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Chapter 2. Small Oscillations 
 
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 
3) 
 
2.1 Introduction 
 
If a particle, originally in a position of equilibrium (we limit ourselves to the case of 
motions in one dimension), is displaced by a small amount, a force will tend to bring it 
back to its original position. We assume that this restoring force F is only a function of 
position, i.e.,F = F x( ) . It is then easily expanded in a Taylor series: 

 

 F x( ) = F
0
+ x

dF

dx

!
"#

$
%&
0

+
1

2!
x
2
d
2
F

dx
2

!
"#

$
%&
0

+
1

3!
x
3
d
3
F

dx
3

!
"#

$
%&
0

+… (2.1) 

 

where F
0

 is the value of F x( )  at the origin (i.e., position of equilibrium), and 

d
n
F dx

n( )
0

 the nth derivative at the origin. Since the origin is defined to be the 
equilibrium point, we have F

0
! 0 . Furthermore, as we consider only small 

displacements from the origin, we will neglect all terms of second and higher powers of 
x. We can then rewrite equation (2.1) with 

 
 F = !kx  (2.2) 
 
where k ! " dF dx( )

0
. (Strictly speaking, we should use ‘ ! ’ instead of ‘=’.) Because F 

is a restoring force (i.e., it brings the particle back toward its origin), its first derivative is 
negative and, therefore, k is positive. Systems that can be described with equation (2.2) 
obey Hooke’s Law (the restoring force is approximately linear). 
 

2.1 The Simple Harmonic Oscillator 
 
If substitute Hooke’s Law (equation (2.2)) into the Newtonian equation of motion 
F = ma , we get 
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where we have defined a new quantity 
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The solution to equation (2.3) can be expressed with sinusoidal functions such as 
 
 x t( ) = Asin !

0
t " #( )  (2.5) 

or 
 x t( ) = Acos !

0
t "#( ) . (2.6) 

 
The constants A , !  (or ! ) are determined by the initial conditions of the problem. For 
example, if at t = 0  the particle is located at x t = 0( ) ! x

0
, and moving with a velocity 

 
!x t = 0( ) ! !x

0
, we find that (if we choose equation (2.5) as the solution)  
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 (2.7) 

 
Equation (2.7) is a system of two equations with two unknown that is readily solved, and 
gives 
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with x t( )  given by equation (2.5). Incidentally, we can now appreciate that !

0
 is the 

angular frequency of the motion. It is related to frequency !
0
 by 

 

 
!
0
= 2"#

0
=

k

m

#
0
=
1

$
0

=
1

2"

k

m

 (2.9) 

 
where !

0
 is the period. Note that these three quantities are independent of the amplitude 

A of the motion. 
 
Alternatively, we can express A as a function of the total energy E = T +U  of the 
system. The kinetic energy T is given by 
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where we used equation (2.4) in the last step. The potential energy U is calculated from 
the work done in moving the particle a distance x. We start by calculating the incremental 
work dW  necessary to move the particle by an amount dx  against the force F (see 
equation (1.23) of chapter 1) 
 
 dW = !Fdx = kxdx. (2.11) 
 
We now calculate 
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 (2.12) 

 
We finally get the total energy E 
 

 E = T +U =
1

2
kA

2
.  (2.13) 

 
We get the general result that the total energy of the system is proportional to the square 
of the amplitude of the motion. It is also independent of time (we assumed that the system 
exhibits no losses), and of the phase constant ! . 
 
Example 
 
Find the angular velocity and period of oscillation of a sphere of mass m and radius R 
about a point on its surface. 
 
Solution. We assume that the sphere is homogeneous, with a constant mass density ! . 
The moment of inertia of an object about a given axis is defined as the integral of its mass 
density multiplied by the square of its distance to the axis. The moment of inertia I

c
 of 

the sphere about an axis (we call it the z-axis) passing through its center is, therefore, 
given by (using the cylindrical coordinates r, ! , and z)  
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But since the mass density of the sphere (i.e., its mass divided by its volume) is given by 
! = 3m 4"R3 , we find 
 

 I
c
=
2

5
mR

2
. 

 
It also turns out that the moment of inertia I  of a sphere about an axis displaced by a 
distance R

d
 from its center is simply given by 

 
 I = mR

d

2
+ I

c
. 

 
Since in our case R

d
= R , we find that 
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If the sphere is subjected to gravity, and allowed to rotate about this (pivot) axis, we can 
calculate the torque applied to it by N = R ! F

g , where Fg = mg  the gravitational force. If 
the angle of rotation of the sphere about the pivot axis is ! , and its angular acceleration 
 
!!! , we can write the equation of (angular) motion (remember equation (1.22) of chapter 
1) 
 
 

 
I !!! = "Rmgsin !( ).  
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However, if we simplify the problem by limiting ourselves to small oscillations, we can 
approximate 

 
sin !( ) ! ! , and we have 

 

 
 

!!! +
mgR

I
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This is an equation similar to equation (2.3), and we, therefore, identify the angular 
frequency and period of oscillation of the sphere as  
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Figure 2.1 - A homogeneous sphere rotating about an (pivot) axis. 
 
2.1  Harmonic Oscillations in Two Dimensions 
 
We generalize the problem to allow motions with two degrees of freedom, or in two 
dimensions. The restoring force is now expressed as a vector, i.e., F = !kr . We can use a 
polar system of coordinates for the problem 
 

 
Fx = !kr cos "( ) = !kx

Fy = !kr sin "( ) = !ky.
 (2.14) 

 
The equations of motion are  
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y = 0,

 (2.15) 

 
with !

0

2
= k m . The solutions are similar to the case of the simple harmonic oscillator 

 

 
x t( ) = Acos !

0
t "#( )

y t( ) = Bcos !
0
t " $( ).

 (2.16) 

 
(Take note that we could have chosen sine instead of cosine functions.) Let us find an 
equation that expresses one coordinate as a function of the other. Consider the following 
 

 
x
2
t( )

A
2

+
y
2
t( )

B
2

= cos
2 !

0
t "#( ) + cos2 !

0
t " $( ).  (2.17) 

 

But since cos a( )cos b( ) =
1

2
cos a ! b( ) + cos a + b( )( ) , we can rewrite equation (2.17) as 
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In a similar fashion, if we define  
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we now have 
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we get 
 

 
x
2
t( )

A
2

+
y
2
t( )

B
2

= 1+ cos !( ) 2
x t( )

A

y t( )

B
" cos !( )

#

$
%

&

'
(,  (2.21) 

 



 - 18 - 

or, after some rearrangement 
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We see that if the two oscillations (i.e., along the x and y axes) are out of phase by ±! 2  
(or, ! = ±" 2 ), equation (2.22) is that of an ellipse 
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The special case when the amplitudes are equal (i.e., A = B ) is that of a circular motion. 
On the other hand, if ! = 0  (which means that ! = " ) we find that 
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which is the equation of a straight line since it can be rewritten as 
 

 y t( ) =
B

A
x t( ), ! = 0.  (2.25) 

 
This result could have been simply arrived at by setting ! = "  in equations (2.16). We 
could proceed in the same manner for the case where ! = ±" , which also yields the 
equation of a straight line but with opposite slope, i.e., 
  

 y t( ) = !
B

A
x t( ), " = ±# .  (2.26) 

 
Equation (2.22) can be used to draw the motion of the particle in the x,  y( ) -plane, as is 
shown in the following figure for cases where A = B  
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Figure 2.2 – Two-dimensional harmonic oscillation motion curves for different phase 
differences ! = " # $ , when A = B . 
 
In the more general case where the frequency of oscillation is different in the x and y 
directions, the solution becomes 
 

 
x t( ) = Acos ! xt "#( )

y t( ) = Bcos ! yt " $( ).
 (2.27) 

 
The path of the motion in the x,  y( ) -plane is no longer an ellipse but a Lissajous curve. 
Such a motion can be closed or open depending on whether the ration ! x

!
y  is a 

rational fraction or not. Take note that the shape of a curve not only depends on the phase 
difference ! " # $ % , but also on the individual angles !  and ! . Three examples are 
shown in this figure 
 

 
Figure 2.3 - Closed Lissajous curves. In these cases !

y
= 2!

x , and ! = 0  (i.e., 
! = " = # 2 ), ! 3  (i.e., ! = 11" 6  and ! = 3" 2 ), and ! 2  (i.e., ! = 3" 2  and 
! = " ), respectively. The resulting curves depend strongly not only on ! , but also on !  
and ! . 
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Example 
 
An object of mass m is tied to four springs, two of constant k

1
 in the x direction, and two 

others of constant k
2
 in the y direction, which are in turn attached to walls. Assuming 

that we are dealing only with small oscillations, and that the initial conditions are x
0

, y
0
, 

and 
 
!x
0
= !y

0
= 0 , find the equations that give the position of the object along both axes as 

a function if time. What kind of trajectory does the object take in the x,  y( ) -plane if 
x
0
= y

0
= 1 , and !

2
= 2!

1
? 

 
 

 
Solution. The equations of motion for the object are 
 

 
 

m!!x = !2k
1
x

m!!y = !2k
2
y.

 

 
Following a treatment similar to what was done for equations (2.15) and (2.16) we can 
write the following for the position of the mass 
  

 
x t( ) = Acos !1
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y t( ) = Bcos !2
t " $( ),
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From the initial conditions defined for the problem we have 
 

 

x
0
= Acos !( )

y
0
= Bcos "( )

0 = A#
1
sin !( )

0 = B#
2
sin "( ).

 

 
The last two equations imply that !  and !  both are equal to either 0 or ! . The first pair 
of equations can, however, be interpreted such that ! = " = 0 , x

0
= A , and y

0
= B . We 

use the equations for x t( )  and y t( )  to determine the trajectory of the object in the 
x,  y( ) -plane. The result is shown in Figure 2.4. 

 
 

 
 

Figure 2.4 – The closed Lissajous trajectory followed by the mass in the x,  y( ) -plane. In 
this case ! y

= 2!
x , and ! = 0  (! = " = 0 ). Take note of the similarity of this curve to 

the one shown in Figure 2.3 for ! = " 2  (! = 3" 2  and ! = " ). 

 
2.1  Damped Oscillations 
 
The oscillatory motions described in the preceding sections are called free oscillations, 
since once set, they would never stop. In physical systems, there will often be dissipative 
or frictional forces that will dampen the oscillations, and eventually erase them. It is 
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usually assumed that the damping forces are a linear function of the velocity. For the one-
dimensional case, the force can be represented by 
 
 

 
F
d
= !b !x,  (2.28) 

 
where the parameter b > 0 . This is a necessary condition to insure that the damping force 
is indeed resisting motions. Adding this resistive force to the restoring force responsible 
for the oscillatory motion, we write the Newtonian equation of motion as 
 
 

 
m!!x = !b !x ! kx,  (2.29) 

 
or 
 
 

 
!!x + 2! !x +"

0

2
x = 0 .  (2.30) 

 
We have introduced the damping coefficient ! " b 2m  in equation (2.30), while the 
frequency of oscillation retains its original definition (i.e., !

0
= k m ). The solution to 

the homogeneous second order differential equation (2.30) is given by  
 

 x t( ) = e!"t A1 exp " 2 !#0

2
t( ) + A2 exp ! " 2 !#0

2
t( )$

%&
'
()
.  (2.31) 

 
This is done by evaluating the roots of the characteristic, or auxiliary, equation 
r
2
+ 2!r +"

0

2
= 0  for equation (2.30), and using them as arguments for the exponential 

functions in the solution. The roots are 
 

 
r
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= !" ! " 2 !#
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2
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 (2.32) 

 
Underdamped Motion  
 
This is the case when !

0

2
> " 2 . We define a new quantity 

 
 !

1

2 " !
0

2 # $ 2
,  (2.33) 

 
which will always be positive for an underdamped oscillator. Because of this, the 
exponents within the brackets of equation (2.31) are imaginary, and the equation becomes 
 
 x t( ) = e!"t A

1
e
i#1t + A

2
e
! i#1t$% &'.  (2.34) 

 
But since x t( )  is a real function we must have A

1

*
= A

2
 and therefore 
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x t( ) = e!"t

A

2
e
i #1t!$( )

+ e
! i #1t!$( )%

&
'
(

= Ae
!"t
cos #

1
t ! $( )

 (2.35) 

 
where A

1
= e

! i"
A 2 . It then becomes evident that !

1
 is the angular frequency of the 

damped oscillator. The amplitude of the motion decreases with time because of the 
exp !"t( )  factor present in equation (2.35).  
 

 
Figure 2.5 – The underdamped motion (solid line) is an oscillatory motion (short dashes) 
that decreases within the exponential envelope (long dashes). 
 
Critically Damped Motion 
 
When ! 2

="
0

2  the roots of the characteristic equation are equal r
1
= r

2
= !" . The 

solution to equation (2.30) (the solution (2.31) is not valid for this case) is then 
 
 A + Bt( )e!"t .  (2.36) 
 
A critically damped system will approach equilibrium at a more rapid rate than it would 
for any other level of damping. 
 
Overdamped Motion 
 
When ! 2

>"
0

2 , the roots (equation (2.32)) of the characteristic equation are both real. 
The solution is given by 
 
 x t( ) = e!"t A

1
e
#2 t + A

2
e
!#2 t$% &',  (2.37) 

 
where 
 
 !

2
= " 2 #!

0

2
.  (2.38) 
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There are no oscillatory motions in the case of an overdamped system. 
 
The three cases of damped oscillations (i.e., underdamped, critically damped, and 
overdamped) are shown in Figure 2.6. 
 

 
Figure 2.6 – Damped oscillator motions for the three cases of damping. 

 
Problems 
 
(The numbers refer to the problems at the end of Chapter 3 in Thornton and Marion.)  
 
3-11. Derive the expressions for the energy and energy-loss curves shown in Figure 2.7, 

below, for the underdamped oscillator. For a lightly damped oscillator, calculate the 
average rate at which the underdamped oscillator loses energy (i.e., compute a time 
average over one cycle).  

 
The total energy of the oscillator is given by  
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1

2
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2
+
1

2
kx t( )

2
,  

where the position and the velocity of the mass as a function of time are given by 
equation (2.35) 
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1
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1
t ! $( )%& '(,

 

 
with !

1
= !

0

2 " # 2  and !
0
= k m . We then have for the total energy  
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and finally 
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2
A
2
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2
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We take the time derivative of the last equation to find dE dt  
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Figure 2.7 – The total energy and rate of energy loss for the underdamped oscillator. 
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Before evaluating the time average of the energy loss over a cycle, we must realize that 
for an underdamped oscillator 

 
! !"

0
""

1
. This means that the exponential term e!2"t  

will not vary appreciably in the time it takes for the oscillator to complete one cycle. The 
sine and cosine term will nearly average to zero, and the only term of importance left is  
 

 
 

dE

dt
! !A2m"#

0

2
e
!2"t

.  

 
3-12. A simple pendulum consists of a mass m suspended from a fixed point by a 

weightless, extension less rod of length l. Obtain the equation of motion and, in the 
approximation that sin !( ) " ! , show that the natural frequency is !

0
= g l , 

where g is the gravitational field strength (i.e., the acceleration). Discuss the motion 
in the event that the motion takes place in a viscous medium with a retarding force 

 
2m gl !! . 

 

 

The equation of (angular) motion can simply be written as 
 

 
 
I !!! + 2ml gl !! + mgl sin !( ) = 0  

 

or  
 

 
I !!! + 2m gl

3 !! + mgl! = 0,  
 
where I = ml2 . We re-write this equation as  
 
 

 
!!! + 2" !! +#

0

2! = 0  
 
with ! = g l , and !

0
= g l . The natural frequency of the system is defined as that at 

which the pendulum would oscillate at if ! = 0 . It is, therefore, given by !
0
. We can 

verify the amount of damping by evaluating !
0

2 " # 2 . It is found to equal to zero. We 
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are, therefore, in the presence of a system where the two roots of the auxiliary equation 
are equal (see equations (2.32)). That is to say, the system is critically damped. We know 
that the solution to the second order differential equation that defines the oscillatory 
motion is  

 
 ! t( ) = A + Bt( )e"#t . 
 
If we define the initial conditions as !

0
, and 

 
!!
0
= 0  (i.e., the pendulum is initially at rest), 

we find 
 
 ! t( ) = !

0
1+ "t( )e#"t . 

 
2.2  Sinusoidal Driving Forces 
 
So far, we only considered cases where there were no external forces driving the 
oscillator. A simple example consists of introducing a sinusoidal varying force to the 
problem. In this case, the total force acting on the particle is 
 

 
F = !kx ! b !x + F

0
cos "t( ),  

 
where F

0
 and !  are the amplitude and the angular frequency of the external force, 

respectively. The equation of motion is then 
 
 

 
!!x + 2! !x +"

0

2
x = Acos "t( )  (2.39) 

 
where A = F

0
m . The solution of equation (2.39) is composed of two parts, the 

complementary function x
c
t( ) , which the solution to the homogeneous equation (2.30), 

and the particular equation xp t( ) , which is the system’s response to the external 
driving force reproduced on the right-hand side of equation (2.39). We can, therefore, 
write 
 
 x t( ) = xc t( ) + xp t( ).  
 
The precise form of x

c
t( )  will depend on the case at hand, i.e., whether the oscillator is 

under-, critically, or overdamped. The corresponding equation will be given by either 
equation (2.35), (2.36), or (2.37). For the particular solution, we try 
 
 x

p
t( ) = Dcos !t " #( ).  (2.40) 

 
Inserting equation (2.40) into equation (2.39) we get 
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 D !" 2
+"

0

2( )cos "t ! #( ) ! 2$" sin "t ! #( )%& '( = Acos "t( ).  (2.41) 
 
But since  
 

 
cos !t " #( ) = cos #( )cos !t( ) + sin #( )sin !t( )

sin !t " #( ) = sin !t( )cos #( ) " sin #( )cos !t( )
 (2.42) 

 
we can expend equation (2.41) to get 
 

 
A ! D "

0

2 !" 2( )cos #( ) + 2$" sin #( )%& '({ }cos "t( )

! D "
0

2 !" 2( )sin #( ) ! 2$" cos #( )%& '(sin "t( ) = 0.
 (2.43) 

 
Since sin !t( )  and cos !t( )  are linearly independent, equation (2.43) can only be true if 
the two terms on the left-hand side vanish simultaneously. From the second term we get 
 

 tan !( ) =
2"#

#
0

2 $# 2
,  (2.44) 

 
which implies that 
 

 

sin !( ) =
2"#

#
0

2 $# 2( )
2

+ 4" 2# 2

cos !( ) =
#
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2 $# 2

#
0

2 $# 2( )
2

+ 4" 2# 2

.

 (2.45) 

 
From the first term on the left-hand side of equation (2.43) we find that 
 

 

D =
A

!
0

2 "! 2( )cos #( ) + 2$! sin #( )

=
A

!
0

2 "! 2( )
2

+ 4$ 2! 2

.

 (2.46) 

 
The particular solution is, therefore, given by 
 

 xp t( ) =
A

!
0

2 "! 2( )
2

+ 4# 2! 2

cos !t " $( )  (2.47) 
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with 
 

 ! = tan
"1 2#$

$
0

2 "$ 2

%

&'
(

)*
.  (2.48) 

 
As was previously mentioned, combining the complementary and the particular equations 
gives the complete solution to the problem 
 
 x t( ) = xc t( ) + xp t( ) .  (2.49) 

 
Because of the fact that x

c
t( )  approaches zero after a long enough amount of time (its 

envelope scales with e!"t ), it is often called the transient response. On the other hand, 
the particular solution will not cancel out unless the driving force ceases. For this reason, 
it is called the permanent or steady state response. Thus, 
 
 

 
x t ! 1 !( ) = xp t( ).  (2.50) 

 

 
Figure 2.8 – Sinusoidally driven oscillatory motions with damping. The permanent 
solution xp t( ) , the transient solution x

c
t( ) , and the sum of the two x t( )  are shown in (a) 

for driving frequency !  smaller than the oscillation frequency !
1
 (! <!

1
) and in (b) 

for ! >!
1
. 
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Resonance Phenomena 
 
The amplitude of the oscillator’s response to the driving input will be a function of 
frequency. To find at what frequency !

R
 the amplitude will be at a maximum we 

calculate 
 

 dD

d!
! =!R

= 0.  (2.51) 

 
Because of the form of the equation for D  obtained earlier (i.e., equation (2.46)), this is 
equivalent to setting 
 

 
d

d!
!
0

2 "! 2( )
2

+ 4! 2# 2( ) = 0
= "4! !

0

2 "! 2( ) + 8!# 2
,

 (2.52) 

 
which gives 
 
 !

R
= !

0

2 " 2# 2
.  (2.53) 

 
It is seen that the resonance frequency is a function of the damping coefficient ! . More 
precisely, more damping will lower the resonant frequency until the point where no 
resonance can occur when ! >"

0
2 . 

 
The degree of damping, or, inversely, the quality of the resonance, is often described in 
terms of the quality or Q-factor of the system 
 

 Q !
"

R

2#
.  (2.54) 

 
In cases where !  is small, it can be shown that  
 

 Q !
"
0

#"
 (2.55) 

 
where !"  represents the frequency interval between the half-power points (i.e., where 
the amplitude is 1 2  of its maximum). The higher the Q of the system, the more the 
energy from the driving input is stored in the oscillator, and less is dissipated. Figure 2.9, 
below, shows the amplitude D and the phase !  of the response of an oscillator as a 
function of the driving frequency, for different values of Q’s.  
 



 - 31 - 

 

Figure 2.9 – (a) The amplitude D and (b) the phase !  of the response of an oscillator as a 
function of the driving frequency, for different values of Q.  

 

2.3  Arbitrary Driving Forces 
 
Periodic signals 
 
Whenever the driving force is periodical (i.e., F t + !( ) = F t( ) , with !  the period), it can 
always be expanded in a Fourier series 
 

 F t( ) =
1

2
a
0
+ a

n
cos n!t( ) + b

n
sin n!t( )"# $%

n=1

&

'  (2.56) 

 
with 
 

 
a
n
=
2

!
F t '( )cos n"t '( )dt '

0

!

#

b
n
=
2

!
F t '( )sin n"t '( )dt '

0

!

#
 (2.57) 

 
and ! = 2" # . Alternatively, equation (2.56) can be written in a slightly different form 
 

 F t( ) =
1

2
a
0
+ c

n
cos n!t "#

n( )
n=1

$

%  (2.58) 

 
with 
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c
n
= a

n

2
+ b

n

2

!
n
= tan

"1 b
n

a
n

#

$%
&

'(
.

 (2.59) 

 
The equation of motion in this case is  
 

 
 

!!x + 2! !x +"
0

2
x =

F t( )

m
.  (2.60) 

 
Since this equation (and the system) is linear, the solution will be once again expressed as  
 
 x t( ) = xc t( ) + xp t( ),  (2.61) 
 
but if x

c
t( )  is still given by (2.35), (2.36), or (2.37)  (depending on the damping level), 

the steady state xp t( )  solution takes, using equations (2.47) and (2.48), the form of a 
series 
 

 x
p
t( ) =

1

m

a
0

2!
0

2
+

c
n

!
0

2 " n2! 2( ) + 4# 2
n
2! 2

cos n!t "$
n
" %

n( )
n=1

&

'
(

)

*
*

+

,

-
-

 (2.62) 

 
with 
 

 !
n
= tan

"1 2#n$
$
0

2 " n2$ 2

%

&'
(

)*
.  (2.63) 

 
The first term on the right-hand side of equation (2.62) represents the oscillator’s 
response to the constant component of the driving force, as can be simply verified from 
equation (2.60). 
  
Arbitrary signals  
 
(The material covered in this section is optional, and is not subject to examination. It will 
not be found in Thornton and Marion. Parts of it can, however, be found in an earlier 
edition of the same book (i.e., J.B. Marion, Classical Dynamics of Particles and Systems, 
2nd edition (Academic Press), pp 142-145)  
 
In the preceding sections we have mainly used straightforward methods for solving 
differential equations, by mostly guessing at the particular form of the solution for the 
problem at hand. There exists, however, different techniques that allow for a more 
systematic treatment of linear differential equations. One particularly powerful method 
utilizes the Laplace transform. Its strength lies in the fact that it allows the 
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transformation of a differential equation to an algebraic equation. This is a method of 
choice to deal with more complicated functions. 
 
The Laplace transform is defined as follows 
 
 X s( ) ! L x t( )"# $% = x t( )e& stdt,

0

'

(  (2.64) 

  
where the variable s  is defined as containing both a real and imaginary part, i.e., 
s = ! + i"  with ! " 0  such that e! st  remains finite as t!" . Referring to equation 
(2.64), we say that “ X s( )  is the Laplace transform of x t( ) ”. We also assumed that the 
time variable t  starts at 0, but this could be changed to any other value (e.g., t

0
). 

 
For example, we calculate the Laplace transform of a few simple functions 
 

 
L A[ ] = Ae

! st
dt

0

"

# = !
A

s
e
! st

0

"
=
A

s
, s > 0

L e
!at$% &' = e

!at
e
! st
dt = !

1

s + a
e
! s+a( )t

0

"

#
0

"

=
1

s + a
, s > !a.

 (2.65) 

 
A particularly important transform is that of an impulse of time duration !  defined as  
 

 
x t( ) =

1

!
, 0 < t < !

= 0, t > !

 (2.66) 

 

 X s( ) =
1

!
e
" st
dt = "

1

s!
e
" st

0

!

#
0

!

=
1

s!
1" e" s!( ).  (2.67) 

 
If we now take the limit of equation (2.67) when ! " 0 , we get 
 

 lim
!"0

X s( ) =
1

s!
1# 1# s![ ]( ) = 1.  (2.68) 

 
The limit of a function such as x t( ) , defined in equation (2.66), when the duration of the 
impulse is taken to be infinitely small while keeping the area of the impulse constant is 
called a Dirac or delta function. It is usually simply written as ! t( ) , and has the 
property that ! t( ) = 0  for t ! 0  and ! t( ) = "  for t = 0 , but 
 
 ! t " t

0( )dt = 1.
"#

#

$  (2.69) 

 
Equally important is the transform of a step or Heaviside function, represented by  
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u
!1
t( ) = 1, t > 0

= 0, t < 0.
 (2.70) 

 
Since our definition of the Laplace transform truncates any functions that are non-zero 
for t < 0 , the Laplace transform of the step function was evaluated in equation (2.65) and 
found to be 
 

 L u!1 t( )"# $% =
1

s
.  (2.71) 

  
The list of transforms appearing in Table 2.1 can be similarly verified. 
 

Table 2.1 – Laplace transform pairs 
 

L A! t( )"# $% = A, s > 0

L Au&1 t( )"# $% =
A

s
, s > 0

L e
&at"# $% =

1

s + a
, s > &a

L t
n"# $% =

n!

s
n+1
, s > 0, n = 1,2,3, ...

L t
n
e
&at"# $% =

n!

s + a( )
n+1
, s > &a, n = 1,2,3, ...

L sin 't( )"# $% =
'

s
2
+' 2

, s > 0

L cos 't( )"# $% =
s

s
2
+' 2

, s > 0

L e
&at
sin 't( )"# $% =

'

s + a( )
2
+' 2

, s > &a

L e
&at
cos 't( )"# $% =

s + a

s + a( )
2
+' 2

, s > &a

 

 
 
The Laplace transform also possesses other important properties, some of which are 
 

I. Linearity. If A  and B  are constants 
 
 L Ax t( ) + By t( )!" #$ = AX s( ) + BY s( )  (2.72) 
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II. Transform of derivatives. 
 

 
L

dx t( )

dt

!

"
#

$

%
& =

dx t( )

dt0

'

( e
) st
dt = x t( )e) st

0

'
+ s x t( )e) stdt

0

'

(

= sX s( ) ) x 0( )

 (2.73) 

 
where we integrated by parts, and x 0( )  is the initial condition x t( ) . Similarly, 
the transform of higher derivatives can be shown to give 

 

 
L

d
2
x t( )

dt
2

!

"
#

$

%
& = s

2 ' sx 0( ) '
dx t( )

dt
t=0

L
d
n
x t( )

dt
n

!

"
#

$

%
& = s

n ' s
n' k d

k'1
x t( )

dt
k'1

k=1

n

(
t=0

 (2.74) 

 
III. Transform of primitive of functions. 

 

 

L x !( )d!
0

t

"#$%
&
'(
= x !( )d!

0

t

"{ }e) stdt
0

*

"

= )
1

s
x !( )d!

0

t

"{ }e) st 0
*
+
1

s
x t( )e) stdt

0

*

"

=
X s( )

s
+
1

s
x !( )d!

0

t

"{ }
t=0

 (2.75) 

  
where we again integrated by parts. The transform of higher primitives is given by 
 

 L ...! x "( ) d"( )
n

!#
$

%
& =

X s( )

s
n

+
1

s
n' k+1

...! x "( ) d"( )
k

!{ }
k=1

n

(
t=0

 (2.76) 

 
IV. Time shifting. Since x t( ) = 0  for t < 0 , we can write 

 

 

L x t ! "( )#$ %& = x t ! "( )e! stdt
0

'

( = x t ! "( )e! stdt
"

'

(

= x )( )e! s )+"( )
d) = e

! s"
x )( )e! s)d)

0

'

(
0

'

(
= e

! s"
X s( )

 (2.77) 

 
where we made the substitution ! = t " # . 
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V. Multiplication by an exponential. 
 

 
L e

!at
x t( )"# $% = e

!at
x t( )e! stdt =

0

&

' x t( )e! s+a( )t
dt

0

&

'
= X s + a( )

 (2.78) 

 
The residue theorem 
 
Once a function or an equation has been transformed in the Laplace domain, then 
modified for one purpose or another, it will eventually need to be transformed back to the 
time domain. Although an inverse Laplace transform can be mathematically defined, it is 
always more convenient and easier to use the so-called residue theorem to go from the 
Laplace to the time domain. This theorem is stated as follows. Given a function X s( ) , 

for which the denominator can be written as a product of factors of the type s + a
j( )
m

 
(where aj  is called a pole or order m), we can write 
 

 
x t( ) = L!1 X s( )"# $%

=
1

m !1( )!
lim
s&!aj

d
m!1

ds
m!1 s + aj( )

m

X s( )est"
#

$
%

'
()

*
+,j=1

n

- , t > 0
 (2.79) 

 
where n is the number of poles in the denominator of X s( ) , and the quantity in between 
the curly braces is called the residue of X s( )est  at the pole aj  of order m. Let’s consider 
a few examples 
 

 

x t( ) = L!1
1

s + a

"

#$
%

&'
= lim

s(!a

1

0!

d
0

ds
0

s + a( ) )
e
st

s + a

"

#
$

%

&
'

= e
!at
, t > 0

x t( ) = L!1
1

s + a( )
2

"

#
$
$

%

&
'
'

= lim
s(!a

1

1!

d
1

ds
1

s + a( )
2
)

e
st

s + a( )
2

"

#
$
$

%

&
'
'

= te
!at
, t > 0

 (2.80) 

 
and finally 
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x t( ) = L!1
s + a

s + a( )
2
+" 2

#

$
%
%

&

'
(
(
= L

!1 s + a

s + a ! i"( )( ) s + a + i"( )( )

#

$
%
%

&

'
(
(
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s)!a+ i"

1
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d
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ds
0

s + a ! i"( )( )
s + a( )

s + a( )
2
+" 2

e
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#

$
%
%

&

'
(
(

+ lim
s)!a! i"

1

0!

d
0

ds
0

s + a + i"( )( )
s + a( )

s + a( )
2
+" 2

e
st

#

$
%
%

&

'
(
(

=
i"e !a+ i"( )t

2i"
+
!i"e !a! i"( )t

!2i"

= e
!at
cos "t( ), t > 0.

 (2.81) 

 
These results can be verified against the examples presented in Table 2.1. 
 
Application to the damped oscillator problem 
 
Let’s now solve a few cases involving the equation of motion of a damped oscillator with 
different types of driving input. The equation to solve is 
 
 

 
!!x t( ) + 2! !x t( ) +"

0

2
x t( ) = f t( )  (2.82) 

 
I. f t( ) = A! t( ) . 

 
 

 
L !!x t( ) + 2! !x t( ) +"

0

2
x t( )#$ %& = L f t( )#$ %&  (2.83) 

 
Using the linearity property of the Laplace transform and Table 2.1, we get 
 

 
 

s
2
X s( ) ! sx

0
! !x

0( ) + 2" sX s( ) ! x
0( ) +#0

2
X s( ) = A

X s( ) s2 + 2"s +#
0

2( ) = A + x
0
s + 2"( ) + !x

0

 (2.84) 

 
In everything that will follow, we will assume that 

 
x
0
= !x

0
= 0 . We now solve 

equation (2.84) 
 

 

X s( ) =
A

s
2
+ 2!s +"

0

2

=
A

s + ! # ! 2 #"
0

2( )( ) s + ! + ! 2 #"
0

2( )( )
 (2.85) 

 
We now use the residue theorem stated in equation (2.79) 
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x t( ) = A
e
! "! "2 !#0

2( )t

2 " 2 !#
0

2
!
e
! "+ "2 !#0

2( )t

2 " 2 !#
0

2

$

%

&
&

'

(

)
)

= A
e
!"t

2 " 2 !#
0

2
e

"2 !#0
2
t ! e! "2 !#0

2
t$

%&
'
()
, t > 0

 (2.86) 

 
A close examination of equation (2.86) shows that the response of the damped 
oscillator to a Dirac function is nothing more than the complementary solution of 
the equation of motion (compare with equation (2.31)). In the case of the 
underdamped oscillator (! 2

<"
0

2 ), we find that 
 

 x t( ) = A
e
!"t

#
1

sin #
1
t( ), t > 0  (2.87) 

with !
1
= !

0

2 " # 2 .  
 

II. f t( ) = Au
!1
t( )  

 
In this case, we have (assuming that ! 2

<"
0

2 , and !
1
= !

0

2 " # 2 ) 
 

 X s( ) s2 + 2!s +"
0

2( ) =
A

s
 (2.88) 

 

 
Figure 2.10 – Response to a Dirac function driving input.   
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 (2.89) 

 
  with  
 

 ! = tan
"1 #

$
1

%

&'
(

)*
. (2.90) 

 
The Laplace transform can be systematically applied to more complicated types of 
problems and driving functions (periodic or not). It is also important to realize that the 
solution to a given problem provided by the application of the Laplace transform 
includes both the complementary and the particular solutions. 

 

 
Figure 2.11 – Response to a step function as driving input. 

 
 
 
 
 


