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Chapter 4. Lagrangian Dynamics 
 
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 
7) 

4.1 Important Notes on Notation 
In this chapter, unless otherwise stated, the following notation conventions will be used: 
 

1. Einstein’s summation convention. Whenever an index appears twice (an only 
twice), then a summation over this index is implied. For example, 

 
 xixi ≡ xixi

i
∑ = xi

2

i
∑ .  (4.1) 

 
2. The index i  is reserved for Cartesian coordinates. For example, xi ,  for i = 1,2,3 , 

represents either x, y,  or z  depending on the value of i . Similarly, pi  can represent 
px , py ,  or pz . This does not mean that any other indices cannot be used for 
Cartesian coordinates, but that the index i  will only be used for Cartesian 
coordinates. 

3. When dealing with systems containing multiple particles, the index α  will be used 
to identify quantities associated with a given particle when using Cartesian 
coordinates. For example, if we are in the presence of n  particles, the position 
vector for particle α  is given by rα , and its kinetic energy Tα  by 

 

 
 
Tα =

1
2
mα xα ,i xα ,i , α = 1,2, ... ,n and i = 1,2,3.  (4.2) 

  
Take note that, according to convention 1 above, there is an implied summation on 
the Cartesian velocity components (the index i  is used), but not on the masses 
since the index α  appears more than twice. Correspondingly, the total kinetic 
energies is written as 
 

 
 
T =

1
2

mα xα ,i
α =1

n

∑ xα ,i =
1
2

mα x
2 + y2 + z2( )

α =1

n

∑ .  (4.3) 

  

4.2 Introduction 
Although Newton’s equation  F = p  correctly describes the motion of a particle (or a 
system of particles), it is often the case that a problem will be too complicated to solve 
using this formalism. For example, a particle may be restricted in its motion such that it 
follows the contours of a given surface, or that the forces that keep the particle on the 
surface (i.e., the forces of constraints), are not easily expressible in Cartesian 
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coordinates. It may not even be possible at times to find expressions for some forces of 
constraints. Such occurrences would render it impossible to treat the problem with the 
Newtonian formalism since this requires the knowledge of all forces acting on the 
particles. 

In this section we will study a different approach for solving complicated problems in a 
general manner. The formalism that will be introduced is based on the so-called 
Hamilton’s Principle, from which the equations of motion will be derived. These 
equations are called Lagrange’s equations. Although the method based on Hamilton’s 
Principle does not constitute in itself a new physical theory, it is probably justified to say 
that it is more fundamental that Newton’s equations. This is because Hamilton’s Principle 
can be applied to a much wider range of physical phenomena than Newton’s theory (e.g., 
quantum mechanics, quantum field theory, electromagnetism, relativity). However, as 
will be shown in the following sections, the Lagrange’s equation derived from this new 
formalism are equivalent to Newton’s equations when restricted to problems of 
mechanics. 

4.3 Hamilton’s Principle 
Hamilton’s Principle is concerned with the minimization of a quantity (i.e., the action) in 
a manner that is identical to extremum problems solved using the calculus of variations. 
Hamilton’s Principle can be stated as follows: 
 

The motion of a system from time t1  to t2  is such that the line integral 
(called the action or the action integral), 

 

 I = Ldt
t1

t2∫ ,  (4.4) 

 
where L = T −U  (with T ,  and U  the kinetic and potential energies, 
respectively), has a stationary value for the actual path of the motion. 

  
Note that a “stationary value” for equation (4.4) implies an extremum for the action, not 
necessarily a minimum. But in almost all important applications in dynamics a minimum 
occurs.  

Because of the dependency of the kinetic and potential energies on the coordinates xi , 
the velocities  xi , and possibly the time t , it is found that  
 
  L = L xi , xi ,t( ).  (4.5) 
 
Hamilton’s Principle can now be expressed mathematically by 
 

 
 
δ L xi , xi ,t( )dt = 0

t1

t2∫ .  (4.6) 
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Equation (4.6) can readily be solved by the technique described in the chapter on the 
calculus of variations. The solution is 
 

 
 

∂L
∂xi

−
d
dt

∂L
∂xi

= 0, i = 1,2, ... ,n . (4.7) 

 
Equations (4.7) are called the Lagrange equations of motion, and the quantity 

 L xi , xi ,t( )  is the Lagrangian. 

For example, if we apply Lagrange’s equation to the problem of the one-dimensional 
harmonic oscillator (without damping), we have 
 

 
 
L = T −U =

1
2
mx2 −

1
2
kx2 ,  (4.8) 

 
and 
 

 

 

∂L
∂x

= −kx

d
dt

∂L
∂x

⎛
⎝⎜

⎞
⎠⎟
=
d
dt

mx( ) = mx.
 (4.9) 

 
After substitution of equations (4.9) into equation (4.7) we find 
 
  mx + kx = 0  (4.10) 
 
for the equation of motion. This result is identical than what was obtained using 
Newtonian mechanics. This is, however, a simple problem that can easily (and probably 
more quickly) be solved directly from the Newtonian formalism. But, the benefits of 
using the Lagrangian approach become obvious if we consider more complicated 
problems. For example, we try to determine the equations of motion of a particle of mass 
m constrained to move on the surface of a sphere under the influence of a conservative 
force F = Fθeθ , with Fθ  a constant. In this case we have 
 

 

 

T =
1
2
mvθ

2 +
1
2
mvφ

2

=
1
2
mR2 θ 2 + 1

2
mR2 sin2 θ( ) φ 2

U = −FθRθ,

 (4.11) 

 
where we have defined the potential energy such that U = 0  when θ = φ = 0 . The 
Lagrangian is given by 
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L = T −U =

1
2
mR2 θ 2 + 1

2
mR2 sin2 θ( ) φ 2 + FθRθ.  (4.12) 

 
Upon inspection of the Lagrangian, we can see that there are two degrees of freedom for 
this problem, i.e., θ,  and φ . We now need to calculate the different derivatives that 
compose the Lagrange equations  
 

 

 

∂L
∂θ

= mR2 φ 2 sin θ( )cos θ( ) + FθR
∂L
∂φ

= 0

d
dt

∂L
∂ θ

⎛
⎝⎜

⎞
⎠⎟
=
d
dt

mR2 θ( ) = mR2 θ
d
dt

∂L
∂ φ

⎛
⎝⎜

⎞
⎠⎟
=
d
dt

mR2 φ sin2 θ( )( ) = mR2 2 θ φ sin θ( )cos θ( ) + φ sin2 θ( )( ),

 (4.13) 

 
applying equation (4.7) for θ,  and φ  we find the equations of motion to be 
 

 
 

Fθ = mR θ − φ 2 sin θ( )cos θ( )( )
0 = mR2 sin θ( ) φ sin θ( ) + 2 θ φ cos θ( )( ).

 (4.14) 

 
Incidentally, this problem was analyzed at the end of Chapter 1 on Newtonian Mechanics 
(problem 2-2, with Fφ = 0 ), where Newton’s equation was used to solve the problem. 
One can see how simpler the present treatment is. There was no need to calculate 
relatively complex equations like  er . Furthermore, it is important to realize that the 
spherical coordinates θ  and φ  are treated as Cartesian coordinates when using the 
Lagrangian formalism. 
 

4.4 Degrees of Freedom and Generalized Coordinates  
If a system is made up of n  particles, we can specify the positions of all particles with 
3n  coordinates. On the other hand, if there are m equations of constraints (for example, if 
some particles were connected to form rigid bodies), then the 3n  coordinates are not all 
independent. There will be only 3n − m  independent coordinates, and the system is said 
to possess 3n − m  degrees of freedom. 
Furthermore, the coordinates and degrees of freedom do not have to be all given in 
Cartesian coordinates, or any other systems. In fact, we can choose to have different 
types of coordinate systems for different coordinates. Also, the degrees of freedom do not 
even need to share the same unit dimensions. For example, a problem with a mixture of 
Cartesian and spherical coordinates will have “lengths” and “angles” as units. Because of 
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the latitude available in selecting the different degrees in freedom, the name of 
generalized coordinates is given to any set of quantities that completely specifies the 
state of the system. The generalized coordinates are usually written as qj . 

It is important to realize that there is not one unique way of setting up the generalized 
coordinates, there are indeed many different ways of doing this. Unfortunately, there are 
no clear rules for selecting the “best” set of generalized coordinates. The ultimate test is 
whether or not the choice made leads to a simple solution for the problem at hand. 

In addition to the generalized coordinates qj , a corresponding set of generalized 
velocities  qj  is defined.  In general, the relationships linking the Cartesian and 
generalized coordinates and velocities can be expressed as 
 

 
 

xα ,i = xα ,i q j ,t( )
xα ,i = xα ,i q j , qj ,t( ), α = 1,  ... , n, i = 1,2,3, j = 1,  ... , 3n − m,

 (4.15) 

 
or alternatively 
 

 
 

qj = qj xα ,i ,t( )
qj = qj xα ,i , xα ,i ,t( ).

 (4.16) 

 
We must also include the equations of constraints 
 
 fk xα ,i ,t( ) = fk qj ,t( ) = 0. (4.17) 
 
It follows naturally that Hamilton’s Principle can now be expressed in term of the 
generalized coordinates and velocities as 
 

 
 
δ L qj , qj ,t( )dt = 0

t1

t2∫ ,  (4.18) 

 
with Lagrange’s equations given by 
 

 
 

∂L
∂qj

−
d
dt

∂L
∂ qj

= 0, j = 1,2, ... , 3n − m .  (4.19) 

 
 
Examples 
 
1) The simple pendulum. Let’s solve the problem of the simple pendulum (of mass m and 

length   ) by first using the Cartesian coordinates to express the Lagrangian, and then 
transform into a system of cylindrical coordinates. 
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 Figure 4-1 – A simple pendulum of mass m and length   . 

 
Solution. In Cartesian coordinates the kinetic and potential energies, and the Lagrangian 
are 
 

 

 

T =
1
2
mx2 +

1
2
my2

U = mgy

L = T −U =
1
2
mx2 +

1
2
my2 − mgy.

 (4.20) 

 
We can now transform the coordinates with the following relations 
 

 
 

x = sin θ( )
y = −cos θ( ).  (4.21) 

 
Taking the time derivatives, we find 
 

 

 

x =  θ cos θ( )
y =  θ sin θ( )

L =
1
2
m 2 θ 2 cos2 θ( ) + 2 θ 2 sin2 θ( )( ) + mgcos θ( )

=
1
2
m2 θ 2 + mgcos θ( ).

 (4.22) 

 
We can now see that there is only one generalized coordinates for this problem, i.e., the 
angle θ . We can use equation (4.19) to find the equation of motion  
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∂L
∂θ

= −mgsin θ( )
d
dt

∂L
∂ θ

⎛
⎝⎜

⎞
⎠⎟
=
d
dt

m2 θ( ) = m2 θ,
 (4.23) 

 
and finally 
 

 
 
θ +

g

sin θ( ) = 0. (4.24) 

 
2) The double pendulum. Consider the case of two particles of mass m1  and m2  each 

attached at the end of a mass less rod of length l1  and l2 , respectively. Moreover, the 
second rod is also attached to the first particle (see  Figure 4-2). Derive the equations 
of motion for the two particles. 

 
Solution. It is desirable to use cylindrical coordinates for this problem. We have two 
degrees of freedom, and we will choose θ1  and θ2  as the independent variables. Starting 
with Cartesian coordinates, we write an expression for the kinetic and potential energies 
for the system 
 

 

 

T =
1
2
m1 x1

2 + y1
2( ) + m2 x2

2 + y2
2( )⎡⎣ ⎤⎦

U = m1gy1 + m2gy2 .
 (4.25) 

 

But Figure 4-2 – The double pendulum. 
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x1 = l1 sin θ1( )
y1 = −l1 cos θ1( )
x2 = l1 sin θ1( ) + l2 sin θ2( )
y2 = −l1 cos θ1( ) − l2 cos θ2( ),

 (4.26) 

 
and 
 

 

 

x1 = l1 θ1 cos θ1( )
y1 = l1 θ1 sin θ1( )
x2 = l1 θ1 cos θ1( ) + l2 θ2 cos θ2( )
y2 = l1 θ1 sin θ1( ) + l2 θ2 sin θ2( ).

 (4.27) 

 
Inserting equations (4.26) and (4.27) in (4.25), we get 
 

 

 

T =
1
2
m1l1

2 θ1
2⎡⎣

+m2 l1
2 θ1

2 + l2
2 θ2

2 + 2l1l2 θ1 θ2 cos θ1( )cos θ2( ) + sin θ1( )sin θ2( ){ }( )⎤⎦
=
1
2
m1l1

2 θ1
2 + m2 l1

2 θ1
2 + l2

2 θ2
2 + 2l1l2 θ1 θ2 cos θ1 −θ2( )( )⎡⎣ ⎤⎦

U = − m1 + m2( )gl1 cos θ1( ) − m2gl2 cos θ2( ),

 (4.28) 

 
and for the Lagrangian 
 

 

 

L = T −U

=
1
2
m1l1

2 θ1
2 + m2 l1

2 θ1
2 + l2

2 θ2
2 + 2l1l2 θ1 θ2 cos θ1 −θ2( )( )⎡⎣ ⎤⎦

+ m1 + m2( )gl1 cos θ1( ) + m2gl2 cos θ2( ).
 (4.29) 

 
Inspection of equation (4.29) tells us that there are two degrees of freedom for this 
problem, and we choose θ1,  and θ2  as the corresponding generalized coordinates. We 
now use this Lagrangian with equation (4.19) 
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∂L
∂θ1

= −m2l1l2 θ1 θ2 sin θ1 −θ2( ) − m1 + m2( )gl1 sin θ1( )
d
dt

∂L
∂ θ1

= m1 + m2( )l12 θ1 + m2l1l2 θ2 cos θ1 −θ2( ) − θ2 θ1 − θ2( )sin θ1 −θ2( )⎡⎣ ⎤⎦

∂L
∂θ2

= m2l1l2 θ1 θ2 sin θ1 −θ2( ) − m2gl2 sin θ2( )
d
dt

∂L
∂ θ2

= m2 l2
2 θ2 + l1l2 θ1 cos θ1 −θ2( ) − θ1 θ1 − θ2( )sin θ1 −θ2( )⎡⎣ ⎤⎦( ),

 (4.30) 

 
and 
 

 

 

m1 + m2( )l12 θ1 + m2l1l2 θ2 cos θ1 −θ2( ) + θ22 sin θ1 −θ2( )⎡⎣ ⎤⎦
+ m1 + m2( )gl1 sin θ1( ) = 0

m2 l2
2 θ2 + l1l2 θ1 cos θ1 −θ2( ) − θ12 sin θ1 −θ2( )⎡⎣ ⎤⎦( ) + m2gl2 sin θ2( ) = 0.

 (4.31) 

 
We can rewrite these equations as 
 

 

 

θ1 +
m2

m1 + m2

l2
l1
θ2 cos θ1 −θ2( ) + θ22 sin θ1 −θ2( )( ) + gl1 sin θ1( ) = 0

θ2 +
l1
l2
θ1 cos θ1 −θ2( ) − θ12 sin θ1 −θ2( )( ) + g

l2
sin θ2( ) = 0.

 (4.32) 

 
3) The pendulum on a rotating rim. A simple pendulum of length b  and mass m  moves 

on a mass-less rim of radius a  rotating with constant angular velocity ω  (see Figure 
4-3). Get the equation of motion for the mass. 

 
Solution. If we choose the center of the rim as the origin of the coordinate system, we 
calculate 
 

 
x = acos ωt( ) + bsin θ( )
y = asin ωt( ) − bcos θ( ),  (4.33) 

 
and 
 

 
 

x = −aω sin ωt( ) + b θ cos θ( )
y = aω cos ωt( ) + b θ sin θ( ).

 (4.34) 
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Figure 4-3 – A simple pendulum attached to a rotating rim. 

 
The kinetic and potential energies, and the Lagrangian are 
 

 

 

T =
1
2
m a2ω 2 + b2 θ 2 + 2abω θ sin θ( )cos ωt( ) − sin ωt( )cos θ( )⎡⎣ ⎤⎦( )

=
1
2
m a2ω 2 + b2 θ 2 + 2abω θ sin θ −ωt( )( )

U = mg asin ωt( ) − bcos θ( )( )
L = T −U

=
1
2
m a2ω 2 + b2 θ 2 + 2abω θ sin θ −ωt( )( ) − mg asin ωt( ) − bcos θ( )( ).

 (4.35) 

 
We now calculate the derivatives for the Lagrange equation using θ  as the sole 
generalized coordinate 
 

 

 

∂L
∂θ

= mabω θ cos θ −ωt( ) − mgbsin θ( )
d
dt

∂L
∂ θ

= mb2 θ + mabω θ −ω( )cos θ −ωt( ).
 (4.36) 

 
Finally, the equation of motion is 
 

 
 
!!θ − a

b
ω 2 cos θ −ωt( ) + g

b
sin θ( ) = 0. (4.37) 
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Figure 4-4 – A slides along a smooth wire that rotates about the z-axis .  

 
4) The sliding bead. A bead slides along a smooth wire that has the shape of a parabola 

z = cr2  (see Figure 4-4). At equilibrium, the bead rotates in a circle of radius R  when 
the wire is rotating about its vertical symmetry axis with angular velocity ω . Find the 
value of c . 

 
 
Solution. We choose the cylindrical coordinates r,θ,  and z  as generalized coordinates. 
The kinetic and potential energies are 
 

 

 

T =
1
2
m r2 + r2 θ 2 + z2( )

U = mgz.
 (4.38) 

 
We have in this case some equations of constraints that we must take into account, 
namely 
 

 
 

z = cr2

z = 2crr,
 (4.39) 

 
and 
 

 
 

θ =ωt
θ =ω .

 (4.40) 

 
Inserting equations (4.39) and (4.40) in equation (4.38), we can calculate the Lagrangian 
for the problem 
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L = T −U

=
1
2
m r2 + 4c2r2 r2 + r2ω 2( ) − mgcr2 .  (4.41) 

 
It is important to note that the inclusion of the equations of constraints in the Lagrangian 
has reduced the number of degrees of freedom to only one, i.e., r . We now calculate the 
equation of motion using Lagrange’s equation 
 

 

 

∂L
∂r

= m 4c2rr2 + rω 2 − 2gcr( )
d
dt

∂L
∂r

= m r + 4c2r2r + 8c2rr2( ),
 (4.42) 

 
and 
 
  r 1+ 4c

2r2( ) + r2 4c2r( ) + r 2gc −ω 2( ) = 0.  (4.43) 
 
When the bead is in equilibrium, we have  r = R and r = r = 0 , and equation (4.43) 
reduces to  
 
 R 2gc −ω 2( ) = 0,  (4.44) 
 
or 
 

 c = ω 2

2g
. (4.45) 

 

4.5 Lagrange’s Equations with Undetermined Multipliers 
A system that is subjected to holonomic constraints (i.e., constraints that can be expressed 
in the form f xα ,i ,t( ) = f qj ,t( ) = 0 ) will always allow the selection of a proper set of 
generalized coordinates for which the equations of motion will be free of the constraints 
themselves. Alternatively, constraints that are functions of the velocities, and which can 
be written in a differential form and integrated to yield relations amongst the coordinates 
are also holonomic. For example, an equation of the form  
 

 Ai
dxi
dt

+ B = 0  (4.46) 

 
cannot, in general, be integrated to give an equation of the form f xi ,t( ) = 0 . Such 
equations of constraints are non-holonomic. We will not consider this type of constraints 
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any further. However, if the constants Ai ,  and B  are such that equation (4.46) can be 
expressed as   
 

 ∂f
∂xi

∂xi
∂t

+
∂f
∂t

= 0,  (4.47) 

 
or more simply  
 

 
df
dt

= 0,  (4.48) 

 
then it can be integrated to give 
 
 f xi ,t( ) − cste = 0. (4.49) 
 
Using generalized coordinates, and by slightly changing the form of equation (4.48), we 
conclude that, as was stated above, constraints that can be written in the form of a 
differential 
 

 df = ∂f
∂qj

dqj +
∂f
∂t
dt = 0  (4.50) 

 
are similar to the constraints considered at the beginning of this section, that is 
 
 f qj ,t( ) − cste = 0.  (4.51) 
 
Problems involving constraints such as the holonomic kind discussed here can be handled 
in exactly the same manner as was done in the chapter on the calculus of variations. This 
is done by introducing the so-called Lagrange undetermined multipliers. When this is 
done, we find that the following form for the Lagrange equations 
 

 
 

∂L
∂qj

−
d
dt

∂L
∂ qj

+ λk t( ) ∂fk
∂qj

= 0  (4.52) 

 
where the index j = 1,2, ... , 3n − m,  and k = 1,2, ... ,m . 

Although the Lagrangian formalism does not require the insertion of the forces of 
constraints involved in a given problem, these forces are closely related to the Lagrange 
undetermined multipliers. The corresponding generalized forces of constraints can be 
expressed as 
 

 Qj = λk t( ) ∂fk
∂qj

.  (4.53) 
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Examples 
 
1) The rolling disk on an inclined plane. We now solve the problem of a disk of mass m  
and of radius R  rolling down an inclined plane (see Figure 4-5). 
 
Solution. Referring to  Figure 4-1, and separating the kinetic energies in a translational 
rotational part, we can write  
 

 

 

T = 1
2
my2 + 1

2
I θ 2

= 1
2
my2 + 1

4
mR2 θ 2,

 (4.54) 

 
where I = mR2 2  is the moment of inertia of the disk about its axis of rotation. The 
potential energy and the Lagrangian are given by 
 

 

 

U = mg l − y( )sin α( )
L = T −U

=
1
2
my2 + 1

4
mR2 θ 2 − mg l − y( )sin α( ),

 (4.55) 

 
where l,  and α  are the length and the angle of the inclined plane, respectively. The 
equation of constraint given by 
 
 f = y − Rθ = 0.  (4.56) 
 
This problem presents itself with two generalized coordinates ( y and θ ) and one 
equation of constraints, which leaves us with one degree of freedom. We now apply the 
Lagrange equations as defined with equation (4.52) 
 

Figure 4-5 - A disk rolling on an incline plane without slipping. 
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∂L
∂y

−
d
dt

∂L
∂y

+ λ ∂f
∂y

= mgsin α( ) − my + λ = 0

∂L
∂θ

−
d
dt

∂L
∂ θ

+ λ ∂f
∂θ

= −
1
2
mR2 θ − λR = 0.

 (4.57) 

 
From the last equation we have 
 

 
 
λ = −

1
2
mRθ,  (4.58) 

 
which using the equation of constraint (4.56) may be written as  
 

 
 
λ = −

1
2
my. (4.59) 

 
Inserting this last expression in the first of equation (4.57) we find  
 

 
 
y = 2

3
gsin α( ),  (4.60) 

 
and  
 

 λ = −
1
3
mgsin α( ).  (4.61) 

 
In a similar fashion we also find that 
 

 
 
θ =

2gsin α( )
3R

.  (4.62) 

 
Equations (4.60) and (4.62) can easily be integrated, and the forces of constraints that 
keep the disk from sliding can be evaluated from equation (4.53) 
 

 
Qy = λ ∂f

∂y
= λ = −

1
3
mgsin α( )

Qθ = λ ∂f
∂θ

= λR = −
1
3
mRgsin α( ).

 (4.63) 

 
Take note that Qy  and Qθ  are a force and a torque, respectively. This justifies the 
appellation of generalized forces. 
 
 



71 

 

Figure 4-6 – An arrangement of a spring, mass, and mass less pulleys.  
 
2) Consider the system of Figure 4-6. A string joining two mass less pulleys has a length 
of l  and makes an angle θ  with the horizontal. This angle will vary has a function of the 
vertical position of the mass. The two pulleys are restricted to a translational motion by 
frictionless guiding walls. The restoring force of the spring is −kx  and the arrangement is 
such that when θ = 0, x = 0,  and when θ = π 2, x = l . Find the equations of motion for 
the mass. 
 
Solution. There are two equations of constraints for this problem 
 

 
f = x − l 1− cos θ( )( ) = 0
g = y − l sin θ( ) = 0,

 (4.64) 

 
and we identify three generalized coordinates x, y,  and θ . We now calculate the energies 
and the Lagrangian 
 

 

 

T =
1
2
my2

U =
1
2
kx2 − mgy

L = T −U =
1
2
my2 −

1
2
kx2 + mgy.

 (4.65) 

 
Using equations (4.64) and (4.65), we can write the Lagrange equations while using the 
appropriate undetermined Lagrange multipliers 
 

 
 

∂L
∂qj

−
d
dt

∂L
∂ qj

+ λ f
∂f
∂qj

+ λg
∂g
∂qj

,  (4.66) 
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where qj  can represent x, y,  or θ . Calculating the necessary derivatives 
 

 

 

∂L
∂x

= −kx

∂L
∂y

= mg

∂L
∂θ

=
d
dt

∂L
∂x

=
d
dt

∂L
∂ θ

= 0

d
dt

∂L
∂y

= my,

 (4.67) 

 
and 
 

 

 

−kx + λ1 = 0
mg − my + λ2 = 0
−λ1l sin θ( ) − λ2l cos θ( ) = 0.

 (4.68) 

 
We, therefore, have 
 

 

λ1 = kx = kl 1− cos θ( )( ) = kl 1− 1− y
l

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

λ2 = −λ1 tan θ( )

= −kl 1− 1− y
l

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⋅

y

l 1− y
l

⎛
⎝⎜

⎞
⎠⎟
2

= −ky 1− y
l

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− 12

−1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,

 (4.69) 

 
and with the insertion of these equations in the second of equations (4.68) we finally get 
 

 

 

y − g + k
m
y 1− y

l
⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− 12

−1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0.  (4.70) 
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4.6 Equivalence of Lagrange’s and Newton’s Equations 
In this section we will prove the equivalence of the Lagrangian and the Newtonian 
formalisms of mechanics. We consider the simple case where the generalized coordinates 
are the Cartesian coordinates, and we concentrate on the dynamics of a single particle not 
subjected to forces of constraints. The Lagrange equation for this problem is  
 

 
 

∂L
∂xi

−
d
dt

∂L
∂xi

= 0, i = 1,2,3.  (4.71) 

 
Since L = T −U  and  T = T xi( ),  and U =U xi( )  for a conservative system (e.g., for a 
particle falling vertically in a gravitational field we have  T = my2 2,  and U = mgy ), 
Lagrange’s equation becomes 
 

 
 
−
∂U
∂xi

=
d
dt

∂T
∂xi
,  (4.72) 

 
since 
 

 
 

∂T
∂xi

=
∂U
∂xi

= 0.  (4.73) 

 
For a conservative system we also have 
 

 Fi = −
∂U
∂xi
,  (4.74) 

 
and 
 

 
 

d
dt

∂T
∂xi

=
d
dt

∂
∂xi

1
2
mxk xk

⎛
⎝⎜

⎞
⎠⎟
=
d
dt

mxi( ) = pi ,  (4.75) 

 
where pi  is component i  of the momentum. 

From equations (4.74) and (4.75) we finally obtain 
 
  Fi = pi ,  (4.76) 
 
which are, of course, the Newtonian equations of motion. 

4.7 Conservation Theorems 
Before deriving the usual conservation theorem using the Lagrangian formalism, we must 
first consider how we can express the kinetic energy as a function of the generalized 
coordinates and velocities.  



74 

4.7.1 The Kinetic Energy 
In a Cartesian coordinates system the kinetic energy of a system of particles is expressed 
as 
 

 
 
T =

1
2

mα xα ,i xα ,i
α =1

n

∑ ,  (4.77) 

 
where a summation over i  is implied. In order to derive the corresponding relation using 
generalized coordinates and velocities, we go back to the first of equations (4.15), which 
relates the two systems of coordinates 
 
 xα ,i = xα ,i q j ,t( ), j = 1,2, ... , 3n − m.  (4.78) 
 
Taking the time derivative of this equation we have 
 

 
 
xα ,i =

∂xα ,i
∂qj
qj +

∂xα ,i
∂t

,  (4.79) 

 
and squaring it (and summing over i ) 
 

 
 
xα ,i xα ,i =

∂xα ,i
∂qj

∂xα ,i
∂qk
qj qk + 2

∂xα ,i
∂qj

∂xα ,i
∂t
qj +

∂xα ,i
∂t

∂xα ,i
∂t

.  (4.80) 

 
An important case occurs when a system is scleronomic, i.e., there is no explicit 
dependency on time in the coordinate transformation, we then have 
 

 
∂xα ,i
∂t

= 0,  

 
and the kinetic energy can be written in the form 
 
 

 
T = ajk qj qk  (4.81) 

 
with  
 

 ajk =
1
2

mα
α =1

n

∑ ∂xα ,i
∂qj

∂xα ,i
∂qk

,  (4.82) 

 
where a summation on i  is still implied. Just as was the case for Cartesian coordinates, 
we see that the kinetic energy is a quadratic function of the (generalized) velocities. If we 
next differentiate equation (4.81) with respect to  ql , and then multiply it by  ql  (and 
summing), we get 
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ql
∂T
∂ ql

= 2ajk qj qk = 2T  (4.83) 

 
since ajk  is not a function of the generalized velocities, and it is symmetric in the 
exchange of the j  and k  indices. 

4.7.2 Conservation of Energy 
Consider a general Lagrangian, which will be a function of the generalized coordinates 
and velocities and may also depend explicitly on time (this dependence may arise from 
time variation of external potentials, or from time-dependent constraints). Then the total 
time derivative of L  is 
 

 
 

dL
dt

=
∂L
∂qj
qj +

∂L
∂ qj
qj +

∂L
∂t
.  (4.84) 

 
But from Lagrange’s equations, 
 

 
 

∂L
∂qj

=
d
dt

∂L
∂ qj

,  (4.85) 

 
and equation (4.84) can be written as  
 

 

 

dL
dt

=
d
dt

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟
qj +

∂L
∂ qj
qj +

∂L
∂t

=
d
dt

∂L
∂ qj
qj

⎛

⎝⎜
⎞

⎠⎟
+
∂L
∂t
.

 (4.86) 

 
It therefore follows that 
 

 
 

d
dt

∂L
∂ qj
qj − L

⎛

⎝⎜
⎞

⎠⎟
+
∂L
∂t

=
dH
dt

+
∂L
∂t

= 0  (4.87) 

 
or 
 

 
dH
dt

= −
∂L
∂t
,  (4.88) 

 
where we have introduced a new function  
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H = qj

∂L
∂ qj

− L.  (4.89) 

 
In cases where the Lagrangian is not explicitly dependent on time we find that 
 

 
 
H = qj

∂L
∂ qj

− L = cste.  (4.90) 

 
If we are in presence of a scleronomic system, where there is also no explicit time 
dependence in the coordinate transformation (i.e., xα ,i = xα ,i q j( ) ), then 

 
U =U qj( )  and ∂U ∂ qj = 0  and 
 

 
 

∂L
∂ qj

=
∂ T −U( )

∂ qj
=
∂T
∂ qj

.  (4.91) 

 
Equation (4.90) can be written as 
 

 

 

H = qj
∂T
∂ qj

− L

= 2T − L
= T +U = E = cste,

 (4.92) 

 
where we have used the result obtained in equation (4.83) for the second line. 
The function H  is called the Hamiltonian of the system and it is equaled to the total 
energy only if the following conditions are met: 

1. The equations of the transformation connecting the Cartesian and generalized 
coordinates must be independent of time (the kinetic energy is then a quadratic 
function of the generalized velocities). 

2. The potential energy must be velocity independent. 

It is important to realize that these conditions may not always be realized. For example, if 
the total energy is conserved in a system, but that the transformation from Cartesian to 
generalized coordinates involve time (i.e., a moving generalized coordinate system), then 
equations (4.81) and (4.83) don’t apply and the Hamiltonian expressed in the moving 
system does not equal the energy. We are in a presence of a case where the total energy is 
conserved, but the Hamiltonian is not. 

4.7.3 Noether’s Theorem 
We can derive conservation theorems by taking advantage of the so-called Noether’s 
theorem, which connects a given symmetry to the invariance of a corresponding physical 
quantity.  
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Consider a set of variations δqj  on the generalized coordinates that define a system, 
which may or may not be independent. We write the variation of the Lagrangian as 
 

 
 
δL =

∂L
∂qj

δqj +
∂L
∂ qj

δ qj ,  (4.93) 

  
but from the Lagrange equations we have 
 

 
 

∂L
∂qj

=
d
dt

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟
,  (4.94) 

 
and  
 

 

 

δL =
d
dt

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟
δqj +

∂L
∂ qj

δ qj

=
d
dt

∂L
∂ qj

δqj
⎛

⎝⎜
⎞

⎠⎟
.

 (4.95) 

 
Nother’s theorem states that any set of variations δqj  (or symmetry) that leaves the 
Lagrangian of a system invariant (i.e., δL = 0 ) implies the conservation of the following 
quantity (from equation (4.95)) 
 

 
 

∂L
∂ qj

δqj = cste. (4.96) 

4.7.4 Conservation of Linear Momentum 
Consider the translation in space of an entire system. That is to say, every generalized 
coordinates is translated by an infinitesimal amount such that  
 
 qj → qj + δqj .  (4.97) 
 
Because space is homogeneous in an inertial frame, the Lagrangian function of a closed 
system must be invariant when subjected to such a translation of the system in space. 
Therefore, 
 
 δL = 0. (4.98) 
 
Equation (4.96) then applies and 
 

 
 

∂L
∂ qj

δqj = cste  (4.99) 
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or 
 

 
 

∂L
∂ qj

= cste,  (4.100) 

 
since the displacements δqj  are arbitrary and independent. Let’s further define a new 
function 
 

 
 
pj =

∂L
∂ qj

.  (4.101) 

 
Because of the fact that pj  reduces to an “ordinary” component of the linear momentum 
when dealing with Cartesian coordinates through 
 

 

 

pα ,i =
∂L
∂xα ,i

=
∂ T −U( )
∂xα ,i

=
∂T
∂xα ,i

=
∂ 1
2
mα xα ,i xα ,i

⎛
⎝⎜

⎞
⎠⎟

∂xα ,i
= mα xα ,i ,

 (4.102) 

 
they are called generalized momenta. Inserting equation (4.101) into equation (4.100) 
we find 
 
 pj = cste.  (4.103) 
 
The generalized momentum component pj  is conserved. When dealing with Cartesian 
coordinates the total linear momentum pi  in a given direction is also conserved. That is, 
from equation (4.102) we have 
 

 
 
pi = pα ,i

α =1

n

∑ = mα xα ,i
α =1

n

∑ = cste,  (4.104) 

 
since pα ,i = cste  for all α . 

Furthermore, whenever equation (4.100) applies (or equivalently ∂L ∂qj = 0 ), it is said 
that the generalized coordinate qj  is cyclic. We then find the corresponding generalized 
momentum component pj  to be a constant of motion. 



79 

4.7.5 Conservation of Angular Momentum 
Since space is isotropic, the properties of a closed system are unaffected by its 
orientation. In particular, the Lagrangian will be unaffected if the system is rotated 
through a small angle. Therefore, 
 

 δL =
d
dt

pjδqj( ) = 0. (4.105) 

 
Let’s now consider the case where the Lagrangian is expressed as a function of Cartesian 
coordinates such that we can make the following substitutions 
 

 
 

qj → xα ,i
p j → pα ,i = mα xα ,i .

 (4.106) 

 
Referring to Figure 4-7, we can expressed the variation δrα  in the position vector rα  
caused by an infinitesimal rotation δθ  as 
 
 δrα = δθ × rα  (4.107) 
 
Inserting equations (4.106) and (4.107) in equation (4.105) we have 
 
 

 

d
dt

pα ,iδxα ,i( ) = d
dt
pα ⋅δrα( )

=
d
dt
pα ⋅ δθ × rα( )⎡⎣ ⎤⎦

=
d
dt

δθ ⋅ rα × pα( )⎡⎣ ⎤⎦

= δθ ⋅ d
dt

rα × pα( )⎡⎣ ⎤⎦,

 (4.108) 

 
where we used the identity a ⋅ b × c( ) = c ⋅ a × b( ) = b ⋅ c × a( ) . We further transform 
equation (4.108) to 
 

 δθ ⋅ d
dt
rα × pα( ) = δθ ⋅ d

dt
Lα = 0,  (4.109) 

 
with Lα = rα × pα  is the angular momentum vector associated with the particle identified 
with the index α . But since δθ  is arbitrary we must have 
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Figure 4-7 – A system rotated by an infinitesimal amount δθ .  

 
 Lα = cste,  (4.110) 
 
for all α . Finally, summing over α  we find that the total angular momentum L  is 
conserved, that is 
 

 L = rα × pα( )
α =1

n

∑ = cste. (4.111) 

 
It is important to note that although we only used Noether’s theorem to prove the 
conservation of the linear and angular momenta, it can also be used to express the 
conservation of energy. But to do so requires a relativistic treatment where time is treated 
on equal footing with the other coordinates (i.e., xα ,i  or qj ).   

4.8 D’Alembert’s Principle and Lagrange’s Equations 
(This section is optional and will not be subject to examination. It will not be found 
in Thornton and Marion. The treatment presented below closely follows that of 
Goldstein, Poole and Safko, pp. 16-21.) 
It is important to realize that Lagrange’s equations were not originally derived using 
Hamilton’s Principle. Lagrange himself placed the subject on a sound mathematical 
foundation by using the concept of virtual work along with D’Alembert’s Principle. 

4.8.1 Virtual Work and D’Alembert’s Principle 
A virtual displacement is the result of any infinitesimal change of the coordinates δrα  
that define a particular system, and which is consistent with the different forces and 
constraints imposed on the system at a given instant t . The term virtual is used to 
distinguish these types of displacement with actual displacement occurring in a time 
interval dt , during which the forces could be changing. 
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Now, suppose that a system is in equilibrium. In that case the total force Fα  on each 
particle that compose the system must vanish, i.e., Fα = 0 . If we define the virtual work 
done on a particle as  Fα iδrα  (note that we are using Cartesian coordinates) then we have 
 
 

 
Fα iδrα = 0.

α
∑  (4.112) 

 
Let’s now decompose the force Fα  as the sum of the applied force Fα

a( )  and the force of 
constraint fα  such that  
 
 Fα = Fα

a( ) + fα ,  (4.113) 
 then equation (4.112) becomes 
 
 

 
Fα

a( )iδrα + fα iδrα = 0.
α
∑

α
∑  (4.114) 

 
In what follows, we will restrict ourselves to systems where the net virtual work of the 
forces of constraints is zero, that is 
 
 

 
fα iδrα = 0,

α
∑  (4.115) 

 
and 
 
 

 
Fα

a( )iδrα = 0.
α
∑  (4.116) 

 
This condition will hold for many types of constraints. For example, if a particle is forced 
to move on a surface, the force of constraint if perpendicular to the surface while the 
virtual displacement is tangential. It is, however, not the case for sliding friction forces 
since they are directed against the direction of motion; we must exclude them from our 
analysis. But for systems where the force of constraints are consistent with equation 
(4.115), then equation (4.116) is valid and is referred to as the principle of virtual work.   
Now, let’s consider the equation of motion  Fα = pα ,  which can be written as 

 
  Fα − pα = 0.  (4.117) 
  
Inserting this last equation in equation (4.112) we get 
 
 

 
Fα − pα( )iδrα = 0,

α
∑  (4.118) 

and upon using equations (4.113) and (4.115) we find 
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Fα
a( ) − pα( )iδrα = 0.

α
∑  (4.119) 

 
Equation (4.119) is often called D’Alembert’s Principle. 

4.8.2 Lagrange’s Equations 
We now go back to our usual coordinate transformation that relates the Cartesian and 
generalized coordinates 
 
 xα ,i = xα ,i q j ,t( ),  (4.120) 
 
from which we get  
 

 
 

dxα ,i
dt

=
∂xα ,i
∂qj
qj +

∂xα ,i
∂t

.  (4.121) 

 
Similarly, the components δxα ,i  of the virtual displacements vectors can be written as 
 

 δxα ,i =
∂xα ,i
∂qj

δqj .  (4.122) 

 
Note that no time variation δt  is involved in equation (4.122) since, by definition, a 
virtual displacement is defined as happening at a given instant t , and not within a time 
interval δt . Inserting equation (4.122) in the first term of equation (4.119), we have 
 

 
Fα ,i

a( )δrα ,i
α
∑ = Fα ,i

a( ) ∂xα ,i
∂qj

δqj
α
∑

= Qjδqj ,
 (4.123) 

 
where summations on i,  and j  are implied, and the quantity 
 

 Qj = Fα ,i
a( ) ∂xα ,i

∂qjα
∑  (4.124) 

 
are the components of the generalized forces. 

Concentrating now on the second term of equation (4.119) we write 
 

 
 
pα ,iδxα ,i = mα xα ,i

∂xα ,i
∂qj

δqj .
α
∑

α
∑  (4.125) 
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This last equation can be rewritten as 
 

 
 

mα xα ,i
∂xα ,i
∂qj

δqj =
d
dt

mα xα ,i
∂xα ,i
∂qj

⎛

⎝⎜
⎞

⎠⎟
− mα xα ,i

d
dt

∂xα ,i
∂qj

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥α

∑ δqj .
α
∑  (4.126) 

 
We can modify the last term since 
 

 
 

d
dt

∂xα ,i
∂qj

⎛

⎝⎜
⎞

⎠⎟
=
∂xα ,i
∂qj

.  (4.127) 

 
Furthermore, we can verify from equation (4.121) that  
 

 
 

∂xα ,i
∂ qk

=
∂xα ,i
∂qk

.  (4.128) 

 
Substituting equations (4.127) and (4.128) into (4.126) leads to 
 

 

 

mα xα ,i
∂xα ,i
∂qj

δqj
α
∑ =

d
dt

mα xα ,i
∂xα ,i
∂ qj

⎛

⎝⎜
⎞

⎠⎟
− mα xα ,i

∂xα ,i
∂qj

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥α

∑ δqj

=
d
dt

∂
∂ qj

1
2
mα xα ,i xα ,i

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

∂
∂qj

1
2
mα xα ,i xα ,i

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥α

∑ δqj .

 (4.129) 

  
Combining this last result with equations (4.124) and (4.125), we can express (4.119) as 
 

 
 

Fα ,i
a( ) − pα ,i( )δxα ,i = Qj −

d
dt

∂T
∂ qj

⎛

⎝⎜
⎞

⎠⎟
−
∂T
∂qj

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
δqj = 0,

α
∑  (4.130) 

 
where we have introduced T  the kinetic energy of the system, such that 
 

 
 
T =

1
2

mα xα ,i
α
∑ xα ,i .  (4.131) 

 
Since the set of virtual displacements δqj  are independent, the only way for equation 
(4.130) to hold is that 
 

 
 

d
dt

∂T
∂ qj

⎛

⎝⎜
⎞

⎠⎟
−
∂T
∂qj

= Qj .  (4.132) 

 
If we now limit ourselves to conservative systems, we must have 
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 Fα ,i
a( ) = −

∂U
∂xα ,i

,  (4.133) 

 
and similarly, 
 

 
Qj = Fα ,i

a( ) ∂xα ,i
∂qj

= −
∂U
∂xα ,i

∂xα ,i
∂qj

= −
∂U
∂qj

,
 (4.134) 

 
with U =U xα ,i ,t( ) =U qj ,t( )  the potential energy. We can, therefore, rewrite equation 
(4.132) as  
 

 
 

d
dt

∂ T −U( )
∂ qj

⎛

⎝⎜
⎞

⎠⎟
−
∂ T −U( )

∂qj
= 0,  (4.135) 

 
since  ∂U ∂ qj = 0 . 

If we now define the Lagrangian function for the system as 

 
 L = T −U,  (4.136) 
 
we finally recover Lagrange’s equations 
 

 

 

d
dt

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟
−
∂L
∂qj

= 0 .  (4.137) 

4.8.3 Dissipative Forces and Rayleigh’s Dissipative Function 
 So far, we have only dealt with system where there is no dissipation of energy. 
Lagrange’s equations can, however, be made to accommodate some of these situations. 
To see how this can be done, we will work our way backward from Lagrange’s equation 
 

 
 

d
dt

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟
−
∂L
∂qj

= 0.  (4.138) 

If we allow for the generalized forces on the system Qj  to be expressible in the following 
manner 
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Qj = −

∂U
∂qj

+
d
dt

∂U
∂ qj

⎛

⎝⎜
⎞

⎠⎟
,  (4.139) 

 
then equation (4.138) can be written as 
 

 
 

d
dt

∂T
∂ qj

⎛

⎝⎜
⎞

⎠⎟
−
∂T
∂qj

= Qj .  (4.140) 

  
We now allow for some frictional forces, which cannot be derived from a potential such 
as expressed in equation (4.139), but for example, are expressed as follows 
 
  f j = −kj qj ,  (4.141) 
 
where no summation on the repeated index is implied. Expanding our definition of 
generalized forces to include the friction forces 
 
 Qj →Qj + f j ,  (4.142) 
 
Equation (4.140) becomes 
 

 
 

d
dt

∂T
∂ qj

⎛

⎝⎜
⎞

⎠⎟
−
∂T
∂qj

= −
∂U
∂qj

+
d
dt

∂U
∂ qj

⎛

⎝⎜
⎞

⎠⎟
+ f j ,  (4.143) 

 
or, alternatively 
 

 
 

d
dt

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟
−
∂L
∂qj

= f j . (4.144) 

 
Dissipative forces of the type shown in equation (4.141) can be derived in term of a 
function R , known as Rayleigh’s dissipation function, and defined as  
 

 
 
R =

1
2

kj qj
2

j
∑ .  (4.145) 

 
From this definition it is clear that  
 

 
 
f j = −

∂R
∂ qj

,  (4.146) 

and the Lagrange equations with dissipation becomes 
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d
dt

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟
−
∂L
∂qj

+
∂R
∂ q,

= 0,  (4.147) 

 
so that two scalar functions, L  and R , must be specified to obtain the equations of 
motion. 

4.8.4 Velocity-dependent Potentials 
Although we exclusively studied potentials that have no dependency on the velocities, the 
Lagrangian formalism is well suited to handle some systems where such potentials arise. 
This is the case, for example, when the generalized forces can be expressed with equation 
(4.139). That is, 
 

 
 
Qj = −

∂U
∂qj

+
d
dt

∂U
∂ qj

⎛

⎝⎜
⎞

⎠⎟
. (4.148) 

 
This equation applies to a very important type of force field, namely, the electromagnetic 
forces on moving charges. 

Consider an electric charge, q , of mass m  moving at velocity v in a region subjected to 
an electric field E  and a magnetic field B , which may both depend on time and position. 
As is known from electromagnetism theory, the charge will experience the so-called 
Lorentz force 
 

 F = q E + v × B( )⎡⎣ ⎤⎦.  (4.149) 
 
Both the electric and the magnetic fields are derivable from a scalar potential φ  and a 
vector potential A  by 
 

 E = −∇φ −
∂A
∂t
,  (4.150) 

 
and 
 
 B = ∇ × A.  (4.151) 
 
The Lorentz force on the charge can be obtained if the velocity-dependent potential 
energy U  is expressed 
 
  U = qφ − qAiv,  (4.152) 
 
so that the Lagrangian is 
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L = T −U

=
1
2
mv2 − qφ + qAiv.

 (4.153) 

 

4.9 The Lagrangian Formulation for Continuous Systems 

4.9.1 The Transition from a Discrete to a Continuous System  
Let’s consider the case of an infinite elastic rod that can undergo small longitudinal 
vibrations. A system composed of discrete particles that approximate the continuous rod 
is an infinite chain of equal mass points spaced a distance a  apart and connected by 
uniform mass less springs having force constants k  (see Figure 4-8). 
Denoting the displacement of the j th  particle from its equilibrium position by η j , the 
kinetic and potential energies can be written as 
 

 

 

T =
1
2

m η j
2

j
∑

U =
1
2

k η j+1 −η j( )
j
∑ 2

.
 (4.154) 

 
The Lagrangian is then given by 
 

 

 

L = T −U

=
1
2

m η j
2 − k η j+1 −η j( )2⎡

⎣
⎤
⎦j

∑ ,  (4.155) 

 
which can also be written as 
 

Figure 4-8 – A discrete system of equal mass springs connected by springs, as an 
approximation to a continuous elastic rod. 
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L =

1
2

a m
a
η j
2 − ka

η j+1 −η j

a
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j

∑ = aLj
j
∑ ,  (4.156) 

 
where a  is the equilibrium separation between the particles and Lj  is the quantity 
contained in the square brackets. The particular form of the Lagrangian given in equation 
(4.156) was chosen so that we can easily go to the limit of a continuous rod as a  
approaches zero. In going from the discrete to the continuous case, the index j  becomes 
the continuous position coordinate x , and we therefore have 
 

 lim
a→0

η j+1 −η j

a
=
η x + a( ) −η x( )

a
=
dη
dx
,  (4.157) 

 
where a  takes on the role of dx . Furthermore, we have 
 

 
lim
a→0

m
a
= µ

lim
a→0

ka = Y ,
 (4.158) 

 
where µ  is the mass per unit length and Y  is Young’s modulus (note that in the 
continuous case Hooke’s Law becomes F = −Y dη dx ). We can also impose the same 
limit to the Lagrangian of equation (4.156) while taking equations (4.157) and (4.158) 
into account. We then obtain 
 

 
 
L =

1
2

µ η2 −Y
dη
dx

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx.∫  (4.159) 

 
This simple example illustrates the main features of passing from a discrete to a 
continuous system. The most important thing to grasp is the role played by the position 
coordinates x . It is not a generalized coordinates, but it now takes on the role of being a 
parameter in the same right as the time is. The generalized coordinate is the variable 
η = η x,t( ) . If the continuous system were three-dimensional, then we would have 
η = η x, y, z,t( ) , where x, y, z,  and t  would be completely independent of each other. We 
can generalize the Lagrangian for the three-dimensional system as  
 
  L = L dxdydz,∫∫∫  (4.160) 
 
where  L  is the Lagrangian density. In the example of the one-dimensional continuous 
elastic rod considered above we have 
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L =

1
2

µ η2 −Y
dη
dx

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. (4.161) 

 

4.9.2 The Lagrange Equations of Motion for Continuous Systems 
We will now derive the Lagrange equations of motion for the case of a one-dimensional 
continuous system. The extension to a three-dimensional system is straightforward. The 
Lagrangian density in this case is given by  
 

 
  
L = L η, dη

dx
, dη
dt
, x,t⎛

⎝⎜
⎞
⎠⎟
.  (4.162) 

 
We now apply Hamilton’s Principle to the action integral in a way similar to what was 
done for discrete systems 
 
 

 
δ I = δ L dxdt

x1

x2∫t1

t2∫ = 0.  (4.163) 

 
We then propagate the variation using the shorthand δ  notation introduced in section 3.3 
 

 

 

δ I = δL dxdt
x1

x2∫t1

t2∫

=
∂L
∂η

δη +
∂L

∂ dη
dx

⎛
⎝⎜

⎞
⎠⎟
δ dη

dx
⎛
⎝⎜

⎞
⎠⎟
+

∂L

∂ dη
dt

⎛
⎝⎜

⎞
⎠⎟
δ dη

dt
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

dxdt
x1

x2∫t1

t2∫ ,
 (4.164) 

 
and since δ dη dx( ) = d δη( ) dx and δ dη dt( ) = d δη( ) dt , we have 
 

 

 

δ I = ∂L
∂η

δη +
∂L

∂ dη
dx

⎛
⎝⎜

⎞
⎠⎟

d δη( )
dx

+
∂L

∂ dη
dt

⎛
⎝⎜

⎞
⎠⎟

d δη( )
dt

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

dxdt
x1

x2∫t1

t2∫ .  (4.165) 

 
Integrating the last two terms on the right hand side by parts we finally get 
 

 

 

δ I = ∂L
∂η

−
d
dx

∂L

∂ dη
dx

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−
d
dt

∂L

∂ dη
dt

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

δηdxdt
x1

x2∫t1

t2∫ = 0. (4.166) 
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Since the virtual variation δη  is arbitrary, we have for the Lagrange equations of motion 
of a continuous system 
 

 

 

∂L
∂η

−
d
dx

∂L

∂ dη
dx

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−
d
dt

∂L

∂ dη
dt

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0  (4.167) 

 
Applying equation (4.167) to our previous Lagrangian density for the elastic rod (i.e., 
equation (4.161)), we get 
 

 µ d
2η
dt 2

−Y
d 2η
dx2

= 0. (4.168) 

 
This is the so-called one-dimensional wave equation, which has for a general solution 
 
 η x,t( ) = f x + vt( ) + g x − vt( ),  (4.169) 
 
 where f  and g  are two arbitrary functions of x + vt  and x − vt , and v = Y µ . 
 
 
 
 


