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Chapter 7. Dynamics of Systems of Particles 
   
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 
9.) 

In this chapter we study the dynamics of systems composed potentially of a large number 
of particles, and inquire on conservation theorems and the behavior of systems that 
exhibit mass loss (e.g., rockets). 

7.1 Centre of Mass 
For a system composed of n  particles, the total mass M  is given by 
 
 M = m!

!

" ,  (7.1) 

 
where m

!
 is the mass of the ! th  particle, with ! = 1, ... ,n . If each particle is 

(mathematically) connected to the origin of the system through a position vector r
!

, then 
the centre of mass vector is defined as 
 

 R =
1

M
m!r!

!

" .  (7.2) 

 
For a continuous system, the summation over !  is replaced with an integral over an 
infinitesimal amount of mass dm  such that  
 

 R =
1

M
rdm! .  (7.3) 

 
It is important to realize that the position vector R  of the centre of mass depends on the 
origin chosen for the coordinate systems. 

7.2 The Conservation of Linear Momentum  
The force acting on particle !  of a system of particles is composed of the resultant of all 
forces external to the system F

!

e( ) , and the resultant of the internal forces f
!

 stemming 
from its interaction with the other particles that are part of the system. If we define these 
internal interaction forces as f!" , the resulting force f

!
 acting on particle !  is 

 
 f! = f!"

"#!

$ .  (7.4) 

 
The total force F

!
 acting on the particle is 
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 F
!
= F

!

e( )
+ f

!
. (7.5) 

 
From Newton’s Second Law we can write 
 
 

 
!p
!
= F

!

e( )
+ f

!
,  (7.6) 

 
or 
 

 

d
2

dt
2
m!r!( ) = F!

e( )
+ f!

= F!
e( )
+ f!"

"#!

$ ,

 (7.7) 

 
where no summation on repeated index is implied. 
Summing equation (7.7) over all particles we get 
 

 

d
2

dt
2

m!r!
!
"#$%

&
'(
= F!

e( )

!
" + f!)

)*!
"

!
"

= F + f!) + f)!( )
! ,) pairs
" ,

 (7.8) 

 
where we have defined the sum over all external forces as 
 
 F ! F"

e( )

"

# ,  (7.9) 

 
and the second term on the right of equation (7.8) was replaced by a single summation 
over every pair of internal interactions between the particles. However, we know from 
Newton’s Third Law that f!" = #f"! . We can therefore write, from equation (7.8) that 
 
  M

!!R = F.  (7.10) 
 
This last equation can also be used to express the conservation of momentum since  
 

 
 

P = m! !r!
!
" =

d

dt
m!r!

!
"#$%

&
'(
= M !R,  (7.11) 

 
and then 
 
  

!P = M!!R = F.  (7.12) 
 
We can summarize this result as follows 
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I. The centre of mass of a system moves as if it were a single particle of mass equal 

to the total mass of the system, acted upon by the total external force, and 
independent of the internal forces (as long as f!" = #f"!  (Newton’s Third Law) 
holds). 

II. The total linear momentum of a system is the same as that of a singe particle of 
mass M  located at the position of the centre of mass and moving in the manner 
the centre of mass moves. 

III. The total linear momentum for a system free of external forces is a constant and 
equal to the linear momentum of the centre of mass (the law of conservation of 
linear momentum for a system). 

7.3 The Conservation of Angular Momentum 
As we saw in the previous chapter on central force motion, it is often more convenient to 
define the positions of the particles composing a system by vectors !r

"
 originating at the 

centre of mass (see Figure 7-1). The position vector r
!

 in the inertial frame is  
 
 r

!
= R + "r

!
. (7.13) 

 
The angular momentum of the ! th  particle is given by 
 
 L

!
= r

!
" p

!
,  (7.14) 

 
and summing over all particles 

 

Figure 7-1 – Description of the position of a particle using its position vector from the 
centre of mass of the system. 
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L = L!
!

" = r! # p!( )
!

" = r! # m! !r!( )
!

"

= R + $r!( ) # m!
!R + !$r!( )%& '(

!

"

= m! R # !R( ) + R # !r! '( ) + $r! # !R( ) + $r! # !$r!( )%& '(
!

" .

 (7.15) 

 
The second and third terms on the right hand side equal zero from 
 

 

 

m! R " !#r!( ) + #r! " !R( )$% &'
!
( = m!

d

dt
R " #r!( ) ) !R " #r!( ) + #r! " !R( )$

%*
&
'+!

(

=
d

dt
R " m! #r!

!
(,

-.
/
01
+ 2 m! #r!

!
(,-.

/
01
" R = 0,

 (7.16) 

 
since, from equations (7.2) and (7.13),  
 
 m! "r! = 0.

!

#  (7.17) 

 
Equation (7.15) now becomes  
 

 

 

L = R ! m"
!R

"
#$

%&
'
()
+ *r" ! m" !*r"( )

"
#

= R ! P + *r" ! *p"( )
"
# .

 (7.18) 

 
We, therefore, have this important result 
 

IV. The angular momentum about an origin is the sum of the angular momentum of 
the centre of mass about that origin and the angular momentum of the system 
about the position of the centre of mass. 

 
The time derivative of the total angular momentum is  
 

 

 

!L = !L!
!
" = r! # !p!( )

!
"

= r! # F!
e( )( )

!
" + r! # f!$

$%!
"

&

'(
)

*+!
"

= r! # F!
e( )( )

!
" + r! # f!$( ) + r$ # f$!( ),- ./

! <$
" ,

 (7.19) 

 
where 

! <"

# means a sum over !  and "  with ! < " . 
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We know, however, from Newton’s Third Law that f!" = #f"!  so that equation (7.19) can 
be re-written 
 

 
 

!L = r! " F!
e( )( )

!
# + r! $ r%( ) " f!%&' ()

! <%
# . (7.20) 

 
If we further limit ourselves to internal forces f!"  that are also directed along the straight 
line joining the two interacting particles (i.e., along r! " r# ), we must have the following 
 
 r! " r#( ) $ f!# = 0.  (7.21) 
 
The time derivative of the total angular momentum is then 
 
 

 

!L = r! " F!
e( )( )

!

# ,  (7.22) 

 
or if we express the right hand side as a sum of the external torque applied on the 
different particles N

!

e( )  
 
 

 

!L = N!

e( )

!

" = N
e( )
. (7.23) 

 
We, therefore, have the following results 
 

V. If the net resultant external torque about an axis vanishes, then the total angular 
momentum of the system about that axis remains a constant in time. 

 
Furthermore, since we found that the total internal torque also vanishes, i.e.,  
 

 r! " f!#
#$!
%

&

'(
)

*+!
% = r! , r#( ) " f!#-. /0

! <#
% = 0,  (7.24) 

 
and we can state that 
 

VI.  The total internal torque must vanish if the internal forces are central (i.e., 
f!" = #f"!  and the internal forces between two interacting particles are directed 
along the line joining them), and the angular momentum of an isolated system 
cannot be altered without the application of external forces. 

7.4 The Energy of the System 
Consider a system of particles that evolves from a starting configuration “1” to an ulterior 
configuration “2” where the positions r

!
 of the particles may have changed in the 
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process. We can write the total work done on the system as the sum of the work done on 
individual particles 
 

 

 

W
12
= F! idr!

1

2

"
!
#

= m!

dv!

dt
i
dr!

dt
dt

1

2

"
!
# = m!

dv!

dt
iv!dt

1

2

"
!
#

=
1

2
m!

dv!
2

dt
dt =

1

2

"
!
# d

dt

1

2
m!v!

2$
%&

'
()
dt

1

2

"
!
#

= d
1

2
m!v!

2$
%&

'
()1

2

"
!
# = T

2
* T

1
,

 (7.25) 

 
where 
 

 T = T!
!

" =
1

2
m!v!

2

!

" .  (7.26) 

 
Using equation (7.13) we can write 
 

 

 

v
!

2
= !r

!
i!r

!
= !R + !"r

!( )i !R + !"r
!( )

= !Ri !R + 2 !"r
!
i !R( ) + !"r! i!"r

!( )

= V
2
+ 2 !"r

!
i !R( ) + "v

!( )
2

,

 (7.27) 

 
where 

 
v
!

' = !"r
!

 and V = !R . Inserting equation (7.27) into equation (7.26), while using 

the earlier result that states that m! "r!
!

# = 0 , we find that 

 

 T =
1

2
MV

2
+

1

2
m! "v!( )

2

!

# .  (7.28) 

 
In other words 
 

VII. The total kinetic energy of the system is equal to the sum of the kinetic energy 
of a particle of mass M  moving with velocity of the centre of mass and the 
kinetic energy of motion of the individual particles relative to the centre of 
mass. 

 
Alternatively, we can rewrite first of equations (7.25) by separating the total force applied 
on each particle in its external and internal components 
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W
12
= F!

e( )
idr!

1

2

"
!
# + f!$ idr!

1

2

"
! ,$%!
# .  (7.29) 

 
If the forces involved are conservatives, we can then derive them from potentials such 
that 
 

 
F!

e( )
= "#!U!

f!$ = "#!U!$ ,
 (7.30) 

 
where U!  and U!"  are independent potential functions. The gradient operator !

"
 is a 

vector operator meant to apply to the coordinate components of the ! th  particle (i.e., !  
is the index that specifies a given particle, and does not represent a coordinate such as 
x, y,  or z ). 

The first term on the right hand side of equation (7.29) can be written as 
 

 

 

F!
e( )
idr!

1

2

"
!

# = $ %!U!( )idr!
1

2

"
!

#

= $ U!
!

#
1

2

.

 (7.31) 

 
The last term of the same equation is transformed to 
 

 

 

f!" idr!
1

2

#
! ,"$!
% = f!" idr! + f"! idr"( )

1

2

#
! <"
%

= f!" i dr! & dr"( )
1

2

#
! <"
% .

 (7.32) 

 
Before we use the last of equations (7.30) to further transform equation (7.32), we 
consider the following differential 
 

 

 

dU!" = #!U!"( )idr! + #"U"!( )idr"
= $f!"( )idr! + $f"!( )idr"
= $f!" i dr! $ dr"( ),

 (7.33) 

 
since !"U"# = $f"# = f#"  (note also that U!" =U"! ). Combining this result with 
equations (7.29), (7.31), and (7.32), we get 
 



141 

 W
12
= ! U"

"

#
1

2

! U"$
" <$

#
1

2

.  (7.34) 

 
If we define the total potential energy as 
 
 U =U! +U!" ,  (7.35) 
 
we get 
 
 W

12
= !U

1

2

=U
1
!U

2
.  (7.36) 

 
Combining equation (7.36) and the last of equations (7.25), we find that 
 
 T

2
! T

1
=U

1
!U

2
 (7.37) 

 
or, 
 
 T

1
+U

1
= T

2
+U

2
,  (7.38) 

 
and finally 
 
 E

1
= E

2
.  (7.39) 

 
We have therefore proved the conservation of energy for a system of particles where all 
the forces can be derived from a potential that are independent of time; such a system is 
called conservative. 
 

VIII. The total energy for a conservative system is constant. 

7.5 Rocket Motion 
We now work out two examples dealing the motion of rockets. The first one concerns a 
rocket in free space, whereas the second deals with vertical ascent under gravity. 

7.5.1 Rocket Motion in Free Space 
We consider the case where a rocket is moving under the influence of no external forces. 
We also choose a closed system where, therefore, the linear momentum will be 
conserved. We assume that the rocket is moving in an inertial reference frame in the x  
direction at velocity v = ve

x
. During a infinitesimal time interval dt  an infinitesimal 

amount of mass dm '  is ejected from the rocket engine with a speed u = !ue
x

 with 
respect to the ship (see Figure 7-2). If we define the quantities p t( ) = p t( )ex  as the 
momentum at time t , we can write 
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Figure 7-2 – A rocket moves in free space at velocity v . In the time interval dt , a mass 
d !m  is ejected from the rocket engine with velocity u  with respect to the rocket ship. 

 

 
p t( ) = mv

p t + dt( ) = m ! d "m( ) v + dv( ) + d "m v ! u( ).
 (7.40) 

 
Since we must have conservation of linear momentum (because there are no external 
forces acting on the rocket), we have 
 

 
p t( ) = p t + dt( )

mv = m ! d "m( ) v + dv( ) + d "m v ! u( )

mv = mv + mdv ! d "m v ! d "m dv + d "m v ! ud "m ,

 (7.41) 

 
and 
 
 mdv = ud !m ,  (7.42) 
 
or 
 

 dv = u
d !m

m
. (7.43) 

 
In going from the last of equations (7.41) to equation (7.42) we have neglected the term 
d !m dv , which is a second order term. The (positive) amount of mass d !m  ejected from 
the rocket is, obviously, equal to the amount of mass lost by the ship. We can then write 
 
 dm = !d "m ,  (7.44) 
 
and 
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 dv = !u
dm

m
.  (7.45) 

 
If m

0
 and v

0
 are, respectively, the initial mass and speed of the rocket we can integrate 

equation (7.45) to yield 
 

 

dv
v0

v

! = "u
dm

mm0

m

!

v " v
0
= u ln

m
0

m

#
$%

&
'(

v = v
0
+ u ln

m
0

m

#
$%

&
'(
,

 (7.46) 

 
where the exhaust velocity u  was assumed to be a constant (i.e., not a function of 
v or m ). Thus to maximize the speed of the rocket, one needs to maximize the exhaust 
velocity u  and the ratio m

0
m . This is the reason why engineers have conceived 

multistage rockets, where independent fuel containers can be jettisoned when they empty. 

For example, a multistage rocket might have an initial mass m
0

, while its mass after the 
so-called “first-stage fuel container” has emptied is  
 
 m

1
= m

a
+ m

b
,  (7.47) 

 
where m

a
 and m

b
 are the mass of the first-stage payload and first-stage fuel container, 

respectively. We can express the terminal speed v
1
 reached by the rocket after all the fuel 

of the first-stage fuel container has burnt out with the last of equations (7.46)  
 

 v
1
= v

0
+ u ln

m
0

m
1

!

"#
$

%&
.  (7.48) 

 
At that time, the mass m

b
 of the first-stage fuel container is released into space, and the 

second-stage rocket ignites. We now have m
a

 for the starting mass of space ship (second 
stage), and m

2
 for its mass after the second-stage fuel container has burnt out. The 

terminal velocity is given by 
 

 

v
2
= v

1
+ u ln

m
a

m
2

!

"#
$

%&

= v
0
+ u ln

m
0

m
1

!

"#
$

%&
+ u ln

m
a

m
2

!

"#
$

%&

= v
0
+ u ln

m
0
m

a

m
1
m
2

!

"#
$

%&
.

 (7.49) 
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The term m

0
m

a
m
1
m
2( )  can be made much larger than m

0
m
1( ) . 

Engineers and scientists usually give the following definition to the commonly used force 
term “thrust” 
 

 Thrust ! "u
dm

dt
,  (7.50) 

 
which is greater than zero since dm dt < 0 . 

7.5.2 Vertical Ascent Under Gravity 
We now consider the case of a rocket that is attempting to break free from the Earth’s 
gravitational pull. In order for the problem to be tractable analytically, we will assume 
that the rocket has only a vertical motion (i.e., no horizontal movement), there is no air 
resistance, and the gravitational field is constant with height. From Figure 7-3 we see that 
 

 
v = ve

y

g = !ge
y
,
 (7.51) 

 
and similar equations for the other quantities involved in the problem. 

We can use the results of the previous case of motion in free space, but we no longer 
have F e( )

= 0 . As before, the ejected mass is given by d !m = "dm . From Newton’s 
Second Law, the external force is 
 

Figure 7-3 – A rocket in vertical ascent under Earth’s gravity. A mass d !m  is ejected 
from the rocket engine, during a time interval dt , with a velocity u  with respect to the 
rocket ship. 
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 F
e( )
=
dp

dt
=
d

dt
mv( ),  (7.52) 

 
or 
 

 
F

e( )
dt = dp = p t + dt( ) ! p t( )

= m ! d "m( ) v + dv( ) + v ! u( )d "m ! mv

= mdv + udm,

 (7.53) 

 
where we have neglected  any second order terms. Dividing this result by dt  we find 
 
 

 
F

e( )
= !mg = m!v + u !m.  (7.54) 

 
We can manipulate equation (7.54) to isolate dv  
 

 
dv = ! g +

u

m

dm

dt

"
#$

%
&'
dt

= !gdt ! u
dm

m
.

 (7.55) 

 
Integration of this last equation yields 
 

 v = !gt + u ln
m
0

m

"
#$

%
&'
,  (7.56) 

 
with m

0
 the initial mass of the rocket. We should also note that since the burn rate is 

assumed constant, it must also be true that the mass loss is constant. That is, 
 

 
dm

dt
= !" < 0,  (7.57) 

 
or with a simple time integration 
 
 m

0
! m = "t. (7.58) 

 
We can use equation (7.58) to substitute for t  in equation (7.56) to express the speed of 
the rocket as a function of its mass only 
 

 v = !
g

"
m
0
! m( ) + u ln

m
0

m

#
$%

&
'(
.  (7.59) 

 


