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Chapter 7. The Principle of Least Action 

7.1 Force Methods vs. Energy Methods 
We have so far studied two distinct ways of analyzing physics problems: force methods, 
basically consisting of the application of Newton’s Laws, and energy methods, consisting 
of the application of the principle of conservation of energy (the conservations of linear 
and angular momenta can also be considered as part of this). Both have their advantages 
and disadvantages. More precisely, energy methods often involve scalar quantities (e.g., 
work, kinetic energy, and potential energy) and are thus easier to handle than forces, 
which are vectorial in nature. However, forces tell us more. The simple example of a 
particle subjected to the earth’s gravitation field will clearly illustrate this. 
 
We know that when a particle moves from position y0  to y  in the earth’s gravitational 
field, the conservation of energy tells us that  
 

 
ΔK + ΔUgrav = 0

1
2
m v2 − v0

2( ) +mg y − y0( ) = 0,
 (7.1) 

  
which implies that the final speed of the particle, of mass m , is 
 
 v = v0

2 + 2g y0 − y( ).  (7.2) 
 
Although we know the final speed v  of the particle, given its initial speed v0  and the 
initial and final positions y0  and y , we do not know how its position and velocity (and 
its speed) evolve with time.  
 
On the other hand, if we apply Newton’s Second Law, then we write 
 

 
−mgey = maey

= m dv
dt
ey .

 (7.3) 

 
This equation is easily manipulated to yield 
 

 

v = dv
t0

t

∫
= − gdτ

t0

t

∫ + v0

= −g t − t0( ) + v0,
 (7.4) 
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where v0  is the initial velocity (it appears in equation (7.4) as a constant of integration). 
If we conveniently choose t0 ≡ 0 , then it follows that (note that v  can be negative) 
 
 v = v0 − gt,  (7.5) 
 
while we note that we chose the y-axis  to increase upward (as could also be guessed 
from equation (7.3)). We can integrate once more to get 
 

 

y = vdτ
0

t

∫
= v0 − gτ( )dτ

0

t

∫
= y0 + v0t −

1
2
gt 2.

 (7.6) 

 
Equations (7.5) and (7.6) allow us to track the position and velocity of the particle at any 
time after t = 0 , something impossible to glean from the conservation of energy alone. 
We can further manipulate these two equations by taking the square of equation (7.5) 
 

 

v2 = v0
2 − 2v0gt + g

2t 2

= v0
2 − 2g v0t −

1
2
gt 2⎛

⎝⎜
⎞
⎠⎟

= v0
2 − 2g y − y0( ),

 (7.7) 

 
where equation (7.6) was inserted in the last step. Equation (7.7) is the same as equation 
(7.2) obtained through the principle of conservation of energy. We conclude that, 
although more difficult to apply, the force method is nonetheless significantly more 
powerful.   
 
One is left to wonder whether there exists a method that would combine the ease of 
application of the energy methods but yield the power of the force methods. This is the 
topic we study for the rest of this chapter. 

7.2 The Principle of Least Action and Newton’s Second Law 
Minimizing principles have been known and used for a long time in physics to solve 
problems of all kind. For example, the propagation of a beam of light between two points 
can be determined by minimizing the time of travel (the Principle of Least Time), or it is 
often found that a system will settle to rest in a configuration that minimizes it energy 
(e.g., a ball in a parabolic well). It is therefore not surprising that physicists have sought 
an overarching minimization principle from which all of physics could be derived from 
(including, for example, Newton’s Laws). 
 
As it turns out, there exists such a principle: The Principle of Least Action, which can 
be stated as follows  
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The motion of a system from time t1  to t2  is such that the line integral (called the action) 
 
 I = Ldt

t1

t2∫ ,  (7.8) 

 
where L = K −U  (with K  and U  the kinetic and potential energies, respectively) is 
minimized for the actual path of the motion. 
 
The quantity L  is called the Lagrangian, after the French-Italian scientist Joseph-Louis 
Lagrange (1736−1813) who is responsible for establishing the theory that rests on the 
minimization of the action. Although we will soon show how equation (7.8) can be 
minimized, mathematically, to derive the so-called Lagrange equations, it is more 
instructive at first to see how we can use the a priori knowledge of Newton’s Second Law 
to “guess” how the Lagrangian is such a fundamental physical quantity. 
 
Let us then return to our earlier problem of the particle subjected to the earth’s gravity, 
keeping in mind that we wish to attack it using scalar quantities, such as the kinetic and 
gravitational potential energies. The question is as follows: Given that Newton’s Second 
Law specifies that (see equation (7.3)) 
 

 m d 2y
dt 2

+mg = 0,  (7.9) 

 
how could we use the kinetic and gravitational potential energies K  and U  to arrive at 
the same result? The first part to the answer rests with the relation we established in 
Chapter 2 between the gravitational force and the potential energy, i.e.,  
 
 F = −∇U,  (7.10) 
 
or in this case 
 

 

F = − dU
dy
.

= −
d mgy( )
dy

= −mg.

 (7.11) 

 
Next we consider the inertial term md 2y dt 2  in equation (7.9) and rewrite it as 
 

 m d 2y
dt 2

= m dv
dt
.  (7.12) 
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Since we note that equation (7.12) is a function of the speed v  it is quite clear that we 
cannot, once again, use the potential energy for this term as it only depends on the 
position y . On the other hand, the kinetic energy can be advantageously considered 
because 
 

 K = 1
2
mv2,  (7.13) 

 
while 
 

 dK
dv

= mv  (7.14) 

 
and 
 

 

d
dt

dK
dv

⎛
⎝⎜

⎞
⎠⎟ = m

dv
dt

= m d 2y
dt 2

.
 (7.15) 

 
It follows from equations (7.11) and (7.15) that we can write 
 

 
d
dt

dK
dv

⎛
⎝⎜

⎞
⎠⎟ +

dU
dy

= m d 2y
dt 2

+mg

= 0.
 (7.16) 

 
We thus recover equation (7.3), which is what we sought to accomplish.  
 
We now introduce a small change in notation by putting a ‘dot’ above a variable to 
denote its time derivative. That is, 
 

 

 

v = dy
dt

≡ y.
 (7.17) 

 
Finally, we also note that K  is solely a function of the velocity  y  and independent of the 
position y , and that conversely, as was mentioned earlier, U  is only a function of the 
position y  and not  y , such that  
 

 
 

dK
dy

= dU
dy

= 0.  (7.18) 

 
We therefore introduce a new function (i.e., the Lagrangian) 
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  L y, y( ) ≡ K y( )−U y( )  (7.19) 
 
and write the equation of motion (7.16) as 
 

 
 

d
dt

∂L
∂ y

⎛
⎝⎜

⎞
⎠⎟
− ∂L
∂y

= 0.  (7.20) 

 
This is the general form of the equation of motion we were seeking.1 We can now verify 
that this applies equally well to other physical situations in general (and not only a 
particle in a gravitational field) by testing it on well-known problems. 

7.2.1 Exercises 
1. The Harmonic Oscillator. A particle of mass m  is attached to a massless spring of 
force constant k , and allowed to slide without friction on a horizontal plane. Find the 
mass’ equation of motion.  
 
Solution. 
 
The kinetic energy of the system is 
 

 
 
K = 1

2
mx2,  (7.21) 

 
while the potential energy is that stored in the spring 
 

 U = 1
2
kx2.  (7.22) 

 
The Lagragian is therefore 
 

 

 

L = K −U

= 1
2
mx2 − 1

2
kx2,

 (7.23) 

 
while 
 

                                                
1 In equation (7.20) we used the partial derivatives ∂L ∂y  and  ∂L ∂ y  instead of total 
derivative dL dy  and  dL dy  to express the fact that the Lagrangian  L = L y, y( )  is a 
function of both the position and the velocity. This is convention and notation used in 
mathematics to make this situation explicit.  
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∂L
∂x

= − k
2
∂ x2( )
∂x

= −kx

 (7.24) 

 
and 
 

 

 

d
dt

∂L
∂ x

⎛
⎝⎜

⎞
⎠⎟ =

m
2
d
dt

∂ x2( )
∂ x

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= m
2
d 2 x( )
dt

= mx.

 (7.25) 

 
The equation of motion is then 
 

 

 

d
dt

∂L
∂ x

⎛
⎝⎜

⎞
⎠⎟ −

∂L
∂x

= mx + kx

= 0,
 (7.26) 

 
as could easily be verified using Newton’s Second Law. This equation of motion can be 
integrated to yield 
 

 x t( ) = Acos k
m

⋅ t +φ
⎛

⎝⎜
⎞

⎠⎟
,  (7.27) 

 
with A and φ  some constants that depend on the initial conditions (i.e., position and 
speed) when the mass was released and allowed to move. 
 
2. The Sliding Disk. Find the equation of motion for a disk of mass  m  and radius R  that 
is sliding down a frictionless ramp, inclined by an angle α , from rest at a height h . 
 
Solution. 
 
The kinetic energy of the disk is  
 

 
 
K = 1

2
my2,  (7.28) 

 
with y  its position along the incline ( y = 0  at the top and increasing downward). The 
potential energy is  
 
 U = mg h + R − ysin α( )⎡⎣ ⎤⎦,  (7.29) 
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and the Lagrangian 
 

 

 

L = K −U

= 1
2
my2 −mg h + R − ysin α( )⎡⎣ ⎤⎦.

 (7.30) 

 
We now calculate 
 

 
∂L
∂y

= −mg ∂ h + R( )
∂y

− ∂y
∂y

⎛
⎝⎜

⎞
⎠⎟
sin α( )⎡

⎣
⎢

⎤

⎦
⎥

= mgsin α( ),
 (7.31) 

 
and 
 

 

 

d
dt

∂L
∂ y

⎛
⎝⎜

⎞
⎠⎟
= m
2
d
dt

∂ y2( )
∂ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= m
2
d 2 y( )
dt

= my.

 (7.32) 

 
The equation of motion for the disk’s centre of mass is therefore 
 

 

 

d
dt

∂L
∂ y

⎛
⎝⎜

⎞
⎠⎟
− ∂L
∂y

= my −mgsin α( )

= 0,
 (7.33) 

 
as could easily be verified using Newton’s Second Law. This equation of motion can be 
integrated to yield  
 

 y t( ) = h + R + 1
2
gsin α( )t 2.  (7.34) 

 
Note that we did not make use of any forces (e.g., the normal force that the incline 
applies to the disk) to solve the problem. 
 
3. The Rolling Disk. Find the equation of motion for the position of the centre of mass of 
a disk of mass  m  and radius R  that is rolling without slipping down a ramp, inclined by 
an angle α , from rest at a height h  (see Figure 1). 
 
Solution. 
 
The kinetic energy of the disk is the sum of translational and rotational components 
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K = 1
2
my2 + 1

2
I θ 2

= 1
2
my2 + 1

4
mR2 θ 2,

 (7.35) 

 
where I = mR2 2  is the moment of inertia of the disk about its axis of rotation and  y  is 
the velocity of its centre of mass. But we can also see from the figure that  
 
 y = Rθ  (7.36) 
 
and therefore 
 
  y = R θ .  (7.37) 
 
Inserting equation (7.37) in equation (7.35) we get 
 

 

 

K = 1
2
my2 + 1

4
my2

= 3
4
my2.

 (7.38) 

  
The potential energy is as calculated in equation (7.29) of Prob. 2 
 
 U = mg h + R − ysin α( )⎡⎣ ⎤⎦,  (7.39) 
 
and the Lagrangian 
 

Figure 1 - A disk rolling on an 
incline plane without slipping. 
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L = K −U

= 3
4
my2 −mg h + R − ysin α( )⎡⎣ ⎤⎦.

 (7.40) 

 
We now calculate 
 

 
∂L
∂y

= −mg ∂ h + R( )
∂y

− ∂y
∂y

⎛
⎝⎜

⎞
⎠⎟
sin α( )⎡

⎣
⎢

⎤

⎦
⎥

= mgsin α( ),
 (7.41) 

 
and 
 

 

 

d
dt

∂L
∂ y

⎛
⎝⎜

⎞
⎠⎟
= 3
4
m d
dt

∂ y2( )
∂ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 3
4
m d 2 y( )

dt

= 3
2
my.

 (7.42) 

 
The equation of motion for the crate is therefore 
 

 

 

d
dt

∂L
∂ y

⎛
⎝⎜

⎞
⎠⎟
− ∂L
∂y

= 3
2
my −mgsin α( )

= 0.

 (7.43) 

 
This equation of motion can be integrated to yield  
 

 y t( ) = h + R + 1
3
gsin α( )t 2.  (7.44) 

 
We see that, when compared with equation (7.34) for the sliding disk of Prob. 2, the 
rotation of the disk brings an additional factor of 2 3  in the position of the disk. That is, 
the disk goes slower down the incline by a factor of 2 3 . 
 
4. The Pendulum. Find the equation of motion for the angular position θ  of the 
pendulum made of a light string of length    and a mass m  shown in Figure 2. 
 
Solution. 
 
The kinetic energy of the system is 
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K = 1
2
I θ 2

= 1
2
m2 θ 2,

 (7.45) 

 
while the potential energy is given by 
 
  U = −mgcos θ( ).  (7.46) 
 
The Lagrangian is therefore 
 

 

 

L = K −U

= 1
2
m2 θ 2 +mgcos θ( ),  (7.47) 

 
with the needed derivatives 
 

 

 

∂L
∂θ

= −mgsin θ( )

d
dt

∂L
∂ θ

⎛
⎝⎜

⎞
⎠⎟ =

1
2
m2 d

dt
∂ θ 2( )
∂ θ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= m2 θ .

 (7.48) 

 
The equation of motion is thus 
 

 

 

d
dt

∂L
∂ θ

⎛
⎝⎜

⎞
⎠⎟ −

∂L
∂θ

= m2 θ +mgsin θ( )

= 0.
 (7.49) 

 

Figure 2 - A simple pendulum of mass  and length . 
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For cases of small oscillations  sin θ( )  θ , and the equation of motion becomes 
 

 
 
θ + g

θ  0,  (7.50) 

 
with for solution 
 

 
 
θ t( )  Acos g


⋅ t +φ

⎛

⎝⎜
⎞

⎠⎟
.  (7.51) 

 
The quantities A and φ  are some constants that depend on the initial conditions (i.e., 
position and velocity) when the mass was released and allowed to oscillate. 
 
5. The Coupled Oscillator. The Lagrangian formalism is also very powerful to derive 
the equations of motion for systems that have more than one degree of freedom. That is, 
in the preceding problems we had to solve for only one variable (or degree of freedom; 
e.g., the position of the mass attached to a spring, the centre of mass position of a disk 
coming down an incline, or the angular displacement of a pendulum), but it is not 
uncommon that more than one variables are involved in the description of a physical 
system. For example, let us consider the coupled oscillator composed of three massless 
springs (two of force constant κ  and one of constant κ12 ) and two particles of similar 
mass M , as shown in Figure 3. We will use the Lagrangian formalism to simultaneously 
determine the equations of motion for the positions x1  and x2  of the two masses.  
 
Solution. 
 
The kinetic energy of the system is made of the sum of the corresponding energies of the 
individual particles 
 

 
 
K = 1

2
M x1

2 + x2
2( ),  (7.52) 

  
while the potential energy of the system must include a term, for the middle spring of 
force constant κ12 , that depends on the difference in the positions of the two particles 
 

 U = 1
2
κ x1

2 + x2
2( ) + 12κ12 x2 − x1( )2 .  (7.53) 

 
The Lagrangian is then 
 

 
 
L = 1

2
M x1

2 + x2
2( )− 12κ x1

2 + x2
2( )− 12κ12 x2 − x1( )2 ,  (7.54) 

 
with the needed derivatives 
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∂L
∂x1

= −κ x1 +κ12 x2 − x1( )
∂L
∂x2

= −κ x2 −κ12 x2 − x1( )
 (7.55) 

 
and 
 

 

 

d
dt

∂L
∂ x1

⎛
⎝⎜

⎞
⎠⎟
= Mx1

d
dt

∂L
∂ x2

⎛
⎝⎜

⎞
⎠⎟
= Mx2.

 (7.56) 

 
We thus have two equations of motion, one for x1  and another for x2 , 
 

 

 

d
dt

∂L
∂ x1

⎛
⎝⎜

⎞
⎠⎟
− ∂L
∂x1

= Mx1 + κ +κ12( )x1 −κ12x2 = 0

d
dt

∂L
∂ x2

⎛
⎝⎜

⎞
⎠⎟
− ∂L
∂x2

= Mx2 + κ +κ12( )x2 −κ12x1 = 0.
 (7.57) 

 
Determining the solution for such a set of coupled differential equations is well beyond 
the scope of of our discussion, but it can be shown to be 
 

 
x1 t( ) = A1 cos ω1t +φ1( ) + A2 cos ω 2t +φ2( )
x2 t( ) = −A1 cos ω1t +φ1( ) + A2 cos ω 2t +φ2( ),

 (7.58) 

 
with 
 

Figure 3 - Two masses connected to each other by a 
spring  and to fixed points by other springs . 
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 ω1 =
κ + 2κ12

M
, ω 2 =

κ
M
,  (7.59) 

  
and where A1, A2, φ1, and φ2  are constants that depend on the initial conditions. 

7.2.2 Minimization of the Action2 
Although we have successfully applied Lagrange’s equation to several physical systems, 
we have yet to prove that it stems from an overarching principle involving the 
minimization of the action integral defined in equation (7.8). We thus end this chapter by 
accomplishing this task. 
 
In general, for a function f x( )  to exhibit a minimum at some point x0  it must be that its 
slope vanishes at that point.3 That is, the variation δ f  in the function should verify that 
 

 δ f = df
dx

δ x = 0  (7.60) 

 
about x0 . If the function depends on more than one variable, e.g., f = f x, y( ) , then both 
derivatives df dx  and df dy  must vanish about a point x0, y0( )  for a minimum to occur 
there. And we find that, upon using the so-called chain rule of calculus, 
 

 δ f = df
dx

δ x + df
dy

δ y = 0  (7.61) 

  
about x0, y0( ) . We will apply this technique to find the minimum of the action to the 
simpler case of a system with only one degree of freedom x  (a generalization to several 
degrees of freedom is straightforward), by first nothing that it is a function of both x  and 
 x . That is, 
 

 

 

δ I x, x( ) = δ L x, x( )dt
t1

t2∫
= ∂L

∂x
δ x + ∂L

∂ x
δ x⎡

⎣⎢
⎤
⎦⎥
dt

t1

t2∫
= 0.

 (7.62) 

                                                
2 This section contains advanced mathematical concepts on which you will not be tested; 
it is solely provided for completeness. 
3 A maximum or an inflection point in f x( )  will also have vanishing derivatives; to 
ensure that a minimum (maximum) occurs we should verify that the second derivative 
d 2 f dx2  is positive (negative). We will assume in our analysis that a minimum occurs, 
although this should, in principle, be verified. 
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In equation (7.62) we applied the chain rule, as in equation (7.61), but considering x  and 
 x  as the independent variables (like x and y  were in equation (7.61)). We now transform 
the quantity  δ x  as follows 
 

 

 

δ x = δ dx
dt

⎛
⎝⎜

⎞
⎠⎟

= δ lim
Δt→0

x t + Δt( )− x t( )
Δt

⎡
⎣⎢

⎤
⎦⎥

= lim
Δt→0

δ x t + Δt( )−δ x t( )
Δt

=
d δ x( )
dt

.

 (7.63) 

 
The second term in the integrand of equation (7.62) can therefore be written as 
 

 
 

∂L
∂ x

δ xdt
t1

t2∫ = ∂L
∂ x

⋅
d δ x( )
dt

dt
t1

t2∫ .  (7.64) 

 
We need to further transform this integral. But before we do so, let us consider the 
following derivative 
 

 
 

d
dt

∂L
∂ x

⋅δ x⎡
⎣⎢

⎤
⎦⎥
= d
dt

∂L
∂ x

⎛
⎝⎜

⎞
⎠⎟ ⋅δ x +

∂L
∂ x

⋅
d δ x( )
dt

,  (7.65) 

    
since we know that the derivative of a product of two functions follows the rule 
 

 d
dt

uv( ) = du
dt

⎛
⎝⎜

⎞
⎠⎟ v + u

dv
dt

⎛
⎝⎜

⎞
⎠⎟ .  (7.66) 

 
Inserting equation (7.65) in equation (7.64) we have 
 

 

 

∂L
∂ x

δ xdt
t1

t2∫ = d
dt

∂L
∂ x

⋅δ x⎡
⎣⎢

⎤
⎦⎥
dt

t1

t2∫ − d
dt

∂L
∂ x

⎛
⎝⎜

⎞
⎠⎟ ⋅δ x

⎡
⎣⎢

⎤
⎦⎥
dt

t1

t2∫

= d ∂L
∂ x

⋅δ x⎡
⎣⎢

⎤
⎦⎥t1

t2∫ − d
dt

∂L
∂ x

⎛
⎝⎜

⎞
⎠⎟ ⋅δ x

⎡
⎣⎢

⎤
⎦⎥
dt

t1

t2∫

= ∂L
∂ x

⋅δ x⎡
⎣⎢

⎤
⎦⎥t1

t2

− d
dt

∂L
∂ x

⎛
⎝⎜

⎞
⎠⎟ ⋅δ x

⎡
⎣⎢

⎤
⎦⎥
dt

t1

t2∫ .

 (7.67) 

 
We now note, however, that the Principle of Least Action considers variations from the 
true path of motion between two fixed points x1,t1( )  and x2,t2( )  at which the variations 
δ x = 0 . That is, 
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 δ x t1( ) = δ x t2( )
= 0.

 (7.68) 

 
This is shown in Figure 4. The action is evaluated between these fixed points for all 
curves by integrating the corresponding Lagrangians; the true path of motion is the one 
for which the action is minimized. Inserting equation (7.68) in the last of equations (7.67) 
we find 
 

 
 

∂L
∂ x

δ xdt
t1

t2∫ = − d
dt

∂L
∂ x

⎛
⎝⎜

⎞
⎠⎟ ⋅δ x

⎡
⎣⎢

⎤
⎦⎥
dt

t1

t2∫ ,  (7.69) 

 
and the variation of the action δ I  becomes (from equation (7.62)) 
 

 

 

δ I x, x( ) = ∂L
∂x

− d
dt

∂L
∂ x

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
δ xdt

t1

t2∫
= 0.

 (7.70) 

 
Since equation (7.70) is valid for any variation δ x , it must be that 
 

 
 

d
dt

∂L
∂ x

⎛
⎝⎜

⎞
⎠⎟ −

∂L
∂x

= 0.  (7.71) 

 
We recognize the Lagrange Equation we derived earlier from Newton’s Second Law (see 
equation (7.20)). This equation amazingly emerges from the Principle of Least Action. It 
is to be noted that, although all the examples we previously considered assumed that the 
kinetic and potential energies were respectively only functions of the velocity and the 
position, it is not necessarily the case in general (for example, the potential energy for a 
charged particle subjected to an electromagnetic field does depend on its velocity). 
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Figure 4 – Variations  about the true path of motion (solid line) 
between to fixed points  and  at which .  


