Chapter 4. Rotation and Conservation of Angular
Momentum

Notes:

e Most of the material in this chapter is taken from Young and Freedman, Chaps. 9
and 10.

4.1 Angular Velocity and Acceleration

We have already briefly discussed rotational motion in Chapter 1 when we sought to
derive an expression for the centripetal acceleration in cases involving circular motion
(see Section 1.4 and equation (1.46)). We will revisit these notions here but with a
somewhat broader scope.

We reintroduce some basic relations between an angle of rotation 6 about some fixed
axis, the radius, and the arc traced by the radius over the angle 6. Figure 1 shows these
relationships. First, the natural angular unit is the radian, not the degree as one might
have expected. The definition of the radian is such that it is the angle for which the radius
r and the arc s have the same length (see Figure 1a). The circumference of a circle
equals 2z times the radius; it therefore follows that

lrad:@:57.3°. (4.1)
2r

Second, as we previously saw in Chap. 1, the angle is expressed with
o==2 (4.2)

and can be seen from Figure 1b.

We can define an average angular velocity as the ratio of an angular change A6 over a

(@)

One radian is the angle

(b) s=r0

at which the arc s has ™4
the same length as the
radius r.

An angle 6 in radians
is the ratio of the arc
length s to the radius r.

©2012 Pearson Education, Inc. ©2012 Pearson Education, Inc.

Figure 1 — The relations between an angle of rotation 6 about
some fixed axis, the radius r, and the arc s traced by the radius
over the angle 6.
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time interval A¢

AO
o . =—=. 4.3
ave,z At ( )

For example, an object that accomplishes one complete rotation in one second has an
average angular velocity (also sometimes called average angular frequency) of 2x
rad/s. If we make these intervals infinitesimal, then we can define the instantaneous
angular velocity (or frequency) with

A0 At (44)

That is, the instantaneous angular velocity is the time derivative of the angular
displacement. The reason for the presence of the subscript “z” in equations (4.3) and
(4.4) will soon be made clearer. It should be noted that an angular displacement A6 can
either be positive or negative; it is a matter of convention how the sign is defined. We
will define an angular displacement as positive when it is effected in a counter-clockwise
direction, as seen from an observer, when the fixed about which the rotation is done is
pointing in the direction of the observer. This is perhaps more easily visualized with
Figure 2.

4.1.1 Vector Notation

Since a rotation is defined in relation to some fixed axis, it should perhaps not be too
surprising that we can use a vector notation for angular displacements. That is, just as we
can define a vector Ar composed of linear displacements along the three independent

Counterclockwise Clockwise

rotation positive: rotation negative:

A6 > 0, so A6 < 0, so

Wy, = AGJAL >0 Wy, = AGJAL <0
y y

Axis of rotation (z-axis) passes through
origin and points out of page.

© 2012 Pearson Education, Inc.

Figure 2 — Convention for the sign of
an angle.
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axes in Cartesian coordinates with

Ar =Axe +Aye +Aze,, (4.5)

we can do the same for an angular displacement vector A@ with

AO=Abe +Abe +Abe.. (4.6)

It is understood that in equation (4.6) A6 _ is an angular displacement about the fixed
x-axis, etc. The notation used in equations (4.3) and (4.4) is now understood as meaning
that the angular displacement and velocity are about the fixed z-axis. An example is

shown in Figure 3, along with the so-called right-hand rule, for the angular velocity
vector

do

T (4.7)
The introduction of a vector notation has many benefits and simplifies the form of several
relations that we will encounter. A first example is that of the infinitesimal arc vector dr
that results for an infinitesimal rotation vector d@ of a rigid body (please note that we
have intentionally replaced s for the finite arc in equation (4.2) with dr and not ds ). Let
us consider the special case shown in Figure 4 where an infinitesimal rotation d@ =d6.e,

about the z-axis is effected on a vector r =re_ aligned along the x-axis. As can be seen
from the figure, the resulting infinitesimal arc dr=dre, will be oriented along the

y-axis . We know from equation (4.2) that

dr =rd®, (4.8)

@ (®)
If you curl the @ points in the @ points in the
| fingers of your positive z-direction: ~ negative z-direction:
| right hand in the w. >0 w, <0
| 2 ; ¢
[

| duulmn of
1 rotation . 4
3 ) sy
.i 0
\ \
x
your right thumb L/
points in the
f& direction of . ‘
)

Figure 3 — Shown is the vector representation for an
angular velocity about the z-axis, along with the so-
called right-hand rule.
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Figure 4 - Infinitesimal rotation of a rigid body about the z-axis .

but how can we mathematically determine the orientation of the infinitesimal arc from
that of the rotation and radius? To do so, we must introduce the cross product between
two vectors.

Let a and b two vectors such that

a=ae tae t+ae,

(4.9)
b=be +be +be..
Then we define the cross product
axb=(ab —ab e +(ab —ab)e +(ab—ab,le.. (4.10)
It is important to note that
axb=-bxa. (4.11)
It is then straightforward to establish the following
e xe =e,
e xXe =e, (4.12)
e xe =e,
and
e xe =0, (4.13)

where i=x,y,orz. Coming back to our simple example of Figure 4, and considering
equations (4.8) and (4.12) we find that

dre =dbe_xre,. (4.14)

Although equation (4.14) results from a special case where the orientation of the different
vectors was specified a priori, this relation can be generalized with
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dr=d@xr, (4.15)

as could readily verified by changing the orientation of r and d@ in Figure 4. We
therefore realize that the infinitesimal arc dr represents the change in the radius vector r
under a rotation d@; hence the chosen notation. Morcover, we can find a vector
generalization of equation (1.44) in Chapter 1 that established the relationship between
the linear and angular velocities by dividing by an infinitesimal time interval d¢ on both
sides of equation (4.15). We then find

V=@Xr, (4.16)
where v =dr/dt and @ =d0/dt.

Just as we did for the angular velocity in equations (4.3) and (4.4) (but using a vector
notation), we can define an average angular acceleration over a time interval At with

Aw
ave At ( )
and an instantaneous angular acceleration with
. Aw
o= A
4.18
_do o
dt

Combining equations (4.7) and (4.18), we can also express the instantaneous angular
acceleration as the second order time derivative of the angular displacement

do
o=—
dt

d(do
—Z(Ej (4.19)

&6
dt’
4.1.2 Constant Angular Acceleration

We have so far observed a perfect correspondence between the angular displacement d@,
velocity @, and acceleration o with their linear counterparts dr, v, and a. We also
studied in Section 2.1 of Chapter 2 the case of a constant linear acceleration and found
that
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a(t) =a (constant)
v(t)=v,+at (4.20)

r(t)=r, +V0t+%at2,

with r, and v, the initial position and velocity, respectively. We further combined these
equations to derive the following relation

%[vz(t)—vg:lza-[r(t)—ro]. (4.21)

Because the relationship between 6, @, and o is the same as that between r, v, and a,
we can write down similar equations for the case of constant angular acceleration

o (t) =0 (constant)
o(r)=0,+at (4.22)

0(r)=0, +w0t+%at2

and

o (-0 ]=a-[6()-6,] (4.23)

without deriving them, since the process would be identical to the one we went through
for the constant linear acceleration case.

4.1.3 Linear Acceleration of a Rotating Rigid Body

We previously derived equation (4.16) for the linear velocity of a rotating rigid body. We
could think, for example, of a solid, rotating disk and focus on the trajectory of a point on
its surface. Since this point, which at a given instant has the velocity v, does not move
linearly but rotates, there must be a force “pulling” it toward the centre point of the disk.
This leads us to consider, one more time, the concept of the centripetal acceleration
discussed in Chapter 1 (see Section 1.4). It is, however, possible to use equation (4.16) to
combine two types of accelerated motions. To do so, we take its time derivative

dv d
—=—(@xr)
dt dt
:(d—wxr)+(a)x£) (4.24)
dt dt
=O0Xr+mwxyv.
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On the second line of equation (4.24) we use the fact that the derivative of a product of
functions, say, f and g, yields

d

df dg
_ - + _
dt /

. 425
s (4.25)

(fg)=

The same result holds for the scalar or cross products between two vectors a and b. We
can verify this as follows

(ab)="(ab +ab+ab)

dt dt
d d d
=—I(ab, )+—\ab,)+—(ab
dt(ax x) dt(ay y) dt(az Z)
da, db,

_dagy L B By O ey, (4.26)
dt dt dt ° Tdr dr ¢ " odt
d db
:daxbx+ =y +d0lzb,+axdb"+a,—y+azdbZ
dt d ’ dt ° d 'dr T dt
:@.b+a.@
dt dt

and if we consider the x component of axb (see equation (4.10))

d d
E(axb)x = Z(aybz —azby)
d

- E(abe) B E(azby)

d db
A I 1 (4.27)
dt = 7 dt

da j ( db)
=|—Xxb | +|ax—|.
dt . dt ),

If we also consider similar solutions for the y and z, then we have
i(axb)=@xb+ax@. (4.28)
dt t
Returning to equation (4.24), we insert equation (4.16) back into it to get

a=axr+ox(oxr). (4.29)
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The term within square brackets can be further expanded using the following identity
(which could be proven combining equation (4.10) and the expansion for the scalar
product)

ax(bxc)=(a-c)b—(a-b)c. (4.30)
We then find that

a=axr+(o-r)o—(o-o)r (4.31)

=axr+(o-r)o-o’r.

Let us now examine the last two terms on the right-hand side of second of equations
(4.31). First, we break down the position vector into two parts

r=r+r, (4.32)

where 1, and r, are the parts of r that are parallel and perpendicular to the orientation of

the angular velocity vector @, respectively. The perpendicular component r, is simply

the distance of the point under consideration from the axis of rotation. It follows that we
can write for the second term

(0-1r)o=(0r)o 433)
=o',

If we know combine this equation with the third term of equation (4.31), then we find
that

(@ r)o-0’r=0’r-o’r
=’ (r,-r) (4.34)

=-0’r,.
Equation (4.31) for the linear acceleration of a point on a rigid body becomes
a=axr-or,. (4.35)

The first term on the right-hand side of this equation is the tangential acceleration due
to the angular acceleration

a_ =0 Xr. (4.36)

tan
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We should note that only the perpendicular component r, contributes to the magnitude

of the tangential acceleration, because of the presence of the cross product. We can verify
this as follows

axr:ax(q+q) 437)
=0 XK +0oXr,

but o xr; =0 since o and r, are parallel to one another. For our rigid body, we then

rewrite equation (4.35) as
a=axr —-or, (4.38)
while the tangential acceleration becomes

a, =aXxr, (4.39)

tan
and
atan = a’l . (440)

The second term on the right-hand side of equation (4.35) is the radial acceleration due
to the angular acceleration

a_,=—-0r,. (4.41)

rad

This acceleration is nothing more than the vector form of the centripetal acceleration
discussed in Chapter 1 for circular motions. The minus sign in equation (4.41) indicated
that the acceleration is directed toward the origin (or the axis of rotation). The magnitude
of the radial acceleration is

a,=o’r, (4.42)

which is the same result obtained with equation (1.46). Accordingly, we could have
worked out this analysis by first noticing that, for rigid body, equation (4.16) simplifies to

V=0Xr
=wx(r+r,) (4.43)

=@OXr,.

It would have then become clear from the onset that only the perpendicular component
r, partakes in the analysis.
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4.1.4 Exercises

1. (Prob. 9.17 in Young and Freedman.) A safety device brings the blade of a power
mower from an initial angular speed of ®, to rest in 1.00 revolution. At the same
constant angular acceleration, how many revolutions would it take the blade to come to
rest from an initial angular speed w, that was three times as great (®, = 3w,).

Solution.

We use equation (4.23) (in one dimension) to relate the necessary quantities. That is,
L,
Ea)1 =21, (4.44)
where the “27 ” corresponds to one revolution (i.e., 8, =27 ). We therefore have
o=—. (4.45)

For the second angular speed we have

(4.46)

or

;
w’ (4.47)

1

=18rx.

0,=2rm

It therefore takes 9.00 revolutions to stop the blade.

2. (Prob. 9.22 in Young and Freedman.) You are to design a rotating cylindrical axle to
lift 800-N buckets of cement from the ground to a rooftop 78.0 m above the ground. The
buckets will be attached to the free end of a cable that wraps around the rim of the axle;
as the axle turns the buckets will rise. (a) What should the diameter of the axle be in order
to raise the buckets at a steady 2.00 cm/s when it is turning at 7.5 rpm? (b) If instead the
axle must give the buckets an upward acceleration of 0.400 m/s*, what should the
angular acceleration of the axle be?

Solution.
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(a) We know that the magnitude of the tangential velocity at rim is
V=r (4.48)

and will also be the speed at which the buckets will rise. We therefore have

B 0.02 m/s
2m-7.5/60 rad/s
=2.55 cm.

(4.49)

(b) The angular acceleration can be evaluated with equation (4.40)

a — atan
r

0.4 m/s?
©0.0255m
=15.7 rad/s>.

(4.50)

4.2 Moment of Inertia and Rotational Kinetic Energy

We will once again concentrate on a given point on or in our rotating rigid body located
at position r,, the subscript identifies the particle located at that point. We now

(132
; l

calculate the kinetic energy associated with this particle with

(4.51)

where we used equation (4.16) for the velocity. We will now make use of the following
(axb)-(exd)=(a-c)(b-d)—(a-d)(b-c), (4.52)

and equation (4.51) becomes (with a=c=® and b=d=r,)

K, =%m,.(w><ri)-(a)><ri)
1
:Emi[afrf (o) ] (4.53)
1 2
=M [wzrf ~(or;) }

-71 -



and since, as before,

r=r,+r, (4.54)

1

while because r; and r, are perpendicular to one another

AR (4.55)
we finally find
K, = %ml.rfla)z. (4.56)
We now define a new quantity
I=mr, (4.57)
and we rewrite equation (4.53) as
K, = %Iia)z. (4.58)

and we see that /, serves the same role for the rotational kinetic energy of the particle as

the mass does for the kinetic energy due to linear motion. If we now sum over all
particles that compose the rigid body, we find for the total rotational kinetic energy

sz

(4.59)
_1 lo?,
2
where we introduced the moment of inertia of the rigid body
1=)1
: (4.60)

_ 2
= Zmirf,r
i

The moment of inertia is a function of the geometry of the rigid body as well as the
distribution of the matter within it. And as was mentioned above, its role for rotational
motions is similar to that of the mass when dealing with linear motions. This implies,
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among other things, that the greater the moment of inertia, the harder it is to start the
body rotating from rest (or slowing it down when already rotating).

The last of equations (4.60) would only be useful in calculating the moment of inertia for
cases where the rigid body is made of a discrete arrangement of particles. For a body
made from a continuous distribution of matter, the summation in equation (4.60) is
replaced by an integral

1={rdm, 4.61)

where dm is an infinitesimal element of mass located a distance r, away from the axis

of rotation. If we define p has the mass density of the body (in kg/m’) and dV as the
elemental volume where dm is located, then we can write

I1={rlpdv. (4.62)

The calculation of this integral for different shapes and geometries of objects is beyond
the scope of our study. But one important aspect that comes out from such analyses is
that, for a given body (e.g., a sphere or a cube), the position of the axes about which the
moment of inertia is calculated (i.e., the axis of rotation in our case) will affect the value
of the integral in equation (4.62). Examples of moments of inertia for a few rigid bodies
and axis positions are shown in Figure 5.

(a) Slender rod, (b) Slender rod, (c) Rectangular plate, (d) Thin rectangular plate,
axis through center axis through one end axis through center axis along edge
- 1 sy 1 ’ L o
1= ;ML =3 ML 1= M@ +b?) 1= 3 Ma®
/ / p /b/ //
/
K/
a /;K
(e) Hollow cylinder (f) Solid cylinder (8) Thin-walled hollow (h) Solid sphere (i) Thin-walled hollow
cylinder sphere
1= 1M@®?+RY) 1= %MRZ 1= MR? 1= 7MR2

© 2012 Pearson Education, Inc.

Figure 5 — The moment inertia for different geometries of rigid bodies.
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4.3 Gravitational Potential Energy of a Rigid Body

We can proceed in a similar manner to determine the gravitational potential energy of a
rigid body as we did for the rotational kinetic energy. That is, we once again concentrate
on a given point on or in our rotating rigid body located at position r,, the subscript “i”

identifies the particle located at that point whose gravitational potential energy is
U,=mgy,, (4.63)
where as usual

r,=xe +ye +ze

iz

(4.64)

or y, =r,-e,. We can determine the total gravitational potential energy by summing over
all the particles that make the rigid body

U=>yU,
= mel.yi.

(4.65)

Referring to equation (3.56) in Chapter 3, where we defined the centre of mass of a body,
we can transform equation (4.65) to

U=Mgy,,, (4.66)

where M = zim,. is the total mass of the body. The fotal gravitational potential energy

of an extended, rigid body is calculated as if all its mass was concentrated at its centre of
mass.

4.4 Exercises

3. (Prob. 9.30 in Young and Freedman.) Four small spheres, each of which you can
regard as a point of mass 0.200 kg, are arranged in a square 0.400 m on a side and
connected by extremely light rods. Find the moment of inertia of the system about an axis
(a) through the centre of the square, perpendicular to its plane; (b) bisecting two opposite
sides of the square; (c) that passes through the centres of the upper left and lower right
spheres.

Solution.

(a) The distance from the centre is the same for the four 0.400 m

. . 2N ke
spheres; denoting it by r we have 0.200 kg

0.200 kg

1l cor
0.200 kg 0200 ks
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r =4(0.200)* +(0.200)’ (4.67)
=0.283 m.

The moment of inertia is then

I:rZZmi

=(0.283 m)2 (4-0.200 kg) (4.68)
=0.064 kg m°>.
(b) In this case again the distance of the four masses to the 0.200kg 0.200 kg
axis is the same with r =0.200 m, which implies that In,zm m
I= rZZmi I 0.200 m
i , 0.200 kg 0.200 kg
=(0.200 m)(4-0.200 kg) (4.69)

=0.032 kg m”.

It is half of the value obtained in (a).

(c) Now, two of the masses are located on the axis and have ~ axis
r,=0 and do not contribute to the moment of inertia. The G5 0:200ks
other two have 7, =1/(0.200)+(0.200)' =0.283 m>. The
moment of inertia then becomes 05
0.200 kg h
1=2mr;
=(0.283 m)’(2-0.200 kg) (4.70)
=0.032 kgm”.

4. (Prob. 9.47 in Young and Freedman.) A frictionless pulley has the shape of a uniform
solid disk of mass 2.50 kg and radius 20.0 cm. A 1.50 kg stone is attached to a very light
wire that is wrapped around the rim of the pulley, and the system is released from rest. (a)
How far must the stone fall so that the pulley has 4.50 J of kinetic energy? (b) What
percent of total kinetic energy does the pulley have?

Solution.

(a) The velocity of the stone v=-ve, (the y-axis is positive-vertical) is related to the

angular velocity @ = we_ of the disk and its radius r (located in the xy-plane ) with
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V=MOXr

_ore., 4.71)

or v=r . The conservation of energy before and after the stone starts falling tells us that
Lo, 1,5
mgy, = mgy, + Emv + 51(0 , (4.72)

where m is the mass of the stone and I = MR*/2 is the moment of inertia of the disk,
which we determined using Figure 5f. We can then write

mg(yO —yl)zém(osz +%MR2(02. (4.73)

But the kinetic energy of the pulley is given by the last term on the right hand-side of
equation (4.73), and

~ 4-450 ]
2.50 kg-(0.200 cm)’

=180 rad?/s’.

(4.74)

We finally write

_ _szz(Hﬂ)
Yo = Vi 2¢ m

180 rad®/s*-0.04 m® 14 250 ke
2-9.80 m/s’ 2-1.50 kg
=0.673 m.

(4.75)

The stone need to fall 0.673 m for 4.50 J of rotational kinetic energy to be stored in the
disk.

(b) The percent of kinetic energy stored in the pulley is
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Ko MR’w* /4
K, mo°R*/2+MR*®’/4
R
C1+2m/M (4.76)
M

- M+2m
=45.5%.

tot

It is interesting to note that this figure a constant of time and is only a function of the
masses of the pulley and stone.

4.5 Parallel-Axis Theorem

We already stated in Section 4.2 that the moment of inertia of a rigid body depends on the
choice of the axis about which it is calculated. There is, however, a useful theorem that
links the moment of inertia obtained when using an axis that goes through its centre of
mass, we denote it by [, and another that is parallel to it but located some distance d

away, let us call it / . We can conveniently, but in all generality, locate the origin of the

system of axes at the position of the centre of mass. It follows from this that

r. =0. 4.77)

cm

We can also, without any loss of generality, choose the z-axis as that going through the
centre of mass and about which the moment of inertia is /_ . With this choice, we can

Ci

write for d (: ‘d|) the location of the parallel axis
d=ae, +be,. (4.78)

We now use the second of equations (4.60) for the definition of the moment of inertia

(4.79)

= Z‘ml(xl2 +yi2).

We can also use the same definition for [, but the distance of a point located at r,

(relative to the z-axis) is r,, —d from the parallel axis. We therefore have, with

Mzzim,.,
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1,= Y m] (x—a) +(y,-b) |
= m [ (x7 +37)-2(ax, +by,)+(a* +7)]
=Y om [ (x2+y7)-2(ax, +by,)+d* ] (4.80)
= Ilcm —2a) mx,—2bY my,+d* Y m,

=1, —2Max,, —2Mby, +Md’,

or alternatively
I,=1,-2Md-r,  +Md*. (4.81)

We know from equation (4.77) that r, , =0, which then yields the final result for the
parallel-axis theorem

=1, +Md. (4.82)

For example, let us use this equation to calculate the moment of inertia for the slender rod
of Figure 5b, where the axis used for I, is located at one end of the rod, starting with the

result of Figure 5a, where the axis used for I, goes through the centre of mass. In this
case d =L/2, then

MI?
=1+

2 2
iz a5

MI?

which is the result expected.

4.5.1 Exercises

5. (Prob. 9.53 in Young and Freedman.) About what axis will a uniform, balsa-wood
sphere have the same moment of inertia as does a thin-walled, lead sphere of the same
mass and radius, with the axis along a diameter?

Solution.

If we the subscripts “1” and “2” for the uniform and thin-walled spheres, respectively,
then from Figure 5h and i for an axis along a diameter
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I, = gMR2
5 (4.84)
1, ==MR’
’ 3
We need to determine d for
I, =1, +Md’
’ ’ (4.85)
= I2,cm :
We therefore have
1
d2 :M(Ilcm lcm)
1 1
=2R*| ——= 4.86
(3 5) (4.86)
= iR{
15
or
d=0516R. (4.87)

4.6 Angular Momentum and Torque

We now seek to further expand on the correspondence between linear and rotational
motions for a rigid body. In what will follow, we will put a further restriction that the axis
rotation about which the rotation takes place is a symmetry axis. For example, one can
think of the long axis of a cylinder, as in Figure 5f. While this simplification will ease our
analysis, the results can be shown to be of greater generality, but this demonstration is
beyond the scope of our study (see footnote 1 on a later page).

We already know of the correspondences between the following quantities when
considering translational and rotational motions:

X< 0
veo (4.88)
asc—ooo

me 1.
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But we have yet to find or define analogs to the linear momentum p and the force F. To

do so, we start by considering a mass element m, located at r; in the rigid body, and for
which

V., =@ XTr,. (4.89)

We now first multiply by m, (to get the linear momentum) and then cross-multiply with
r, . That is, using equations (4.30) and (4.32),

r,xmyv, =r,x(mexr,)
=mr’w-m,(@r)r,
=m[r’o-(o ), ]-m(or)r, (4.90)
= m.(r. w-r, (x))—a)m,.ri“r,.’l

_mtrlj_w wmll” il

(Note that r,, can be positive or negative in this equation.) We introduce a new vector
quantity
L, =r xmy,

491
=IXp;, (490

which we sum all over the volume spanned by the rigid body (i.e., over i). Equation
(4.90) then becomes

ZL Z(wmz’ﬁ_wmz”?,nru)
= mel R0 mrr,
i

(4.92)

We know from equation (4.60) that the first term on the right-hand side is the product of
the moment of inertia and the angular velocity /@, but the last term will cancel out when
the axis of rotation is an axis of symmetry. That is,

Zm, rr, = (4.93)

This is because as one effects the sum about the axis of symmetry, for each term m.r; r, |
there will exist another one such that mr,r, =—mrr, . It follows that the total

angular momentum L is defined as
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L=)L,

=lw

(4.94)

when the rigid body is rotating about an axis of symmetry. We then find a new
correspondence between linear and angular momentum that is perfectly consistent with
equations (4.88), i.e.,

p=mv& L=l (4.95)

Pushing the analogy further we could postulate that the analog of the force for rotational
motion must be the time derivative of the angular momentum since according to
Newton’s Second Law

dp
=—. 4.96
= (4.96)
We would then define the torque with

% (4.97)

which according to equation (4.94) would yield

d
=21
T dt(w)
do
=7 4,98
% (4.98)

=lo,

since the moment of inertia / is constant for a rigid body. Equations (4.97) and (4.98) are
the correct relations that link the torque and angular momentum for a rigid body rotating
about an axis of symmetry (although equation (4.97) is true in general). But just as the
angular momentum is also related to the linear momentum through equation (4.91), there
is a similar connection between the torque and the force. We thus proceed as follows

d
T= Z(ZLJ, (4.99)

" Although the result L= I was derived for rotation about symmetry axes and that the
more general relation is mathematically different, it is always possible to bring this more
general relation into that simpler form through a judicious orientation of the system of
axes chosen as a basis for the rigid body (commonly called the principal axes).
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which, since v, x m,v, =0, becomes

= v xmy,+ Y x (4.100)

The total torque on the rigid body is therefore the sum of the all the torques acting on the
individual particles that form the rigid body.

We note that the torques on the individual particles result from the net force applied on
these particles, which is the sum of the corresponding external and internal forces. But if
the internal forces that characterize the interaction between particles are central forces,
i.e., if they act along the line that joins a given pair of interacting particles, then the
torques resulting from these forces will cancel each other (because of Newton’s Third
Law; see Figure 6). It follows that only external forces are involved in the determination
of the total torque acting on a rigid body. We can therefore write

T= zrt X Fext,i
i

Z Text,z’ ‘

i

(4.101)

We then find our last correspondence between translational and rotational motions
Action—reaction force pair Line of action
whose torques cancel: of both forces
Tlon2~ +Fl
Toon1 = —Fl &

-
F .
oy T TON2 ST paice 2

Lever arm [
of both forces

2012 Passon Ecusaion, e

Figure 6 — The cancellation of torques
resulting from the internal forces on a
pair of particles due to their interaction.
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F=mac71t=I0. (4.102)

It is also important to note that the second and third of equations (4.100) are valid in
general for a single particle with

T=rxF,_. (4.103)

4.6.1 Exercises

6. (Prob. 10.3 in Young and Freedman.) A square metal plate 0.180 m on each side is
pivoted about on axis through point O at its centre and perpendicular to the plate.
Calculate the net torque about this axis due to the three forces shown in Figure 7 if the
magnitude of the forces are F;, =180 N, F, =26.0 N, and F, =14.0 N. The plate and all

forces are in the plane of the page.
Solution.

Using equation (4.103) for the torque w can write

7=t 4.104
=rF,, sin(¢), (4.104)

where ¢ is the angle between r and F, . We then have
7,=(18.0 N)(v2-0.090 m)sin(-135") 4.105)

=-1.62 N,

and since the torque is negative, it is directed into the page (i.e., the plate is moving

~ 4
~ e
N 0.090 m 0.090 m o ;
{lb] = |35
¢y = 135° ‘
r r
< 0.090 m
-
F :
o, axisN 4
2 ¢
/m —
1 ;
b

A S

Figure 7 — Torques on the metal plate of Prob.
6.
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clockwise. For the second force

7,=(26.0 N)(v/2:0.090 msin(135°)

(4.106)
=234 N,
the torque is coming out of the page. Finally, for the last torque
7,=(14.0 N)(~/2-0.090 m)sin(90") $.107)

=1.78 N,
also coming out of the page.

7. (Prob. 10.17 in Young and Freedman.) A 12.0-kg box resting on a horizontal,
frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes over a
frictionless pulley. The pulley has the shape of a uniform solid disk of mass 2.00 kg and
diameter 0.500 m. After the system is released, find (a) the tension on the wire on both
sides of the pulley and the acceleration of the box, and (b) the horizontal and vertical
components of the force that the axle exerts on the pulley.

Solution.

(a) From the first two free-body diagrams shown in Figure 8 we have

T, =ma
(4.108)
m,g—T, =m,a,
or when combining these two equations
T,-T, =m2g—(ml+m2)a. (4.109)

From the third free-body diagram of the figure we can also write for the torque acting on
the pulley

Figure 8 — The free-body diagrams for Prob. 7.
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”L'=r(T2—Tl)
_ I (4.110)

a
=1=,
;

since the tangential acceleration is a = ar, with r the radius of the pulley (see equation
(4.40)). We can transform equation (4.110) to

1 a
T,-T, :(EMrz)r—z

4.111)

=1Ma,
2

with 1= Mr*/2 from Figure 5f. If we now subtract equations (4.109) and (4.111), we
then have

__ 2mg
2m +2m,+ M
2-5.00 kg-9.80 m/s’

= (4.112)
(2-120+2-5.00+2.00)kg
=2.72 m/s’.
Inserting the first of equations (4.112) into equations (4.108) we find
2mym,g
Lo2m +2m,+ M
2
_ 2-12.0 kg-5.00 kg-9.80 m/s 4.113)
(2-12.0+2-5.00+2.00)kg
=326N
and
2 M
T,= mr m,g
2my +2m +M
2-12.00+2.00)k
- ke 1500 kg-9.80 m/s? (4.114)
(2-12.0+2-5.00+2.00)kg

=354 N.

It is important to note that the reason for having 7, # 7, is that we account the moment of
inertia of the pulley with equation (4.111).
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(b) The last free-body diagram of Figure 8 shows that three forces are acting on the
pulley, which implies that it must react with a force F that equals minus the resultant of
the three forces. That is,
F=—(T,+T, +m,g)
= _(_Tl)ex - (_Tz - ng)ey
=Te, +(T2 + ng)ey

=(32.6e,+550e )N.

(4.115)

4.7 Combined Translational and Rotational Motions

Consider two frames of reference: one inertial frame of axes x’,y’,and 7 and a rotating
frame with axes x,y, and z tied to a rotating rigid body; this is shown in Figure 9. If we
choose a point P in the rigid body located at r, from the origin of the rotating axes and
we further located this origin to that of the inertial frame with R, then we can write

r'=R+r, (4.116)

for the position of P in the inertial frame. We now inquire about the motion of P as
seen by an observer located at the origin of the inertial system with

Rigid Body

o]

X’

Figure 9 — A fixed inertial frame with axes x’,y’,and 7, and a
rotating frame with axes x,y, and z. The vector R locates the
centre of mass of the rotating rigid body.

- 86 -



dr’ d(

dr dt

dR dr,
+

d  dt’

(4.117)

Upon using equation (4.16) we find that

Vi=V+y,
(4.118)
=V+oxr,

where

v/ ==t (4.119)

We therefore find that the motion of a point on the rigid body can be broken in its
rotation motion about a given centre of rotation and the translational motion of that
centre relative to an inertial frame of reference.

4.7.1 With Rotation about the Centre of Mass

We now constrain the rotation to be about an axis that passes through the centre of mass
of the rigid body. That is, r’ is now the position of P from the centre of mass and R the
location of the centre of mass to the origin of the inertial frame of reference.

We have already shown in Section 3.4 of Chapter 3 that the total linear momentum P of
the rigid body measured in the inertial frame, obtained by summing over all points such

as P, equals the total mass M of the rigid body times the velocity V of its centre of
mass. This is again readily verified with equation (4.118)

(4.120)
=MV+@x ) mr,

which, since by definition zimiri =0, becomes
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P=MV. (4.121)

The next obvious inquiry to make at this point concerns the total angular moment L
measured in the inertial frame. We do so as follows

L=YL,
=Y xmy,
=i[(R+rf)Xmi(V+Vi)] (4.122)
=imi(R><V+R><vi+ri XV+r,XV,)

=RXP+ Y m (RXv,+5,XV)+ D> 1, xmyv,.
However, the second and third terms can be shown to cancel since
Zm,.(val.+ri X V) Zm [ (RxT;) eri+ri><V}

=%(Rx2mirij—2Vx2miri (4.123)

i

=0,

because, once again, zimiri =0 by virtue of the definition for the centre of mass.

Equation (4.122) then yields the important result

L=RxP+)) r xp,. (4.124)

That is, the total angular momentum of a rigid body about the origin of an inertial frame
is the sum of the angular momentum of the centre of mass about that origin and the
angular momentum of the rigid body about its centre of mass.

4.7.2 Energy Relations

We just saw that the overall motion of a rigid body can be advantageously broken down
into motions about its centre of mass and of its centre of mass relative to the origin of an
inertial frame. Does the same type of relation exist for the kinetic energy? To answer this
question we calculate for the point P
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1
K, = —ml.vi’2
2

1
:Em,.(V+v,)2 (4.125)
=lml.(V2 +2V.v, +vi2),
2
where we used equation (4.118). Summing the energy over the entire rigid body we get

=%Zm,.(V2+2V-vi+vi2)

:%MVZ +V.[zmiviJ+%Zmivi2.

(4.126)

However, the second term on the right-hand side can be shown to vanish since
d
2my,= E(Zml‘rfj (4.127)

from the definition of the centre of mass, and
MV2 Zm V; (4.128)

Using the result already established with equations (4.51) through (4.59) we can finally
write

K:%MV2+%Icma)2, (4.129)

where the moment of inertia relative to (an axis passing through) the centre of mass of the
rigid body 1, is given in equation (4.79). Equation (4.129) answers our earlier question

and implies that the ftotal kinetic energy of the rigid body as seen in an inertial frame is
the sum of the kinetic energy of a particle of mass M moving with the velocity of the
centre of mass and the kinetic energy of motion (or rotation) of the rigid body about its
centre of mass.

Finally, the potential gravitational energy of a rigid body of total mass M that exhibit

translational and rotational motion (about any axis of rotation) remains as was described
in Section 4.3 with
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U=Mgy,,. (4.130)

4.7.3 Exercises

8. (Prob. 10.22 in Young and Freedman.) A hollow, spherical shell with mass 2.00 kg

rolls without slipping down a 38.0" slope. (a) Find the acceleration, the friction force,
and the minimum coefficient of friction needed to prevent slipping. (b) How would your
answers to part (a) change if the mass were doubled to 4.00 kg?

Solution.

We will set the x-axis to be down the incline and let the shell be turning in the positive
direction. The free-body diagram is shown in Figure 10.

(a) According to the figure we have for the forces acting on the centre of mass and the
torque acting on the sphere

ma,, = mgsin(B) - f, (4.131)
I,.0=fR, |

where we must use the static (and not dynamic) force of friction since the point of the
sphere contacting the surface is not moving relative to it. But since the sphere is not
slipping we also have that a_ = aR and from the second of equations (4.131)

acmlcm

which we can insert in the first of equations (4.131) to get

gsin(B
=TT e ;mzz : (4.133)

Alternatively, we can evaluate

mgsin()
=——. 4.134
U e /1, (3134)
For a hollow sphere we have
I, =2/3mR’ (4.135)

which leads to

-90 -



Figure 10 — Free-body diagram
for the rolling sphere in Prob. 8.

a,, = ggsin(ﬁ)

=3.62 m/s’

2 .
.= Zmgsin(p)
=483 N.

(4.136)

The coefficient of static friction is given by

- mgcos() (4.137)

=2 tan(B)

=0.313.
This coefficient is required to ensure that the sphere does not slip down the incline.

(b) The only part of (a) that would change if the mass of the sphere was doubled is the
magnitude of the static friction force, which would also double to 9.66 N.

9. (Prob. 10.24 in Young and Freedman.) A uniform marble rolls down a symmetrical
bowl, starting from rest at the top of the left side. The top of each side is a distance &
above the bottom of the bowl. The left half of the bowl is rough enough to cause the
marble to roll without slipping, but the right half has no friction because it is coated with
oil. (a) How far up the smooth side will the marble go, measured vertically from the
bottom? (b) How high would the marble go if both sides were as rough as the left side?
(c) How do you account for the fact that the marble goes Aigher with friction on the right
than without friction?
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Rough

il Smooth
(no slipping)

Figure 11 — A marble rolling inside a bowl, in
Prob. 9.

Solution.

(a) We will let y=0 at the bottom of the bowl, shown in Figure 11. Since the marble of

mass m starts from rest, its kinetic energy at the bottom of the bowl will be given by
equation (4.129)

(4.138)

where R is the radius of the marble and we imposed the no-slipping condition v, = @R.

Because of the principle of conservation of energy, this (change in) kinetic energy equals
the change in potential gravitational energy with

1 , 1. (v.Y
—mv_+—1_| == | =mgh, 4.139
and, since 1, =2/5mR’,
v = ggh. (4.140)

But at the bottom of the bowl the no-slipping condition does not hold anymore and the
rotational kinetic energy will be conserved, as no torque (due to friction) will be acting on
the marble. Conservation of energy then dictates that from the bottom of the bowl to the
height 4’ the marble will reach on the right side of the bowl we must have

lmvc2m+ %Icma)2 = %Icma)2 +mgh’, (4.141)

2

or
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§ (4.142)

where equation (4.140) was used.
(b) If the right side of the bowl had the same roughness as the left side, then the kinetic

energy stored in the rotation of the marble at the bottom of the bowl would be transferred
back to potential gravitational energy and equation (4.141) would be replaced by

%mvfm+%lcma)2 =mgh’ (4.143)

we would find that #= A" from equation (4.139).
(c) As was stated above, the marble goes higher when the whole bowl has a rough surface
because the kinetic energy stored in the rotation marble at the bottom of the bowl is

transferred back to potential gravitational energy.

4.8 Work and Power in Rotational Motion

We know from our treatment in Chapter 2 that the infinitesimal work dW done by a
force F acting through an infinitesimal distance dr is given by

dW =F-dr. (4.144)
But for a rotational motion we know from equation (4.15) that

dr=d@xr, (4.145)

where dr is now understood to be the infinitesimal arc subtended by the radius r over an
infinitesimal angular displacement vector d0. Inserting equation (4.145) in equation
(4.144) we have

dW =(d@xr)-F, (4.146)
but since (axb)-c = (c>< a)-b = (b Xc)-a we can also write

dW =(rxF)-de

4.147
=7-d0, ( )
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where 7 =r X F is the torque on the system. If we now integrate equation (4.147) through
a finite angular displacement 6, — 6, we find that the total work done is

W= :zr-de
; (4.148)
= |, (rxF)-a6.

This relation is the analog of equation (2.39) in Chapter 2 for translational motions
W=["F-dr. (4.149)

It follows from equation (4.148) that for rotational motion a force can only do work if it
has a component perpendicular to the radius, as expected. Of course, the work-energy
theorem derived in Section 2.2 of Chapter 2 also applies here. For example, if rotation
happens about a symmetry axis we have

7-d6=(lax)-d6

=1==.d60
(4.150)

and

W=J121a)-da)

=5Ja(o)

= %Icof —%Icof

=AK,,.

(4.151)

It should be noted that this result could also be obtained for the special case of a constant
angular acceleration using equation (4.23), in a manner similar to what was done in
Chapter 2 for translational motions.

The power associated with the work done by the torque (or the force) can readily be
determined with
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dt
d
=—(7-dO 4.152
< (z-a0) @152
)
dt
and finally
P=7 . (4.153)

Again this result is analogous to the one obtain with equation (2.47) in Chapter 2 for
translational motions

P=F-v. (4.154)

4.8.1 Exercises

10. (Prob. 10.65 in Young and Freedman.) You connect a light string to a point on the
edge of a uniform vertical disk with radius R and mass M . The disk is free to rotate
without friction about a stationary horizontal axis through its centre. Initially, the disk is
at rest with the string connection at the highest point on the disk. You pull the string with
a constant horizontal force F until the wheel has made exactly one-quarter revolution
about the horizontal axis, and then you let go. (a) Use equation (4.148) to find the work
done by the string. (b) Use equation (4.149) to find the work done by the string. Do you
obtain the same result as in part (a)? (c) Find the angular speed of the disk. (d) Find the
maximum tangential acceleration of a point on the disk. (e¢) Find the maximum radial
(centripetal) acceleration of a point on the disk.

Solution.
From Figure 12 we can verify that

F=-Fe,

R=R[—cos(@)ex+sin(9)e},]. (4.153)

(a) Since the force and the torque are dependent on the angle 6 we write
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R\ |

(+z) X

Figure 12 — The string-disk arrangement
of Prob. 10.

2
W:L T-d0
:f R xF)-d@

—J{ —sin(0)e, +cos(6)e )] X (—Fe )}-(ezde)

L cos(6)do,

(4.156)

= —FR(ey xex)~ez

but since Jcos(@)d@ =sin(6) and e, x e, =—e_, we have (with 6, =0 and 6, =7/2)

W = FR[ sin(6,)—sin(6,)]

(4.157)
= FR.
(b) Using equation (4.149) with the arc dr =d@ xR we have
W=[F(d0xR)
(4.158)

:L (RXF)-de,

which equals the second of equations (4.156) (we also used F-(d@xR)=(RxF)-df). It

follows that the two approaches, i.e., this one and the one of part (a), will give the same
result.

(c) We know from equation (4.151) that
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1
4FR
= 4.159
MR’ (*4.159)
oL
MR
(d) The tangential acceleration is given by
alan = a X R
4.160
=TxR ( )
I
and since 7 and R are perpendicular to one another
TR
Aoy =
1
FR R
_ FReos(9)R (4.161)
MR*/2
2F
=——cos(0),
L cos()
which will be maximum with 2F/M at 6=0.
(e) The radial acceleration is given by
a,=0’R
_4AF sin(6) R (4.162)
- MR

where we used the value of W from equation (4.157) at an arbitrary angle 6. The
centripetal acceleration will be at a maximum at 6 = /2 with a_, =4F/M .

4.9 The Conservation of Angular Momentum

When deriving the principle of conservation of linear momentum in Chapter 3, we
considered an isolated system of particles; this principle only applies for such system.
Our derivation rested entirely on Newton’s Third Law. We showed that if interactions
between pairs of particles happen through internal forces in such a way that

F,=-F, (4.163)

Ji?
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where i andj denote a pair of particles, then the total linear momentum of the system
was conserved

dp
o= 4.164
i (4.164)
On the other hand, if the system was not isolated but was subjected to a net external
force, then the total linear momentum of the system was allowed to change according to
Newton’s Second Law

dp
= Zfwo 4.165
T ( )

For the purpose of investigating a similar conservation of angular momentum we must
also consider an isolated system; certainly a rigid body satisfies this requirement. From
our previous study on the relation between the torque and angular momentum, we have a
perfect correspondence between the force-linear momentum and torque-angular
momentum pairs. For example, we know from equation (4.97) that

dL
T=—0u. 4.166

% (4.166)
For a rigid body not subjected to a net external torque, and therefore isolated from any
agent that could change its state of rotation, equation (4.166) tells us that

daL _ 0. (4.167)
dt

In other words, when the net torque applied to a system is zero, then the total angular
momentum of the system is conserved and remains unchanged. It is important to note that
this principle is a universal conservation law, to the same fundamental level as the
principles of conservation of energy and linear momentum.

It is possible that internal torques arise between the components of a system (just as
internal forces could be present when investigating the total linear momentum of an
isolated system of particles). But if we again call upon Newton’s Third Law such that
these internal torques arise from interaction forces that satisfy equation (4.163), the sum
of all such internal torques can be written as

> o =Z[r,~ XZF.,-iJ

i J#i

= 2 (5 xF, +r,xF,).

ij pairs

(4.168)
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where the last summation is on unique pairs of particles 7 andj (i.e., if we consider
i and j then we shouldn’t include j and i to avoid double-counting). But from equation
(4.163) we can write

Y ti= 2 [(r-1)xF, ]| (4.169)

i ij pairs

If we now enforce the further constraint that the internal forces be central, i.e., that they
are directed along the straight line joining the two interacting particles (i.e., F;, is parallel

or anti-parallel to r, —r;), then
(r,-r,)xF,=0 (4.170)
and

D T =0. 4.171)

i

This implies that parts of the system can experience a change in their angular momentum,
but the total angular momentum must be conserved when no external torque is applied.
Equations (4.168) to (4.171) put on a firm mathematical basis what was discussed in
Section 4.6 and illustrated in Figure 6. When an external torque is applied, then the total
angular momentum will change in accordance with equation (4.166).

4.9.1 Exercises

11. (Prob. 10.41 in Young and Freedman.) Under some circumstances, a star can collapse
into an extremely dense object made mostly of neutrons and called a neutron star. The
density of a neutron star is approximately 10" times that of ordinary solid matter.
Suppose we represent the star as a uniform, solid, rigid sphere, both before and after the
collapse. The star’s initial radius was 7.0x10° km (comparable to our sun); its final
radius is 16 km. If the original star rotated once in 30 days, find the angular speed of the
neutron star.

Solution.
The angular momentum must be conserved with

1,0,

star ~ % neutron a)2

4.172
2 ur? wl=§MR2 o,, ( )

5 star neutron

or
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2
NN
2 1
Rneutron

5 2
= 27ﬂrad/sec- 70107 (4.173)
30- 86400 16

= 4640 rad/s (or 738 rev/s).

12. (Prob. 10.43 in Young and Freedman.) The outstretched hands and arms of a figure
skater preparing for a spin can be considered a slender rod pivoting about an axis through
its centre. When the skater’s hands and arms are brought in and wrapped around his body
to execute the spin, the hands and arms can be considered a thin-walled, hollow cylinder.
His hands and arms have a combined mass of 8.00 kg. When outstretched, they span 1.80
m; when wrapped, they form a cylinder of radius 25.0 cm. The moment of inertia about
the rotation axis or the remainder of the body is constant and equal to 0.400 kg-m?*. If

his original angular speed is 0.400 rev/s, what is his final angular speed?
Solution.

The angular momentum must be conserved through this maneuver, i.e.,

(Iarms,l + Ibody)wl = (Ia.rms,Z + Ibody)wZ’ (4174)
or
I +1
, =@, 2l (4.175)
Iarms,2 + Ibody

From Figure 5 we have that

a0 (4.176)

where L and R are the length and radius of the hands and arms when outstretched and
brought in, respectively. It follows that
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ML 1241,
C=O TR T

body

(4.177)

(a0 [ L1E12204)

8.0-025°+0.4
=7.15 rad/s (or 1.14 rev/s).

4.10 Precession

We have all experienced the remarkable dynamical behavior of a spinning top. One
intriguing aspect is the observation of an increasing rotational-wobble of the spinning
axis as the angular speed of the top (about the spinning axis) is slowing down. This type
of motion is called precession. We have now developed all the tools necessary to
understand this behavior.

Let us consider a flywheel with its symmetry, and spin, axis positioned horizontally as
depicted in Figure 13. The flywheel is spinning with an angular velocity @ about its
symmetry axis, initially directed along the x direction (i.e., ®@=we ), and is
simultaneously subjected to gravity with its weight w=-we_ pointing downward. The

presence of this force located at the centre of mass of flywheel-axis system brings a
torque initially pointing along the y-axis (i.e., pointing into the page)

T=IrXWw

e (4.178)

It would perhaps be intuitive to think that the presence of this torque would start the
flywheel rotating about the y-axis and eventually bring it in contact with the ground.
This is indeed what would be observed if the flywheel were not spinning about its
symmetry axis. But the flywheel’s dynamics are much more interesting because of its
rotational motion...

Circular motion

. . )
of flywheel axis {} Flywheel
(precession) g >

Flywheel

axis

Vol — _a
" Pivot f"":] j =
- | L
7= ==~ I e o - ¢
Path followed [ \\/
by freeendof | | r @ | Rotation of
axis e | tlywheel

e moving in a circle abou
Figure 13 — Precession of a

flywheel as it spins about its
symmetry axis.
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Figure 14 - The angular
momentum after an interval
dt .

We first investigate the infinitesimal change in angular momentum dL during a time dt
with

dL =tdt, (4.179)

which is initially oriented along the y-axis . The resulting angular momentum is generally
expressed by

L+dL=1w+1dt, (4.180)
which initially (i.e., after the interval dt ) is given by

L+dL=loe, +1dre,. (4.181)

This is shown in Figure 14. One might be inclined to think from equation (4.181) that the
magnitude of the angular momentum has changed in the process, but this would be
misleading. To verify this, let us calculate the amount of work done on the flywheel by
the torque during the interval dt . Using equation (4.147) with dO = @dt , we have

dW =1 -wdt, (4.182)
which initially is

dW:Ta)dt(ey-eX)
=0.

(4.183)

We note that equation (4.183) is valid at all times. The fact that no work is done by the
torque is fundamentally important for what follows. The main implication we emphasize
is that, from equation (4.151), there is also no change of the kinetic energy stored in the
flywheel, which also implies that
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@ = constant
(4.184)
L = Iw = constant.

It is important to stress that there is no conservation of the angular momentum, since it
changes direction (see Figure 14), but the magnitude of the angular momentum remains
constant. More importantly, the flywheel (and angular momentum) moves in xy-plane

not downward! Again, the reason for this is that as the flywheel precesses in the
xy-plane , the torque due to its weight is always oriented perpendicular to the angular

displacement, as exemplified with equation (4.183). No work is ever being done on the
fhywheel.

This behavior is entirely due to the rotation of the flywheel. In the case where the
flywheel is not initially spinning about its axis, equation (4.183) does not apply and

dW =71-d0

4.185
#0 ( )

in general. As the flywheel starts its fall downward, it also feels an angular acceleration
due to the torque that precipitates its fall (until it reaches the ground).

Let us now see if we can quantify the precession of the spinning flywheel. We start with

dL=7dt
=(rxw)dt
= {r[cos(¢)ex + sin(¢)ey]>< (—wez )}dt
= rwdt[cos((/))ey - sin(fi))ex]’

(4.186)

where ¢ is the precession angle measured from the x-axis in the xy-plane. We now
introduce the precession frequency

Q= @ (4.187)
dt
The magnitude € of this frequency is given by (see Figure 14)
oo
dt
_ et/
dt

(4.188)

2

which from equations (4.184) and (4.186) yields
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Q=—.
Io

Incidentally, solving equation (4.186) we find

L=dL
= rw[ey_[cos(Qt)dt - exJ.sin(Qt)dt}

= %[cos(ﬂt)ex + sin(Qt)ey],

where we used

J-cos(at)dt = lsin(at)
a
at)dt

1
J.sin( =——cos(at).
a
Upon inserting equation (4.189) in equation (4.190) we find that

L= Ia)[cos(Qt)ex + sin(Qt)ey].

(4.189)

(4.190)

(4.191)

(4.192)

This equation makes it clear that the magnitude of the angular momentum remains
unchanged at /@, but that the spin axis rotates at the precession frequency 2 in the
xy-plane . Finally, we also demonstrated with equation (4.189) the fact stated at the start

that the precession frequency (i.e., the wobbling motion) increases as the rotation speed

of the spinning top (the flywheel, in this case) winds down.
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