 1 ( / )

I
Mv I M I v MR I

ω
ω ω

= =
+ + +

 

(a) 2
cm (1/2) , so the above ratio is 1/3.I MR=  

(b) 2
cm (2/5)I MR = so the above ratio is 2/7.  

(c) 2
cm (2/3)I MR=  so the ratio is 2/5.  

(d) 2
cm (5/8)I MR=  so the ratio is 5/13.  

EVALUATE:   The moment of inertia of each object takes the form 2.I MRβ=  The ratio of rotational 

kinetic energy to total kinetic energy can be written as 1 .
1 1/ 1

β
β β

=
+ +

 The ratio increases as β  increases. 

 10.22. IDENTIFY:   Apply m¦ =F a
G G  to the translational motion of the center of mass and z zIτ α¦ =  to the 

rotation about the center of mass. 
SET UP:   Let x+  be down the incline and let the shell be turning in the positive direction. The free-body 
diagram for the shell is given in Figure 10.22. From Table 9.2, 22

cm 3 .I mR=  

EXECUTE:   (a) x xF ma¦ =  gives cmsin .mg f maβ − =  z zIτ α¦ =  gives ( )22
3 .fR mR α=  With 

cm /a Rα =  this becomes 2
cm3 .f ma=  Combining the equations gives 2

cm cm3sinmg ma maβ − =  and 
2

2
cm

3 sin 3(9 80 m/s )(sin38 0 ) 3 62 m/s .
5 5
ga β . . °= = = .  22 2

cm3 3 (2 00 kg)(3 62 m/s ) 4 83 N.f ma= = . . = .  The 

friction is static since there is no slipping at the point of contact. cos 15 45 N.n mg β= = .  
4 83 N 0 313.

15 45 Ns
f
n

µ .= = = .
.

 

(b) The acceleration is independent of m and doesn’t change. The friction force is proportional to m so will 
double; 9 66 N.f = .  The normal force will also double, so the minimum sµ  required for no slipping 
wouldn’t change. 
EVALUATE:   If there is no friction and the object slides without rolling, the acceleration is sin .g β  Friction 
and rolling without slipping reduce a to 0.60 times this value. 

 

 

Figure 10.22 
Figure 10 – Free-body diagram 
for the rolling sphere in Prob. 8. 



 

 - 92 - 

 
 
Solution.  
 
(a) We will let y = 0  at the bottom of the bowl, shown in Figure 11. Since the marble of 
mass m  starts from rest, its kinetic energy at the bottom of the bowl will be given by 
equation (4.129) 
 

 
K = 1

2
mvcm

2 + 1
2
Icmω

2

= 1
2
mvcm

2 + 1
2
Icm

vcm
R

⎛
⎝⎜

⎞
⎠⎟
2

,
 (4.138) 

 
where R  is the radius of the marble and we imposed the no-slipping condition vcm =ωR . 
Because of the principle of conservation of energy, this (change in) kinetic energy equals 
the change in potential gravitational energy with 
 

 1
2
mvcm

2 + 1
2
Icm

vcm
R

⎛
⎝⎜

⎞
⎠⎟
2

= mgh,  (4.139) 

 
and, since Icm = 2 5mR2 , 
 

 vcm
2 = 10

7
gh. (4.140) 

 
But at the bottom of the bowl the no-slipping condition does not hold anymore and the 
rotational kinetic energy will be conserved, as no torque (due to friction) will be acting on 
the marble. Conservation of energy then dictates that from the bottom of the bowl to the 
height ′h  the marble will reach on the right side of the bowl we must have 
 

 1
2
mvcm

2 + 1
2
Icmω

2 = 1
2
Icmω

2 +mg ′h ,  (4.141) 

 
or 
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Motion along the smooth side: The rotational kinetic energy does not change, since there is no friction 

torque on the marble, 2
rot rot

1 .
2
mv K mgh K+ = ′ +  

102
7 5

2 2 7
′ = = =

ghvh h
g g

 

(b) mgh mgh= ′  so .h h′ =  
EVALUATE:   (c) With friction on both halves, all the initial potential energy gets converted back to 
potential energy. Without friction on the right half some of the energy is still in rotational kinetic energy 
when the marble is at its maximum height. 

 

 

Figure 10.24 
 

 10.25. IDENTIFY:   Apply conservation of energy to the motion of the wheel. 
SET UP:   The wheel at points 1 and 2 of its motion is shown in Figure 10.25. 

 

 Take y = 0 at the center of the wheel when it is 
at the bottom of the hill. 

Figure 10.25  
 

 

The wheel has both translational and rotational motion so its kinetic energy is 2 21 1
cm cm2 2 .ω= +K I Mv  

EXECUTE:   1 1 other 2 2+ + = +K U W K U  

other fric 3500 JW W= = −  (the friction work is negative) 
2 2

1 1 1
1 1
2 2 ;K I Mvω= +  v Rω=  and 20 800I MR= .  so 

2 2 2
1 1 1 1

2 2 21 1
2 2(0 800) 0 900K MR MR MRω ω ω= . + = .  

2 0,=K  1 0,=U  2 =U Mgh  

Thus 2 2
1 fric0 900MR W Mghω. + =  

2/ 392 N/(9 80 m/s ) 40 0 kgM w g= = . = .  
2 2

1 fric0 900 ω. += MR Wh
Mg

 

2 2

2
(0 900)(40 0 kg)(0 600 m) (25 0 rad/s) 3500 J 11 7 m

(40 0 kg)(9 80 m/s )
. . . . −= = .

. .
h  

EVALUATE:   Friction does negative work and reduces h. 
 10.26. IDENTIFY:   Apply z zIτ α¦ =  and m¦ =F a

G G  to the motion of the bowling ball. 
SET UP:   cm .a Rα=  s s .f nµ=  Let x+  be directed down the incline. 
EXECUTE:   (a) The free-body diagram is sketched in Figure 10.26. 
The angular speed of the ball must decrease, and so the torque is provided by a friction force that acts up 
the hill. 

Figure 11 – A marble rolling inside a bowl, in 
Prob. 9. 
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′h = vcm

2

2g

= 5
7
h,

 (4.142) 

  
where equation (4.140) was used. 
 
(b) If the right side of the bowl had the same roughness as the left side, then the kinetic 
energy stored in the rotation of the marble at the bottom of the bowl would be transferred 
back to potential gravitational energy and equation (4.141) would be replaced by 
 

 1
2
mvcm

2 + 1
2
Icmω

2 = mg ′h  (4.143) 

 
we would find that h = ′h  from equation (4.139). 
 
(c) As was stated above, the marble goes higher when the whole bowl has a rough surface 
because the kinetic energy stored in the rotation marble at the bottom of the bowl is 
transferred back to potential gravitational energy. 

4.8  Work and Power in Rotational Motion 
We know from our treatment in Chapter 2 that the infinitesimal work dW  done by a 
force F  acting through an infinitesimal distance dr  is given by 
 
 dW = F ⋅dr.  (4.144) 
 
But for a rotational motion we know from equation (4.15) that 
 
 dr = dθ × r,  (4.145) 
 
where dr  is now understood to be the infinitesimal arc subtended by the radius r  over an 
infinitesimal angular displacement vector dθ . Inserting equation (4.145) in equation 
(4.144) we have 
 
 dW = dθ × r( ) ⋅F,  (4.146) 
 
but since a × b( ) ⋅c = c × a( ) ⋅b = b × c( ) ⋅a  we can also write 
 

 
dW = r × F( ) ⋅dθ

= τ ⋅dθ ,
 (4.147) 
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where τ = r × F  is the torque on the system. If we now integrate equation (4.147) through 
a finite angular displacement θ2 −θ1  we find that the total work done is 
 

 
W = τ ⋅dθ

θ1

θ2∫
= r × F( ) ⋅dθ

θ1

θ2∫ .
 (4.148) 

 
This relation is the analog of equation (2.39) in Chapter 2 for translational motions 
 
 W = F ⋅dr

r1

r2∫ .  (4.149) 

     
It follows from equation (4.148) that for rotational motion a force can only do work if it 
has a component perpendicular to the radius, as expected. Of course, the work-energy 
theorem derived in Section 2.2 of Chapter 2 also applies here. For example, if rotation 
happens about a symmetry axis we have 
 

 

τ ⋅dθ = Iα( ) ⋅dθ

= I dω
dt

⋅dθ

= I dω
dt

⋅ωdt

= Iω ⋅dω ,

 (4.150) 

  
and 
 

 

W = Iω ⋅dω
1

2

∫
= I
2

d ω 2( )
1

2

∫
= 1
2
Iω 2

2 − 1
2
Iω1

2

= ΔKrot .

 (4.151) 

  
It should be noted that this result could also be obtained for the special case of a constant 
angular acceleration using equation (4.23), in a manner similar to what was done in 
Chapter 2 for translational motions.  
 
The power associated with the work done by the torque (or the force) can readily be 
determined with   
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P = dW
dt

= d
dt

τ ⋅dθ( )

= τ ⋅ dθ
dt

 (4.152) 

 
and finally 
 
 P = τ ⋅ω . (4.153) 
 
Again this result is analogous to the one obtain with equation (2.47) in Chapter 2 for 
translational motions 
 
 P = F ⋅v. (4.154) 

4.8.1 Exercises 
10. (Prob. 10.65 in Young and Freedman.) You connect a light string to a point on the 
edge of a uniform vertical disk with radius R  and mass M . The disk is free to rotate 
without friction about a stationary horizontal axis through its centre. Initially, the disk is 
at rest with the string connection at the highest point on the disk. You pull the string with 
a constant horizontal force F  until the wheel has made exactly one-quarter revolution 
about the horizontal axis, and then you let go. (a) Use equation (4.148) to find the work 
done by the string. (b) Use equation (4.149) to find the work done by the string. Do you 
obtain the same result as in part (a)? (c) Find the angular speed of the disk. (d) Find the 
maximum tangential acceleration of a point on the disk. (e) Find the maximum radial 
(centripetal) acceleration of a point on the disk. 
 
Solution. 
 
From Figure 12 we can verify that  
 

 
F = −Fex
R = R −cos θ( )ex + sin θ( )ey⎡⎣ ⎤⎦.

 (4.155) 

 
(a) Since the force and the torque are dependent on the angle θ  we write  
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W = τ ⋅dθ
1

2

∫
= R × F( ) ⋅dθ

1

2

∫
= R −sin θ( )ex + cos θ( )ey⎡⎣ ⎤⎦ × −Fex( ){ } ⋅ ezdθ( )

1

2

∫
= −FR ey × ex( ) ⋅ez cos θ( )dθ

1

2

∫ ,

 (4.156) 

 
but since cos θ( )dθ∫ = sin θ( )  and ey × ex = −ez , we have (with θ1 = 0 and θ2 = π 2 ) 
 

 W = FR sin θ2( )− sin θ1( )⎡⎣ ⎤⎦
= FR.

 (4.157) 

 
(b) Using equation (4.149) with the arc dr = dθ ×R  we have 
 

 
W = F ⋅ dθ ×R( )

1

2

∫
= R × F( ) ⋅dθ

1

2

∫ ,
 (4.158) 

 
which equals the second of equations (4.156) (we also used F ⋅ dθ ×R( ) = R × F( ) ⋅dθ ). It 
follows that the two approaches, i.e., this one and the one of part (a), will give the same 
result.  
 
(c) We know from equation (4.151) that 
 

θ

x

y

(+z)

R

F

Figure 12 – The string-disk arrangement 
of Prob. 10. 
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ω 2 =
2W
I

= 4FR
MR2

= 2 F
MR

.

 (4.159) 

 
(d) The tangential acceleration is given by 
 

 
a tan = α ×R

= τ
I
×R

 (4.160) 

 
and since τ  and R  are perpendicular to one another 
 

 

atan =
τR
I

=
FRcos θ( )R
MR2 2

= 2F
M
cos θ( ),

 (4.161) 

 
which will be maximum with 2F M  at θ = 0 . 
 
(e) The radial acceleration is given by 
 

 
arad =ω

2R

=
4F sin θ( )
MR

R,
 (4.162) 

 
where we used the value of W  from equation (4.157) at an arbitrary angle θ . The 
centripetal acceleration will be at a maximum at θ = π 2  with arad = 4F M . 

4.9 The Conservation of Angular Momentum 
When deriving the principle of conservation of linear momentum in Chapter 3, we 
considered an isolated system of particles; this principle only applies for such system. 
Our derivation rested entirely on Newton’s Third Law. We showed that if interactions 
between pairs of particles happen through internal forces in such a way that  
 
 Fij = −Fji ,  (4.163) 
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where i and j  denote a pair of particles, then the total linear momentum of the system 
was conserved 
 

 dp tot
dt

= 0.  (4.164) 

 
On the other hand, if the system was not isolated but was subjected to a net external 
force, then the total linear momentum of the system was allowed to change according to 
Newton’s Second Law 
 

 Fext =
dp tot
dt

.  (4.165) 

 
For the purpose of investigating a similar conservation of angular momentum we must 
also consider an isolated system; certainly a rigid body satisfies this requirement. From 
our previous study on the relation between the torque and angular momentum, we have a 
perfect correspondence between the force-linear momentum and torque-angular 
momentum pairs. For example, we know from equation (4.97) that 
 

 τ = dL
dt
. (4.166) 

 
For a rigid body not subjected to a net external torque, and therefore isolated from any 
agent that could change its state of rotation, equation (4.166) tells us that 
 

 dL
dt

= 0.  (4.167) 

 
In other words, when the net torque applied to a system is zero, then the total angular 
momentum of the system is conserved and remains unchanged. It is important to note that 
this principle is a universal conservation law, to the same fundamental level as the 
principles of conservation of energy and linear momentum. 
 
It is possible that internal torques arise between the components of a system (just as 
internal forces could be present when investigating the total linear momentum of an 
isolated system of particles). But if we again call upon Newton’s Third Law such that 
these internal torques arise from interaction forces that satisfy equation (4.163), the sum 
of all such internal torques can be written as  
 

 
τ int,i

i
∑ = ri × Fji

j≠i
∑

⎛

⎝⎜
⎞

⎠⎟i
∑

= ri × Fji + rj × Fij( )
ij  pairs
∑ ,

 (4.168) 
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where the last summation is on unique pairs of particles i and j  (i.e., if we consider 
i and j  then we shouldn’t include j  and i  to avoid double-counting). But from equation 
(4.163) we can write 
 
 τ int,i

i
∑ = ri − rj( )× Fji⎡⎣ ⎤⎦

ij  pairs
∑ .  (4.169) 

 
If we now enforce the further constraint that the internal forces be central, i.e., that they 
are directed along the straight line joining the two interacting particles (i.e., Fji  is parallel 
or anti-parallel to ri − rj ), then 
 
 ri − rj( )× Fji = 0  (4.170) 
 
and  
 
 τ int,i

i
∑ = 0.  (4.171) 

 
This implies that parts of the system can experience a change in their angular momentum, 
but the total angular momentum must be conserved when no external torque is applied. 
Equations (4.168) to (4.171) put on a firm mathematical basis what was discussed in 
Section 4.6 and illustrated in Figure 6. When an external torque is applied, then the total 
angular momentum will change in accordance with equation (4.166). 

4.9.1 Exercises 
11. (Prob. 10.41 in Young and Freedman.) Under some circumstances, a star can collapse 
into an extremely dense object made mostly of neutrons and called a neutron star. The 
density of a neutron star is approximately 1014  times that of ordinary solid matter. 
Suppose we represent the star as a uniform, solid, rigid sphere, both before and after the 
collapse. The star’s initial radius was 7.0 ×105  km (comparable to our sun); its final 
radius is 16 km. If the original star rotated once in 30 days, find the angular speed of the 
neutron star. 
 
Solution. 
 
The angular momentum must be conserved with 
 

 
Istarω1 = Ineutronω 2

2
5
MRstar

2 ω1 =
2
5
MRneutron

2 ω 2,
 (4.172) 

 
or 
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ω 2 =ω1
Rstar

Rneutron

⎛
⎝⎜

⎞
⎠⎟

2

= 2π
30 ⋅86400

rad/sec ⋅ 7.0 ×105

16
⎛
⎝⎜

⎞
⎠⎟

2

= 4640 rad/s (or 738 rev/s).

 (4.173) 

 
12. (Prob. 10.43 in Young and Freedman.) The outstretched hands and arms of a figure 
skater preparing for a spin can be considered a slender rod pivoting about an axis through 
its centre. When the skater’s hands and arms are brought in and wrapped around his body 
to execute the spin, the hands and arms can be considered a thin-walled, hollow cylinder. 
His hands and arms have a combined mass of 8.00 kg. When outstretched, they span 1.80 
m; when wrapped, they form a cylinder of radius 25.0 cm. The moment of inertia about 
the rotation axis or the remainder of the body is constant and equal to 0.400 kg ⋅m2 . If 
his original angular speed is 0.400 rev/s, what is his final angular speed? 
 
Solution. 
 
The angular momentum must be conserved through this maneuver, i.e., 
 
 Iarms,1 + Ibody( )ω1 = Iarms,2 + Ibody( )ω 2,  (4.174) 
 
or 
 

 ω 2 =ω1

Iarms,1 + Ibody
Iarms,2 + Ibody

⎛

⎝⎜
⎞

⎠⎟
. (4.175) 

 
From Figure 5 we have that  
 

 
Iarms,1 =

1
12

ML2

Iarms,2 = MR
2,

 (4.176) 

  
 
where L  and R  are the length and radius of the hands and arms when outstretched and 
brought in, respectively. It follows that 
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ω 2 =ω1

ML2 12 + Ibody

MR2 + Ibody

⎛

⎝⎜
⎞

⎠⎟

= 2π ⋅0.4( )rad/s ⋅ 8.0 ⋅1.82 12 + 0.4
8.0 ⋅0.252 + 0.4

⎛
⎝⎜

⎞
⎠⎟

= 7.15 rad/s (or 1.14 rev/s).

 (4.177) 

4.10  Precession 
We have all experienced the remarkable dynamical behavior of a spinning top. One 
intriguing aspect is the observation of an increasing rotational-wobble of the spinning 
axis as the angular speed of the top (about the spinning axis) is slowing down. This type 
of motion is called precession. We have now developed all the tools necessary to 
understand this behavior. 
 
Let us consider a flywheel with its symmetry, and spin, axis positioned horizontally as 
depicted in Figure 13. The flywheel is spinning with an angular velocity ω  about its 
symmetry axis, initially directed along the x  direction (i.e., ω =ωex ), and is 
simultaneously subjected to gravity with its weight w = −wez  pointing downward. The 
presence of this force located at the centre of mass of flywheel-axis system brings a 
torque initially pointing along the y-axis  (i.e., pointing into the page) 
 

 
τ = r ×w
= τey .

 (4.178) 

 
It would perhaps be intuitive to think that the presence of this torque would start the 
flywheel rotating about the y-axis  and eventually bring it in contact with the ground. 
This is indeed what would be observed if the flywheel were not spinning about its 
symmetry axis. But the flywheel’s dynamics are much more interesting because of its 
rotational motion… 

Figure 13 – Precession of a 
flywheel as it spins about its 
symmetry axis. 



 

 - 102 - 

 
We first investigate the infinitesimal change in angular momentum dL  during a time dt  
with 
 
 dL = τdt,  (4.179) 
 
which is initially oriented along the y-axis . The resulting angular momentum is generally 
expressed by 
 
 L+ dL = Iω + τdt,  (4.180) 
 
which initially (i.e., after the interval dt ) is given by 
 
 L+ dL = Iω ex +τdt ey .  (4.181) 
 
This is shown in Figure 14. One might be inclined to think from equation (4.181) that the 
magnitude of the angular momentum has changed in the process, but this would be 
misleading. To verify this, let us calculate the amount of work done on the flywheel by 
the torque during the interval dt . Using equation (4.147) with dθ =ωdt , we have 
 
 dW = τ ⋅ωdt,  (4.182) 
 
which initially is 
 

 dW = τω dt ey ⋅ex( )
= 0.

 (4.183) 

 
We note that equation (4.183) is valid at all times. The fact that no work is done by the 
torque is fundamentally important for what follows. The main implication we emphasize 
is that, from equation (4.151), there is also no change of the kinetic energy stored in the 
flywheel, which also implies that 
 

Figure 14 – The angular 
momentum after an interval 

. 
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ω = constant
L = Iω = constant.

 (4.184) 

 
It is important to stress that there is no conservation of the angular momentum, since it 
changes direction (see Figure 14), but the magnitude of the angular momentum remains 
constant. More importantly, the flywheel (and angular momentum) moves in xy-plane  
not downward!  Again, the reason for this is that as the flywheel precesses in the 
xy-plane , the torque due to its weight is always oriented perpendicular to the angular 
displacement, as exemplified with equation (4.183). No work is ever being done on the 
flywheel. 
 
This behavior is entirely due to the rotation of the flywheel. In the case where the 
flywheel is not initially spinning about its axis, equation (4.183) does not apply and  
 

 
dW = τ ⋅dθ

≠ 0
 (4.185) 

 
in general. As the flywheel starts its fall downward, it also feels an angular acceleration 
due to the torque that precipitates its fall (until it reaches the ground).  
 
Let us now see if we can quantify the precession of the spinning flywheel. We start with 
 

 

dL = τdt
= r ×w( )dt
= r cos φ( )ex + sin φ( )ey⎡⎣ ⎤⎦ × −wez( ){ }dt
= rwdt cos φ( )ey − sin φ( )ex⎡⎣ ⎤⎦,

 (4.186) 

 
where φ  is the precession angle measured from the x-axis  in the xy-plane . We now 
introduce the precession frequency  
 

 Ω = dφ
dt
.  (4.187) 

 
The magnitude Ω  of this frequency is given by (see Figure 14) 
 

 
Ω = dφ

dt

=
dL L
dt

,
 (4.188) 

 
which from equations (4.184) and (4.186) yields 
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 Ω = rw
Iω
.  (4.189) 

 
Incidentally, solving equation (4.186) we find 
 

 

L = dL∫
= rw ey cos Ωt( )dt∫ − ex sin Ωt( )dt∫⎡

⎣
⎤
⎦

= wr
Ω

cos Ωt( )ex + sin Ωt( )ey⎡⎣ ⎤⎦,

 (4.190) 

 
where we used 
 

 
cos at( )dt∫ = 1

a
sin at( )

sin at( )dt∫ = − 1
a
cos at( ).

 (4.191) 

 
Upon inserting equation (4.189) in equation (4.190) we find that 
 
 L = Iω cos Ωt( )ex + sin Ωt( )ey⎡⎣ ⎤⎦.  (4.192) 
 
This equation makes it clear that the magnitude of the angular momentum remains 
unchanged at Iω , but that the spin axis rotates at the precession frequency Ω  in the 
xy-plane . Finally, we also demonstrated with equation (4.189) the fact stated at the start 
that the precession frequency (i.e., the wobbling motion) increases as the rotation speed 
of the spinning top (the flywheel, in this case) winds down. 


