
6 Quantization of the Radiation Field

So far, we have treated the electric and magnetic fields as classical quantities when study-
ing quantum mechanical problems. In this chapter we study the quantization of electro-
magnetic radiation and its interaction with matter in an entirely quantum mechanical
setting.
Some of the material presented in this chapter is taken from Auletta, Fortunato and

Parisi, Chap. 13, and Grynberg, Aspect and Fabre, Chaps. 4-6.

6.1 Classical Formulation of the Free Radiation Field

We are first concerned with the free electromagnetic field, i.e., when no charges or cur-
rent are present, whose behaviour and evolution is classically governed by Maxwell’s
equations

∇ ·E (r, t) = 0 (6.1)
∇ ·B (r, t) = 0 (6.2)

∇×E (r, t) = − ∂

∂t
B (r, t) (6.3)

∇×B (r, t) =
1

c2
∂

∂t
E (r, t) . (6.4)

Adapting these equations to the realm of quantum mechanics necessitates the identifi-
cation of conjugate canonical variables, which would become operators in the quantum
mechanics version of electrodynamics and subjected to the same commutation relations
as r̂ and p̂. The procedure to be taken here is fairly similar to the one we used for the
one-dimensional harmonic oscillator (see Exercise 1.6 in Chapter 1).

6.1.1 Expansion using Normal Modes

Since a radiation field can exist in different modes, i.e., it can propagate along different
directions, at different frequencies and exhibit different polarization states, it will be to
our advantage to express the fields (i.e., electric, magnetic and potentials) with a Fourier
series. To do so, we must define a volume over which the radiation field will evolve. In
some cases, that volume is physical and can easily be identified (e.g., the interior of a
cavity) but there does not always exist clear boundaries to delimitate the region where
this evolution takes place. We will therefore subjectively introduce a cube of length L
for that volume, with the understanding that any physical results stemming from the
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6 Quantization of the Radiation Field

quantization process cannot depend on the exact nature of the volume (also note that
a Fourier series expansion always implies a periodic signal, which also does not need to
be realized physically). Because of this we expect and require that any mathematical
“trace” of the chosen volume “disappears” from or is absorbed in the relevant physical
quantities appearing in the equations. We therefore define the electric field as follows

E (r, t) =
∑
n

En (t) eikn·r , (6.5)

where n = nxex + nyey + nzez is a unit vector defining the direction of propagation and

En (t) =
1

L3

ˆ
V
E (r, t) e−ikn·rd3x (6.6)

are the Fourier coefficients (also V = L3). The wave vector is thus defined with

kn =
2π

L
(nxex + nyey + nzez) . (6.7)

With this formalism the divergence relations of Maxwell’s equations (i.e, equations
(6.1) and (6.2)) reduce to

kn ·En = 0 (6.8)
kn ·Bn = 0 (6.9)

since all modes in equation (6.5) must independently equal zero. Equations (6.8)-(6.9)
also make clear that the fields are transverse to the direction of propagation, which imply
that two mutually orthogonal polarization modes can exist for them. For example, the
electric field can be decomposed into linear polarization states εn,1 and εn,2 such that

ε∗n,1 · εn,2 = εn,1 · εn,2
= 0, (6.10)

and (with j = 1, 2)

kn · εn,j = 0. (6.11)

We therefore redefine the modes by combining the polarization state j to n such that

p = (n; j) (6.12)

and

E (r, t) =
∑
p

εpEp (t) eikp·r (6.13)

Ep (t) =
1

L3

ˆ
V
εp ·E (r, t) e−ikp·rd3x. (6.14)
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6 Quantization of the Radiation Field

We note here a few relations that will be useful later on

ε−p = εp (6.15)
k−p = −kp, (6.16)

i.e., the polarization state εp is not affected by reversing the sense of propagation, and

ε′p = n× εp

=
kp
kp
× εp (6.17)

with kp = |kp|. We should also note that, contrarily to εp, ε′−p = −ε′p. It is easy to
verify from equations (6.3) that the magnetic induction field is expressed by

B (r, t) =
∑
p

ε′pBp (t) eikp·r (6.18)

Bp (t) =
1

L3

ˆ
V
ε′p ·B (r, t) e−ikp·rd3x. (6.19)

Equation (6.18) follows from the fact that only Bp (t) is dependent on time in the Fourier
expansion, i.e.,

∑
p

ε′p
∂Bp (t)

∂t
eikp·r =

∂

∂t

∑
p

ε′pBp (t) eikp·r

=
∂B (r, t)

∂t
. (6.20)

As is well known, Maxwell’s equations are invariant under certain gauge transforma-
tions. For our purpose, it will be advantageous to choose the Coulomb gauge that
constrains the potential vector A (r, t) with

∇ ·A (r, t) = 0, (6.21)

which leaves the magnetic and electric fields unchanged at

B (r, t) = ∇×A (r, t) (6.22)

E (r, t) = −∂A (r, t)

∂t
−∇Φ (r, t) (6.23)

with Φ (r, t) the electric scalar potential. Applying equation (6.1) to equation (6.23)
simplifies our problem since
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6 Quantization of the Radiation Field

∇ ·E (r, t) = − ∂

∂t
∇ ·A (r, t)−∇ · ∇Φ (r, t)

= −∇ · ∇Φ (r, t)

= 0 (6.24)

and we choose1 Φ (r, t) = 0. It follows from equations (6.13), (6.18), (6.22) and (6.23)
that

A (r, t) =
∑
p

εpAp (t) eikp·r (6.25)

Ap (t) =
1

L3

ˆ
V
εp ·A (r, t) e−ikp·rd3x (6.26)

and

Bp (t) = ikpAp (t) (6.27)

Ep (t) = − d

dt
Ap (t) . (6.28)

We can eliminate one of the fields from these two equations with the Ampère-Maxwell
Law, i.e., equation (6.4)

d

dt
Ep (t) = −ic2kpBp (t) , (6.29)

and from equation (6.27)

d

dt
Ep (t) = ω2

pAp (t) (6.30)

with ωp = ckp. Equations (6.28) and (6.30) form a set of two coupled differential equa-
tions involving two variables. Despite their appearance, however, they are not constrained
to only one radiation mode since

E−p (t) = E
∗
p (t) (6.31)

A−p (t) = A
∗
p (t) (6.32)

from equations (6.14) and (6.26) and the fact that these (classical) fields are real. The
modes p and −p are thus coupled, which is something we would like to avoid when we
apply the aforementioned commutation relation in the quantum mechanical version. We

1Although, for example, Φ (r, t) ∝ x would verify equation (6.24), it must be rejected on the grounds
that the potential must be finite everywhere in space. The scalar potential can thus only be equal to
a constant, which we choose to be zero.
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6 Quantization of the Radiation Field

therefore need to find quantities that do not exhibit this interdependency between these
modes.
Let us now consider

αp (t) =
1

2Ep
[
ωpAp (t)− iEp (t)

]
(6.33)

βp (t) =
1

2Ep
[
ωpAp (t) + iEp (t)

]
(6.34)

with Ep is a constant to be evaluated. Equivalently, we have

Ep (t) = iEp [αp (t)− βp (t)] (6.35)

Ap (t) =
Ep
ωp

[αp (t) + βp (t)] . (6.36)

Combining equations (6.28), (6.30), (6.33) and (6.34) we find that

d

dt
αp (t) + iωpαp (t) = 0 (6.37)

d

dt
βp (t)− iωpβp (t) = 0, (6.38)

which admit for solutions

αp (t) = αp (0) e−iωpt (6.39)
βp (t) = βp (0) eiωpt. (6.40)

Unlike Ep (t) and Ap (t) in equations (6.28) and (6.30), the normal variables αp (t)
and βp (t) are found to be decoupled in equations (6.37)-(6.38). Equations (6.31)-(6.32)
also show that β∗p (t) = α−p (t) and we can write from equations (6.35)-(6.36)

E (r, t) = i
∑
p

Epεp
[
αp (t)− α∗−p (t)

]
eikp·r

= i
∑
p

Epεp
[
αp (t) eikp·r − α∗p (t) e−ikp·r

]
(6.41)

A (r, t) =
∑
p

Ep
ωp

εp
[
αp (t) + α∗−p (t)

]
eikp·r

=
∑
p

Ep
ωp

εp

[
αp (t) eikp·r + α∗p (t) e−ikp·r

]
(6.42)

B (r, t) = ∇×A (r, t)

= i
∑
p

Ep
c
ε′p

[
αp (t) eikp·r − α∗p (t) e−ikp·r

]
. (6.43)
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6 Quantization of the Radiation Field

6.1.2 The Hamiltonian for the Free Radiation Field and The Conjugate
Canonical Variables

The energy, or Hamiltonian, contained in an electromagnetic field is given by

HR =
ε0
2

ˆ
V

[
E2 (r, t) + c2B2 (r, t)

]
d3x. (6.44)

We must then evaluate the following integrals (dropping the explicit time dependency
for the moment)

ˆ
V
E2 (r, t) d3x = −

∑
p,q

EpEqεp · εq
ˆ
V

(
αpe

ikp·r − α∗pe−ikp·r
)(

αqe
ikq·r − α∗qe−ikq·r

)
(6.45)

ˆ
V
c2B2 (r, t) d3x = −

∑
p,q

EpEqε′p · ε′q
ˆ
V

(
αpe

ikp·r − α∗pe−ikp·r
)(

αqe
ikq·r − α∗qe−ikq·r

)
(6.46)

But we know that

ˆ L/2

−L/2
ei(ki+kj)xdx =

ˆ L/2

−L/2

{
cos

[
(ni + nj)

2πx

L

]
+ i sin

[
(ni + nj)

2πx

L

]}
dx

=

ˆ L/2

−L/2
cos

[
(ni + nj)

2πx

L

]
dx

= Lδ(i)(−j) (6.47)

as well as εp · εq = ε′p · ε′q = δ|p||q| and ε′−p = −ε′p, thus we have

ˆ
V
E2 (r, t) d3x = −L3

∑
p

E2p
(
αpα−p − αpα∗p − α∗pαp + α∗pα

∗
−p
)

= L3
∑
p

E2p
(
2αpα

∗
p − αpα−p − α∗pα∗−p

)
(6.48)

ˆ
V
c2B2 (r, t) d3x = −L3

∑
p

E2p
(
−αpα−p − αpα∗p + α∗pαp + α∗pα

∗
−p
)

= L3
∑
p

E2p
(
2αpα

∗
p + αpα−p + α∗pα

∗
−p
)
. (6.49)

It follows that

HR = 2ε0L
3
∑
p

E2p |αp (t)|2

= 2ε0L
3
∑
p

E2p
(
Re2 {αp (t)}+ Im2 {αp (t)}

)
. (6.50)
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6 Quantization of the Radiation Field

We have now expressed the Hamiltonian for the free radiation field in a form similar
to that for an harmonic oscillator (see equation (1.189) in Chapter 1). Importantly, we
note that the modes are now completely decoupled. We thus introduce the quantities

Qp (t) = 2Ep

√
ε0L3

ωp
Re {αp (t)} (6.51)

Pp (t) = 2Ep

√
ε0L3

ωp
Im {αp (t)} , (6.52)

which can be verified to be conjugate canonical variables since they are linked
through Hamilton’s canonical equations of motions (see equation (6.37))

d

dt
Qp =

∂HR

∂Pp
(6.53)

d

dt
Pp = −∂HR

∂Qp
(6.54)

with

HR =
1

2

∑
p

ωp
[
Q2
p (t) + P 2

p (t)
]
. (6.55)

6.2 Quantum Mechanical Formulation for the Free
Electromagnetic Field

To proceed with the quantization of the free electromagnetic field we will associate to
the conjugate canonical variables Qp (t) and Pp (t) the quantum mechanical operators Q̂p
and P̂p and impose the canonical commutation relations

[
Q̂p, P̂q

]
= i~1̂δpq (6.56)[

Q̂p, Q̂q

]
= 0̂ (6.57)[

P̂p, P̂q

]
= 0̂. (6.58)

We note that because we will be working in the Schrödinger representation these opera-
tors will be assumed time-independent (conversely, time dependencies would be used for
the Heisenberg representation).
Keeping our analogy with our previous classical formulation, we introduce the (time-

independent) operator âp corresponding to the variable αp (t)
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6 Quantization of the Radiation Field

Q̂p + iP̂p = 2Ep

√
ε0L3

ωp
âp. (6.59)

If we define

Ep =

√
~ωp

2ε0L3
, (6.60)

then we have

[
âp, â

†
q

]
= 1̂δpq (6.61)

[âp, âq] = 0̂ (6.62)[
â†p, â

†
q

]
= 0̂. (6.63)

The âp and â†p operators are, respectively, the annihilation and creation operators
we previously encountered in our analysis of the harmonic oscillator (see Exercise 1.6 in
Chapter 1). The Hamiltonian can written as

ĤR =
∑
p

~ωp
(
âpâ
†
p + â†pâp

)
=

∑
p

~ωp
(
â†pâp +

1

2

)
=

∑
p

~ωp
(
N̂p +

1

2

)
, (6.64)

where the number operator

N̂p = â†pâp (6.65)

was introduced. We note that fields are also (time-independent) operators since

Â (r) =
∑
p

Ep
ωp

εp

[
eikp·râp + e−ikp·râ†p

]
≡ Â+ (r) + Â− (r) (6.66)

Ê (r) = i
∑
p

Epεp
[
eikp·râp − e−ikp·râ†p

]
≡ Ê+ (r) + Ê− (r) (6.67)

B̂ (r) = i
∑
p

Ep
c
ε′p

[
eikp·râp − e−ikp·râ†p

]
≡ B̂+ (r) + B̂− (r) . (6.68)
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6 Quantization of the Radiation Field

We should also note that
[
Â+ (r)

]†
= Â− (r), etc.

This formalism, based on the annihilation and creation operators, their commutation
relations (i.e., equations (6.61)-(6.63)), the resulting form of the Hamiltonian (equation
(6.64)) and the number operator (equation (6.65)), is the same we have encountered in
Exercise 1.6 of Chapter 1 with the harmonic oscillator. We therefore use the same kind
of basis {|np〉} (generalized to an arbitrary number of dimensions) where, for np ≥ 0,

â†p |np〉 =
√
np + 1 |np + 1〉 (6.69)

âp |np〉 =
√
np |np − 1〉 (6.70)

and

N̂p |np〉 = np |np〉 . (6.71)

It is easy to verify from equation (6.70) the following relation between the lowest energy
state |0p〉 and any other states

|np〉 =

(
â†p
)np√
np!
|0p〉 . (6.72)

However, the system is made of a large (potentially infinite) number of independent
modes p that will result in the total state of the radiation field to be given by the ket
|n1, n2, . . . , np, . . .〉, with the eigenvalue equation

ĤR |n1, n2, . . . , np, . . .〉 =
∑
p

(
np +

1

2

)
~ωp |n1, n2, . . . , np, . . .〉 . (6.73)

It is interesting and important to note that the ground state of the system

|0〉 ≡ |n1 = 0, n2 = 0, . . . , np = 0, . . .〉 , (6.74)

called the radiation vacuum state , has a non-zero energy content. That is,

ĤR |0〉 = EV |0〉

=
1

2

∑
p

~ωp |0〉 . (6.75)

We can also generalize equation (6.72), given for one mode, to the entire radiation field
with

|n1, n2, . . . , np, . . .〉 =
∏
p

(
â†p
)np√
np!
|0〉 . (6.76)
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6 Quantization of the Radiation Field

We are then left with the picture of the vacuum state |0〉 devoid of any “particle” can be
altered by the creation operator â†p by adding a particle to the mode p, i.e.,

â†p |0〉 = |n1 = 0, n2 = 0, . . . , np = 1, . . .〉 . (6.77)

This interpretation is reinforced by a comparison of the energy contents between the two
states

E (n1 = 0, n2 = 0, . . . , np = 1, . . .)− EV = (EV + ~ωp)− EV
= ~ωp, (6.78)

where we find that the creation of a particle is accompanied by a quantum of energy ~ωp.
The associated particle is called a photon .
Finally, the kets forming the basis {|n1, n2, . . . , np, . . .〉}, commonly known as Fock

states, can be used to generate or expand any other radiation state |ψ〉 in the usual
manner, i.e.,

|ψ〉 =

∞∑
n1,n2,...,np,...=0

cn1,n2,...,np,... |n1, n2, . . . , np, . . .〉 , (6.79)

with cn1,n2,...,np,... a complex number and 〈ψ |ψ〉 = 1.

6.3 Interaction between Matter and the Quantized
Radiation Field

If we are to describe the interaction of radiation and matter in a fully quantum mechanical
formalism, then we must augment the form of the (classical) Maxwell’s equations used
in Section 6.1 to include the charges and currents that are sources of, and interact with,
electromagnetic fields. Equations (6.1)-(6.4) are then replaced with

∇ ·E (r, t) =
1

ε0
ρ (r, t) (6.80)

∇ ·B (r, t) = 0 (6.81)

∇×E (r, t) = − ∂

∂t
B (r, t) (6.82)

∇×B (r, t) =
1

c2
∂

∂t
E (r, t) + µ0J (r, t) , (6.83)

where ρ (r, t) and J (r, t) are the charge and current densities, respectively. These quan-
tities can be broken down into the contributions of the elementary charges qj , of mass mj

located at rj and moving at velocity vj at time t, composing the system under studies
with
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ρ (r, t) =
∑
j

qjδ [r− rj (t)] (6.84)

J (r, t) =
∑
j

qjvjδ [r− rj (t)] (6.85)

These quantities interact with the electromagnetic field through the Lorentz Force

mj
dvj
dt

= qj [E (r, t) + vj ×B (r, t)] . (6.86)

Keeping with the same Fourier expansion as before, i.e., we have for the charge and
current densities

ρ (r, t) =
∑
n

ρn (t) eikn·r (6.87)

J (r, t) =
∑
n

Jn (t) eikn·r (6.88)

with

ρn (t) =
1

L3

ˆ
V
ρ (r, t) e−ikn·r (6.89)

Jn (t) =
1

L3

ˆ
V
J (r, t) e−ikn·r, (6.90)

equations (6.80)-(6.83) yield

ikn ·En (t) =
1

ε0
ρn (t) (6.91)

ikn ·Bn (t) = 0 (6.92)

ikn ×En (t) = − d

dt
Bn (t) (6.93)

ikn ×Bn (t) =
1

c2
d

dt
En (t) + µ0Jn (t) . (6.94)

Clearly this set of equations implies situations that are more complicated than what
was considered for the free radiation field. For example, although equation (6.92) shows
that the magnetic induction field is still perpendicular to it, equation (6.91) reveals the
presence of an electric field component parallel to kn. We therefore write for the electric
field

E (r, t) = E‖ (r, t) + E⊥ (r, t)

= E‖ (r, t) en + E⊥ (r, t) , (6.95)
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where en ≡ n = kn/kn (see equation (6.91)) and E⊥ (r, t) has components in the
(εn,1, εn,2)-plane perpendicular to en. The Fourier coefficients can be likewise broken
down

En (t) = E‖,n (t) + E⊥,n (t) . (6.96)

Equations (6.80)-(6.82), (6.91)-(6.93) and (6.95) can be combined to give

∇ ·E‖ (r, t) =
1

ε0
ρ (r, t) (6.97)

∇×E‖ (r, t) = 0. (6.98)

The last of these relations implies that E‖ (r, t) can be expressed as (minus) the gradient
of some potential Φ‖ (r, t), as in electrostatic, and from equation (6.97)

∇2Φ‖ (r, t) = − 1

ε0
ρ (r, t) , (6.99)

or equivalently

E‖ (r, t) =
1

4πε0

∑
qj

r− rj (t)

|r− rj (t)|3
. (6.100)

The longitudinal component of the electric field is then similar in form to the electrostatic
due to a charge distribution (i.e., Coulomb’s Law), except for the fact that it dynamically
evolves with time as the positions of the individual charges change. Since we know from
classical electrodynamics that radiation fields are due to the acceleration of charges, we
conclude that the longitudinal electric field is not a radiation field.
We already stated that the magnetic field is transverse because of equation (6.92), i.e.,

B‖ (r, t) = 0. Its transverse component is contained in the remaining two of Maxwell’s
equations

∇×E⊥ (r, t) = − ∂

∂t
B⊥ (r, t) (6.101)

∇×B⊥ (r, t) =
1

c2
∂

∂t
E⊥ (r, t) + µ0J⊥ (r, t) , (6.102)

which can be combined to yield (with ∇ ·E⊥ (r, t) = 0)

∇× [∇×E⊥ (r, t)] = −∇2E⊥ (r, t)

= − ∂

∂t
[∇×B⊥ (r, t)]

= − 1

c2
∂2

∂t2
E⊥ (r, t)− µ0

∂

∂t
J⊥ (r, t) , (6.103)

or
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∇2E⊥ (r, t)− 1

c2
∂2

∂t2
E⊥ (r, t) = µ0

∂

∂t
J⊥ (r, t) . (6.104)

In the same manner we can derive

∇2B⊥ (r, t)− 1

c2
∂2

∂t2
B⊥ (r, t) = −µ0∇× J⊥ (r, t) . (6.105)

As equations (6.104)-(6.105) are inhomogeneous forms of the wave equation, yielding
retarded solutions for the fields, we conclude that the transverse components of the electric
and magnetic fields form the radiating electromagnetic field.
Just as we did in Section 6.1 we proceed by trying to formulate the problem using

normal variables in order to separate the different modes of radiation in the Hamiltonian.
We thus introduce, once again, the magnetic vector potential, which, like B⊥ (r, t), will
be transverse when using the Coulomb gauge since ∇ ·A⊥ (r, t) = 0. With the Fourier
expansion for all the transverse quantities, i.e., E⊥ (r, t), B⊥ (r, t), A⊥ (r, t) and J⊥ (r, t),
Maxwell’s equations (i.e., equations (6.93)-(6.94)) can be transformed to

d

dt
B⊥p (t) = −ikpE⊥p (t) (6.106)

d

dt
E⊥p (t) = −ic2kpB⊥p (t)− 1

ε0
J⊥p (t) . (6.107)

Using B⊥ (r, t) = ∇×A⊥ (r, t) to relate B⊥p and A⊥p (see equation (6.27)) we can write

d

dt
A⊥p (t) = −E⊥p (t) (6.108)

d

dt
E⊥p (t) = ω2

pA⊥p (t)− 1

ε0
J⊥p (t) . (6.109)

Defining the normal variables αp (t) and βp (t) in a manner similar as when dealing
with the free field

αp (t) =
1

2Ep
[
ωpA⊥p (t)− iE⊥p (t)

]
(6.110)

βp (t) =
1

2Ep
[
ωpA⊥p (t) + iE⊥p (t)

]
(6.111)

we find that equations (6.108)-(6.109) decouple to

d

dt
αp (t) + iωpαp (t) =

i

2ε0Ep
J⊥p (t) (6.112)

d

dt
βp (t)− iωpβp (t) = − i

2ε0Ep
J⊥p (t) (6.113)
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We therefore see that the transverse current density acts as a forcing term for these
differential equations, unlike for the free field where we had homogeneous equations.
However, it is still the case that β∗p (t) = α−p (t) and we can again write

A⊥ (r, t) =
∑
p

Ep
ωp

εp

[
αp (t) eikp·r + α∗p (t) e−ikp·r

]
(6.114)

E⊥ (r, t) = i
∑
p

Epεp
[
αp (t) eikp·r − α∗p (t) e−ikp·r

]
(6.115)

B⊥ (r, t) = i
∑
p

Ep
c
ε′p

[
αp (t) eikp·r − α∗p (t) e−ikp·r

]
(6.116)

when following the technique used for the free field.

6.3.1 The Hamiltonian with Radiation-Matter Interaction

When dealing with the Lagrangian or Hamiltonian formulation for a charge q of mass
m interacting with an electromagnetic field, it is possible to show that (see the Third
Problem List) the Hamiltonian can be written as

H ′ =
1

2m
[p− qA (r, t)]2 + qΦ (r, t) , (6.117)

where A (r, t) and Φ (r, t) are, respectively the magnetic vector and electric scalar po-
tentials at the position r of the charge at time t, and the generalized momentum p of
the charge is given by

p = mv + qA (r, t) . (6.118)

This Hamiltonian is found to produce the Lorentz force for equations of motion, and is
generalized for an arbitrary number of charge in a straightforward manner. As we will
soon see, the Hamiltonian in equation (6.117) contains the kinetic energy of the charge
and the interaction term between the charge and the field. To obtain the complete
Hamiltonian for the radiation-matter system we should add a component containing the
energy of the radiation field. For the system we are concerned with in this section, we
write for the total Hamiltonian

H =
1

2

∑
j

mjv
2
j +

ε0
2

ˆ
V

[
E2 (r, t) + c2B2

⊥ (r, t)
]
d3x

=
∑
j

1

2mj
[pj − qjA⊥ (rj , t)]

2 +
ε0
2

ˆ
V
E2
‖ (r, t) d3x

+
ε0
2

ˆ
V

[
E2
⊥ (r, t) + c2B2

⊥ (r, t)
]
d3x, (6.119)
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where we recognize the radiation part of the Hamiltonian in the last term (see equations
(6.44) and (6.50))

HR =
ε0
2

ˆ
V

[
E2
⊥ (r, t) + c2B2

⊥ (r, t)
]
d3x

= 2ε0L
3
∑
p

E2p |αp (t)|2

= 2ε0L
3
∑
p

E2p
(
Re2 {αp (t)}+ Im2 {αp (t)}

)
=

1

2

∑
p

ωp
[
Q2
p (t) + P 2

p (t)
]
. (6.120)

The generalized momenta pj in equation (6.119) was obtained with a relation similar
to equation (6.118) and equations (6.51)-(6.52) were used for the last line of equation
(6.120) .
Let us now consider the following

E2
‖ =

(
−∇Φ‖

)
·
(
−∇Φ‖

)
= ∇ ·

(
Φ‖∇Φ‖

)
− Φ‖∇2Φ‖ (6.121)

= ∇ ·
(
Φ‖∇Φ‖

)
+

1

ε0
Φ‖ρ (6.122)

and therefore (using the divergence theorem with S the boundary surface of the volume
V )

ε0
2

ˆ
V
E2
‖ (r, t) d3x =

ε0
2

ˆ
S

(
Φ‖∇Φ‖

)
· d2a +

1

2

ˆ
V

Φ‖ρd
3x

=
1

2

∑
j

ˆ
V
qjΦ‖δ [r− rj (t)] d3x

=
1

2

∑
j

qjΦ‖ (rj , t)

=
1

8πε0

∑
j

∑
k 6=j

qjqk
|rj (t)− rk (t)|

= VCoul (r1, . . . , rj , . . .) . (6.123)

In other words, the energy associated with the longitudinal electric field is nothing more
than the Coulomb potential energy due to the “electrostatic” interaction between the
different charges. We can now write the total Hamiltonian as

H = HP +HR +HI (6.124)
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where

HP =
∑
j

p2j
2mj

+ VCoul (6.125)

HR =
1

2

∑
p

ωp
[
Q2
p (t) + P 2

p (t)
]

(6.126)

HI =
∑
j

[
− qj
mj

pj ·A⊥ (rj , t) +
q2j

2mj
A2
⊥ (rj , t)

]
(6.127)

for the Hamiltonians of the particles, radiation and interaction components, respectively.

6.4 Quantization of the Radiation-Matter System

We are now in a position to proceed with the quantization of the total Hamiltonian. To
do so, we introduce the quantum mechanical version of the transverse component of the
classical fields of equations (6.114)-(6.116)

Â⊥ (r) =
∑
p

Ep
ωp

εp

[
eikp·râp + e−ikp·râ†p

]
≡ Â+

⊥ (r) + Â−⊥ (r) (6.128)

Ê⊥ (r) = i
∑
p

Epεp
[
eikp·râp − e−ikp·râ†p

]
≡ Ê+

⊥ (r) + Ê−⊥ (r) (6.129)

B̂⊥ (r) = i
∑
p

Ep
c
ε′p

[
eikp·râp − e−ikp·râ†p

]
≡ B̂+

⊥ (r) + B̂−⊥ (r) , (6.130)

while the total Hamiltonian becomes

Ĥ = ĤP + ĤR + ĤI (6.131)

with

ĤP =
∑
j

p̂2j
2mj

+ V̂Coul (6.132)

ĤR =
∑
p

~ωp
[
â†pâp +

1

2

]
(6.133)

ĤI =
∑
j

[
− qj
mj

p̂j · Â⊥ (rj) +
q2j

2mj
Â2
⊥ (rj)

]
. (6.134)
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When dealing with atoms or molecules the quantum mechanical Hamiltonian ĤP is
the one that is used with the Schrödinger equation to determine the (potentially degener-
ate) eigenvalues En and corresponding eigenstates |un〉 that characterize their stationary
states (i.e., ĤP |un〉 = En |un〉). For example, these states are usually labeled |n, `,m〉
for the hydrogen atom, with n = 1, 2, . . . the principal quantum number (determining the
energy of the states), ` the orbital angular momentum quantum number (0 ≤ ` < n− 1)
and m the magnetic quantum number (|m| ≤ `). This Hamiltonian does not include any
interaction between the charges beyond the V̂Coul term (e.g., spin-obit coupling).
The Hamiltonian for the radiation ĤR has exactly the same form and properties as

for the case of the free field, except that the annihilation and creation operators are
specifically associated with the transverse fields of equations (6.128)-(6.130). That is, in
the free radiation field case all the fields were transverse, while here the electric field also
possesses a longitudinal component Ê‖. It is often advantageous to combine ĤP and ĤR

such that, for example,

Ĥ0 = ĤP + ĤR (6.135)

is the “unperturbed” Hamiltonian of the radiation-matter system, which we treat as one.
The associated eigenvalue problem is

Ĥ0 |un;n1, . . . , np, . . .〉 =

En +
∑
j=1,...

(
~ωj +

1

2

) |un;n1, . . . , np, . . .〉 ,(6.136)

where |un;n1, . . . , np, . . .〉 ≡ |un〉 ⊗ |n, . . . , np, . . .〉.
With this picture the interaction Hamiltonian2 ĤI can be seen as a “perturbation”

on the radiation-matter system of Hamiltonian Ĥ0. It is important to note that the
inclusion of this term implies that the kets |un;n1, . . . , np, . . .〉 are not eigenstates for the
total Hamiltonian Ĥ = Ĥ0 + ĤI (i.e.,

[
Ĥ0, ĤI

]
6= 0̂). As we will see, ĤI will instead be

responsible for transitions between different states |un;n1, . . . , np, . . .〉. Finally, the form
of ĤI is often simplified from the fact that the radiation field may only substantially vary
on spatial scales that are much larger than the size of the matter system. For example,
when dealing with an atom or a molecule we have

ĤI =
∑
j

[
− qj
mj

p̂j · Â⊥ (r0) +
q2j

2mj
Â2
⊥ (r0)

]
, (6.137)

where r0 is the position of the atom/molecule. Equation (6.137) is commonly referred to
as the long-wavelength approximation .

2The form for ĤI given in equation (6.134) is appropriate for the Coulomb gauge, but one must be
careful while making the transition from the classical to the quantum mechanical versions of this
Hamiltonian (see the Third Problem List).
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6.4.1 Interaction Processes

For convenience, we will consider an atom for which one the electrons (of charge q and
mass m) interacts much more strongly with the transverse field than the other charges
in the system (the nucleus is much heavier than the electrons an can therefore be ne-
glected; perhaps the other electron are strongly tied to the nucleus on inner orbits, or
the atom only has one electron). We will also split the interaction Hamiltonian in its two
components, while setting r0 = 0,

ĤI1 = − q

m
p̂ · Â⊥

= − q

m

∑
p

Ep
ωp

p̂ · εp
(
âp + â†p

)
(6.138)

ĤI2 =
q2

2m
Â2
⊥

=
q2

2m

∑
p,q

EpEq
ωpωq

εp · εq
(
âpâ
†
q + â†pâq + âpâq + â†pâ

†
q

)
, (6.139)

as they are different in character. More precisely, ĤI1 is of first-order since the creation
and annihilation operators appear linearly, while they appear quadratically in ĤI2 (thus
a second-order process).

6.4.1.1 Absorption and Emission of a Photon

Let us assume the atom in the initial state

|ψi〉 = |ui;n1, . . . , np, . . .〉 (6.140)

an eigenstate of Ĥ0, i.e., the atom is in the discrete state |ui〉 and the radiation field
in the state |n1, . . . , np, . . .〉. We now apply to this ket the first interaction Hamiltonian
ĤI1, which we assume to have only one mode p such that

ĤI1 |ψi〉 = − q

m

Ep
ωp

p̂ · εp
(
âp + â†p

)
|ui;n1, . . . , np, . . .〉

= − q

m

Ep
ωp

[p̂ · εp |ui〉]
[(
âp + â†p

)
|n1, . . . , np, . . .〉

]
= − q

m

Ep
ωp

[p̂ · εp |ui〉]
[√
np |n1, . . . , np − 1, . . .〉

+
√
np + 1 |n1, . . . , np + 1, . . .〉

]
. (6.141)

Evidently, we end up with two new radiation states where one photon was either removed
or added to mode p. These are the well-known photon absorption and emission
processes. However, since a photon carries an energy of ~ωp and that energy must be
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conserved overall, the initial atomic state |ui〉 must be replaced by states that ensure
that this condition is fulfilled (see Exercise 6.1 below).
For the absorption of a photon the two atomic states are related through

〈
uf ;n1, . . . , np − 1, . . .

∣∣∣ ĤI1

∣∣∣ui;n1, . . . , np, . . .〉 = − q

m

Ep
ωp

√
np 〈uf | p̂ · εp |ui〉 , (6.142)

with

Ef = Ei + ~ωp. (6.143)

Considering first-order perturbation theory (see Chapter 5) we find that the probability
of absorption is proportional the number of photons np, i.e., the intensity of the radiation
field.
For the emission of a photon we have

〈
uf ;n1, . . . , np + 1, . . .

∣∣∣ ĤI1

∣∣∣ui;n1, . . . , np, . . .〉 = − q

m

Ep
ωp

√
np + 1 〈uf | p̂ · εp |ui〉

(6.144)
with

Ef = Ei − ~ωp. (6.145)

Conservation of energy implies that this process cannot take place when the initial state
|ui〉 corresponds to the atomic ground state. As for the absorption process, first-order
theory predicts that the emission rate is proportional to ≈ np (when np � 1). This
corresponds to the stimulated emission of a photon. But interestingly, we note that
a photon can still be emitted even when no photon is present in the initial radiation
state (i.e, np = 0; this is also true if all radiation modes are empty of photons). This
corresponds to the spontaneous emission process.

Exercise 6.1. Given a radiation mode p of polarization εp.
a) Calculate the commutator

[
r̂ · εp, Ĥ0

]
and show how it can used to find an expres-

sion for p̂ · εp.
b) Using the properties of spherical harmonics determine the final atomic states arising

in equation (6.141). That is, what are their orbital angular momentum quantum numbers
in relation to that of the initial atomic state |un〉?

c) Use the result obtained in b) to relate the interaction Hamiltonian ĤI1 to an electric
dipole coupling.

Solution.
a) We define x̂p = r̂ · εp. Since position operators commute with the radiation fields

(i.e., [x̂p, âq] =
[
x̂p, â

†
q

]
= 0̂), we have
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[
x̂p, Ĥ0

]
=

[
x̂p, ĤP

]
=

[
x̂p,

p̂2

2m

]
=

i~
m
p̂p

=
i~
m
p̂ · εp. (6.146)

b) Let us now consider the following matrix element

〈uf | p̂ · εp |ui〉 =
m

i~

〈
uf

∣∣∣ [x̂p, Ĥ0

] ∣∣∣ui〉
=

m

i~

〈
uf

∣∣∣ x̂pĤ0 − Ĥ0x̂p

∣∣∣ui〉
=

m

i~
(Ei − Ef ) 〈uf | x̂p |ui〉 . (6.147)

Because the spherical harmonics verify the relation Y`m ∝ xaybzc with ` = a+ b+ c (see
equations (3.88)-(3.93) in Chapter 3, while using x = r sin (θ) cos (φ), y = r sin (θ) sin (φ)
and z = r cos (θ)), we find that x̂p transforms as L̂± as far as the orbital angular mo-
mentum number is concerned. We therefore write

〈uf | p̂ · εp |ui〉 ∝ 〈uf | x̂p |ui〉

⇒
〈
uf

∣∣∣ L̂± ∣∣∣ui〉 , (6.148)

which implies that if |ui〉 has a quantum number `, then |uf 〉 can only have `′ = `± 1.
c) Using equation (6.147) we write

〈
uf

∣∣∣ ĤI1

∣∣∣ui〉 = − q

m

〈
uf

∣∣∣ p̂ · Â⊥ ∣∣∣ui〉
= − q

m

Ep
ωp
〈uf | p̂ · εp |ui〉

(
âp + â†p

)
= iqEp

ωif
ωp
〈uf | r̂ · εp |ui〉

(
âp + â†p

)
, (6.149)

with ~ωif = Ei − Ef . We note, however, that if for the emission of a photon (under the
action of â†p) ωif = ωp > 0, for the absorption process ωif = −ωp < 0. These relations
imply that equation (6.149) can be transformed to

〈
uf

∣∣∣ ĤI1

∣∣∣ui〉 = −iEp 〈uf | qr̂ · εp |ui〉
(
âp − â†p

)
= −

〈
uf

∣∣∣ d̂ · Ê⊥ ∣∣∣ui〉 (6.150)
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from equation (6.129) and with d̂ = qr̂ is the electric dipole operator. We therefore find
that ĤI1 corresponds to the electric dipolar coupling between the radiation and the atom.
This result is easily generalized to an arbitrary number of charges and modes.

6.4.1.2 Scattering Processes

Because the interaction term ĤI2 does not involve the generalized momentum p̂ it cannot
alter the internal state of the atom. Let us consider the case where only two modes of
radiation p and q are present such that

ĤI2 |ui;np, nq〉 = |ui〉 ·
q2

2m

[
E2p
ω2
p

(
âpâ
†
p + â†pâp + âpâp + â†pâ

†
p

)
+2
EpEq
ωpωq

εp · εq
(
âpâ
†
q + â†pâq + âpâq + â†pâ

†
q

)
+
E2q
ω2
q

(
âqâ
†
p + â†qâq + âqâq + â†qâ

†
q

)]
|np, nq〉 . (6.151)

It should be clear that terms of the forms âpâq and â†pâ†q have a very low probability of
occurrence, as they do not conserve energy (i.e., they either remove or add two photons
from the radiation field). It follows that only the terms in âpâ

†
q and â†pâq can lead to

realizable processes, as long as ωp = ωq (terms involving only one mode, e.g., âpâ
†
p and

â†pâp, leave the radiation field is unaltered by this process). We therefore consider, for
example,

〈
ui;np − 1, nq + 1

∣∣∣ ĤI2

∣∣∣ui;np, nq〉 ' 2
E2p
ω2
p

εp · εq
〈
np − 1, nq + 1

∣∣∣ âpâ†q + â†pâq

∣∣∣np, nq〉
' 2

E2p
ω2
p

εp · εq
〈
np − 1, nq + 1

∣∣∣ âpâ†q ∣∣∣np, nq〉 (6.152)

' 2
E2p
ω2
p

εp · εq
√
np (nq + 1). (6.153)

This photon exchange between modes, and which cannot take place when the modes are
polarized in orthogonal states, corresponds to an elastic scattering process.

Scattering can also happen through second-order perturbation processes involving the
ĤI1 interaction term. We again consider a radiation field containing two modes

ĤI1 = − q

m
p̂ ·
[
Ep
ωp

εp

(
âp + â†p

)
+
Eq
ωq

εq

(
âq + â†q

)]
(6.154)

Referring to equation (5.97) in Chapter 5, we know that the second-order transition
amplitude between the states |ui;np, nq〉 and |uf ;np, nq〉 is of the form
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Sif ∝
∑
j 6=i,f

〈
uf ;np, nq

∣∣∣ ĤI1

∣∣∣uj ;n′p, n′q〉〈uj ;n′p, n′q ∣∣∣ ĤI1

∣∣∣ui;np, nq〉(
Ej + n′p~ωp + n′q~ωq

)
− (Ei + np~ωp + nq~ωq)

. (6.155)

The most interesting situation happens when both modes happen in the same scattering
terms, such as

S′if ∝
∑
j 6=i,f

〈
uf ;np + 1, nq − 1

∣∣∣ p̂pâ†p ∣∣∣uj ;np, nq − 1
〉
〈uj ;np, nq − 1 | p̂qâq |ui;np, nq〉

Ej − Ei − ~ωq

+
∑
j 6=i,f

〈uf ;np + 1, nq − 1 | p̂qâq |uj ;np, nq + 1〉
〈
uj ;np + 1, nq

∣∣∣ p̂pâ†p ∣∣∣ui;np, nq〉
Ej − Ei + ~ωq

.

(6.156)

The scattering process must conserve energy between the initial and final states with

Ei + np~ωp + nq~ωq = Ef + (np + 1) ~ωp + (nq − 1) ~ωq. (6.157)

However, there is no requirement for energy conservation between the initial and inter-
mediate states since the latter is not available to observation or measurement. Such
intermediary states are called virtual states. On the other hand, the denominators
in each term favour intermediate states for which Ej ' Ei + ~ωq and Ej ' Ei − ~ωq,
respectively.
Finally, it is interesting to note that the virtual state in the second term of equation

(6.156) has one more photon than the initial and final states. That is, the atom emits a
virtual photon of mode p before absorbing a photon of mode q. This implies that if |ui〉 is
the ground state of the atom, its intermediate state must involve an excited state3 with
Ef > Ei and one more photon than the initial state; a situation clearly at odds with the
conservation of energy. But still, this combination must be included in calculations since
we are dealing with a virtual state.

3Notably, Rayleigh scattering is defined as a low-energy elastic scattering process where all of the
intermediate atomic states have higher energy than the initial atomic state.
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