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Chapter 1. Newton’s Laws of Motion 
 

Notes: 
• Most of the material in this chapter is taken from Young and Freedman, Chapters 

4 and 5 

1.1 Forces and Interactions 
It was Isaac Newton who first introduced the concepts of mass and force, to a large 
extent to make sense of the experimental results obtained by previous scientists. Using 
these concepts, or principles, he was able to put forth three fundamental laws of motions 
(i.e., Newton’s Laws of Motion) upon which much of classical physics rests upon1. We 
review the different types of forces encountered in Newtonian (or classical) mechanics 
before we introduce Newton’s Laws. 
 
A force is an interaction between two bodies or between a body and its environment. One 
intuitive type of force is a contact force, which often clearly involves a direct interaction 
(or contact) between the surfaces or boundaries of the bodies involved. We can further 
discriminate between different kinds of contact forces.  
 

1. A body in contact with the surface of another object will experience a force that 
is directed normal to that surface. Perhaps the simplest example of a normal 
force is that of a book resting on a table. Since the book does not fall under its 
own weight it must be that the table is exerting a force normal to its surface to 
keep the book at rest. Another example is that of a block at rest or sliding on an 
inclined plane. Even in the case where the block is sliding, there is the presence 
of a force oriented perpendicularly to the surface of the plane; if not the block 
would not be sliding but falling through the plane. 

2. The aforementioned normal force is not the only one exerted by the plane on an 
object sliding on it. There is a friction force that is oriented parallel to the 
surface of contact, but in the direction opposite to that of the sliding. Friction 
forces can be further differentiated depending on whether the object is not sliding 
(but is about to) or it is already in motion. More precisely, it takes a greater 
applied force to start the object moving (i.e., to overcome the static friction 
force) than it takes to keep it sliding (when the kinetic friction force is at work). 

3. Finally, whenever an object is pulled, through a string or a rope attached to it, it 
can be set in motion through a tension force (as long as it is stronger than the 
static friction force).    

 

                                                
1 Exceptions to this include anything involving elementary particles or atoms and 
molecules (i.e., the realm of quantum mechanics) as well as classical electromagnetism. 
The inconsistency of Newton’s Laws with Maxwell’s equations of electromagnetism led 
to the development of special relativity, by A. Einstein, which expands upon (and 
corrects) Newton’s Laws to situations involving motions nearing the speed of light. 
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Contact forces are not the only agents through which bodies interact, however. For 
example, electric and magnetic forces as well as the gravitational force act over distances 
in vacuum and therefore do not require any type of contact (or a series of contacts) to 
make themselves felt by bodies. Such forces are referred to as long-range forces.    

1.1.1 The Principle of Superposition  
Evidently more than one force or type of force can applied at once to an object. One can 
imagine that our block sliding on an inclined plane through the influence of gravity could 
at the same time be slowed downed through the use of a rope pulled by someone standing 
above the block on the plane. Such a block would then be subjected to four different 
forces: a normal force, a friction force, a tension force, and a long-range (gravitation) 
force. The question arises then as to how these forces combine when acting on a body. As 
it turns out their combined effect is additive2. That is, we can apply the principle of 
superposition and add all the forces vectorially (since forces are vectors, i.e., they have a 
magnitude and a direction). 
 
Mathematically this is expressed as follows, given a set of n  forces Fi  for  i = 1, 2,…, n  
acting on an object the resultant or net force R  felt by this object is 
 

 R = Fi
i=1

n

∑ .  (1.1) 

 
When expressed using Cartesian coordinates the forces can be broken with their 
components along the x-, y-, and z-axis  such that 
 

 

Rx = Fx,i
i=1

n

∑

Ry = Fy,i
i=1

n

∑

Rz = Fz,i
i=1

n

∑ .

 (1.2) 

 
For example, for the case of our previous sliding block we have 
 
 R = N + f +T +G,  (1.3) 
 
where N, f , T, and G  are the normal, friction, tension, and gravitational forces, 
respectively.   
 

                                                
2 Here we assume that the body can be appropriately modeled as a single point or that all 
the forces are applied at its centre of mass.  
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1.2 Newton’s Laws 
Now that we have determined the kind of forces that are susceptible to affect the 
dynamics of bodies in Newtonian mechanics, we now turn to the laws of nature that will 
allow us to quantify these interactions. Newton’s Laws are often simply stated as: 
 

I. A body remains at rest or in uniform motion unless acted upon by a net force. 
 

II. A body acted upon by a net force moves in such a manner that the time rate of 
change of the momentum equals the force. 

 
III. If two bodies exert forces on each other, these forces are equal in magnitude and 

opposite in direction. 
 
The First Law would be meaningless without the concept of force, but it conveys a 
precise meaning for the concept of a “zero net force”. This tendency for a body to remain 
in its initial state of motion (or at rest) is called inertia. One should note that according to 
the first law, there is no way to distinguish between “no net force” and “no force at all”. 
That is, the only thing that matter is the resultant. It is irrelevant whether two or three 
forces (or any number for that matter) are applied simultaneously, if they cancel each 
other out, then their effect (or lack thereof) is the same as that of having no force at all 
applied to the body; the body will remain in its initial state of uniform motion. We then 
say that the body is in equilibrium (since it is not influenced by forces). 
 
The Second Law is very explicit: Force is the time rate of change of the momentum. But 
what is the momentum p … 
 
 p ≡ mv,  (1.4) 
 
with m the mass, and v the velocity of the body. We therefore rewrite the Second Law as 
 

 
Fnet =

dp
dt

= d
dt

mv( ).
 (1.5) 

 
Although we still don't have a definition for the concept of mass, we can further 
transform equation (1.5), if we assume that it is a constant, to yield 
 

 Fnet = m
dv
dt

= ma,
 (1.6) 

 
with a ≡ dv dt  the acceleration resulting from the action of the net force on the body. 
Note that the acceleration is in the same direction as the force and proportional to it (the 
constant of proportionality being the mass). 
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The concept of mass is made clear with the Third Law, which can be rewritten as 
follows: 
 

III'. If two bodies constitute an ideal, isolated system, then the accelerations of these 
bodies are always in opposite direction, and the ratio of the magnitudes of the 
accelerations is constant. This constant ratio is the inverse ratio of the masses of 
the bodies. 

 
If we have two isolated bodies, 1 and 2, then the Third Law states that 
 
 F1 = −F2,  (1.7) 
 
and from the Second Law we have 
 

 
dp1
dt

= −
dp2
dt

, (1.8) 

 
or using the acceleration a 
 

 
m1a1 = −m2a2
m1

m2

= a2
a1
,

 (1.9) 

 
with ai = ai . If one chooses m1  as the reference or unit mass, m2 , or the mass of any 
other object, can be measured by comparison (if it is allowed to interact with m1 ) of their 
measured accelerations. Incidentally, we can use equation (1.8) to provide a different 
interpretation of Newton’s Second Law 
 

 d
dt
p1 + p2( ) = 0  (1.10) 

 
or 
 
  p1 + p2 = constant.  (1.11) 
   
The momentum is conserved in the interaction of two isolated particles. This is a special 
case of the conservation of linear momentum, which is a concept that we will discuss at 
length later on.  
 
One should note that the Third Law is not a general law of nature. It applies when dealing 
with central forces (e.g., gravitation (in the non-relativistic limit), electrostatic, etc.), but 
not necessarily to other types of forces (e.g., velocity-dependent forces such as between 
to moving electric charges). But such considerations are outside the scope of our studies.  
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1.2.1 Inertial Frames of Reference 
The concept of an inertial frame of reference is central to the application of Newton’s 
Laws. An inertial frame is one that is in a uniform and non-accelerating state of motion. 
In fact, Newton’s Laws are only applicable to such frame of references. Conversely, 
Newton’s First Law can be used to define what an inertial frame is.  
 
For example, suppose that a body that is not subjected to any net force is in a dynamical 
state that is in accordance with the First Law, as seen by an observer at rest in a given 
frame of reference. One would therefore define this frame as being inertial (for that 
reason Newton’s First Law is often call the law of inertia). Now if a second observer at 
rest in another frame sees that the body is not moving in a uniform motion, then this 
second frame of reference cannot be inertial. This may due, for example, to the fact that 
this frame of reference is itself accelerating in some fashion, which would account for the 
apparent non-uniform motion of the observed body. It is often stated that Newton’s Laws 
are invariant when moving from one inertial frame to another. This can be better 
understood mathematically. 
 
If a particle of mass m  has a velocity ′u  relative to an observer who is at rest an inertial 
frame ′K , while this frame is moving with at a constant velocity v  as seen by another 
observer at rest in another inertial frame K  (note the necessity of having a constant 
relative velocity v ), then we would expect that the velocity u  of the particle as measured 
in K  to be 
 
 u = ′u + v.  (1.12) 
  
That is, it would seem reasonable to expect that velocities should be added together when 
transforming from one inertial frame to another3 (such a transformation is called a 
Galilean transformation). If we write the mathematical form of the Second Law in 
frame K  we have 
 

 
F = m du

dt

= m d ′u + v( )
dt

,
 (1.13) 

 
but since v  is constant 
 

 F = m d ′u
dt

= ′F .  (1.14) 

 

                                                
3 The development of special relativity has showed that this law for the composition of 
velocities is approximate and only valid when these are small compared to the speed of 
light. 
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The result expressed through equation (1.14) is a statement of the invariance (or 
covariance) of Newton’s Second Law. More precisely, the Second Law retains the same 
mathematical form no matter which inertial frame is used to express it, as long as 
velocities transform according to the simple addition rule stated in equation (1.12). 

1.2.2 Exercises 
1. (Prob. 4.8 in Young and Freedman.) You walk into an elevator, step onto a scale, and 
push the “up” button. You also recall that your normal weight is 625 N. Start answering 
each the following questions by drawing a free-body diagram.  
 

a) If the elevator has an acceleration of magnitude of 2.50 m/s2 , what does the scale 
read? 

b) If you start holding a 3.85-kg package by a light vertical string, what will be the 
tension in the string once the elevator begins accelerating? 

 
Solution. 
 

a) The elevator and everything in it are accelerating upward, so we apply Newton’s 
Second Law in the vertical direction only. Your mass is determined with 
m = w g = 625 N 9.8 N kg−1 = 63.8 kg , but you and the package have the same 
acceleration as the elevator. Taking +y  as the upward direction we use the free-
body diagram of Figure 1a), where n  is the scale reading, we calculate 
 

 Fy∑ = n −w
= ma

 (1.15) 

   
  or 
 

 
n = w +ma
= 625 N + 63.8 kg ⋅2.50 m/s2

= 784 N.
 (1.16) 
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 4.8.  IDENTIFY:   The elevator and everything in it are accelerating upward, so we apply Newton’s second law 
in the vertical direction. 
SET UP:   Your mass is 63 8 kgm w/g= = . .  Both you and the package have the same acceleration as the 
elevator. Take y+  to be upward, in the direction of the acceleration of the elevator, and apply 

.y yF ma¦ =  

EXECUTE:   (a) Your free-body diagram is shown in Figure 4.8a, where n is the scale reading. y yF ma¦ =  

gives .n w ma− =  Solving for n gives 2625 N (63 8 kg)(2 50 m/s ) 784 N.n w ma= + = + . . =  
(b) The free-body diagram for the package is given in Figure 4.8b. y yF ma¦ =  gives ,T w ma− =  so 

2 2(3 85 kg)(9 80 m/s 2 50 m/s ) 47 4 N.T w ma= + = . . + . = .  
 

 

Figure 4.8 
 

EVALUATE:   The objects accelerate upward so for each of them the upward force is greater than the 
downward force. 

 4.9. IDENTIFY:   Apply m¦ =F a
G G  to the box. 

SET UP:   Let x+  be the direction of the force and acceleration. 48 0 N.xF¦ = .  

EXECUTE:   x xF ma¦ =  gives 2
48 0 N 16 0 kg.

3 00 m/s
Σ .= = = .

.
x

x

Fm
a

 

EVALUATE:   The vertical forces sum to zero and there is no motion in that direction. 
 4.10. IDENTIFY:   Use the information about the motion to find the acceleration and then use x xF ma¦ =  to 

calculate m. 
SET UP:   Let x+  be the direction of the force. 80 0 N.xF¦ = .  

EXECUTE:   (a) 0 11 0 m,x x− = .  5 00 s,t = .  0 0.xv =  21
0 0 2x xx x v t a t− = +  gives 

20
2 2

2( ) 2(11 0 m) 0 880 m/s .
(5 00 s)x

x xa
t
− .= = = .

.
 2

80.0 N 90.9 kg.
0.880 m/s

Σ= = =x

x

Fm
a

 

(b) 0xa =  and xv  is constant. After the first 5.0 s, 2
0 (0 880 m/s ) (5 00 s) 4 40 m/s.x x xv v a t= + = . . = .  

21
0 0 2  (4 40 m/s)(5 00 s) 22 0 m.x xx x v t a t− = + = . . = .  

EVALUATE:   The mass determines the amount of acceleration produced by a given force. The block moves 
farther in the second 5.00 s than in the first 5.00 s. 

 4.11. IDENTIFY and SET UP:   Use Newton’s second law in component form (Eq. 4.8) to calculate the 
acceleration produced by the force. Use constant acceleration equations to calculate the effect of the 
acceleration on the motion. 
EXECUTE:   (a) During this time interval the acceleration is constant and equal to 

20 250 N 1 562 m/s
0 160 

x
x
Fa
m kg

.= = = .
.

 

We can use the constant acceleration kinematic equations from Chapter 2. 
2 2 21 1

0 0 2 20 (1 562 m/s )(2 00 s) ,x xx x v t a t− = + = + . .  
so the puck is at 3 12 m.x = .  

2
0 0 (1 562 m/s )(2 00 s) 3 12 m/s.x x xv v a t= + = + . . = .  

Figure 1 – Free-body diagram.  
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b) Referring to the free-body diagram of Figure 1b) we write 
 

 
Fy∑ = T −wp

= mpa
 (1.17) 

 
  or 

  

 

T = wp +mpa

= 3.85 kg ⋅ 9.80 m/s2 + 2.50 m/s2( )
= 47.4 N.

 (1.18) 

 
2. (Prob. 4.57 in Young and Freedman.) Two boxes, A and B, are connected to each end 
of a light rope (see Figure 2). A constant upward force of 80.0 N is applied to box A. 
Starting from rest, box B descends 12.0 m in 4.00 s. The tension in the rope connecting 
the two boxes is 36.0 N. What are the masses of the two boxes? 
 
Solution.   
 
The system is accelerating, so we apply Newton’s second law to each box and can use the 
constant acceleration kinematics for formulas to find the acceleration. We now that  
 

 a = d
2x
dt 2

 (1.19) 

 
and therefore 
 

 x t( ) = a λ( )dλ
−∞

τ

∫⎡⎣⎢
⎤
⎦⎥
dτ

−∞

t

∫  (1.20) 

 
 
 
 
 
 
 
 
 
 

 
In one dimension (along the y-axis ) when the acceleration is constant equation (1.20) 
becomes 

 

Figure 2 
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 y = y0 + v0yt +
1
2
ayt

2,  (1.21) 

 
where y0  and v0y  are, respectively, the position and velocity at t = 0 . We therefore have 
for box B ( v0y = 0 ) 

 

 

ay =
2 y − y0( )

t2

=
2 ⋅ −12.0 m( )

16 s2

= −1.5 m/s2.

 (1.22) 

 
Alternatively we can write (defining g > 0 ) 

 
 mBay = T −mBg,  (1.23) 
 
or  

 

 

mB =
T

g + ay

= 36.0 N
9.8 −1.5( )m/s2

= 4.34 kg.

 (1.24) 

 
And for box A 

 
 mAay = F −T −mAg,  (1.25) 
 
or 

 

 

mA =
F −T
g + ay

=
80.0 − 36.0( )  N
9.8 −1.5( )m/s2

= 5.30 kg.

 (1.26) 

 
Note that even though the boxes have the same acceleration they experience different 
forces because they have different masses. 
 
 
 



 - 9 - 

3. (Prob. 5.10 in Young and Freedman.) In Figure 3 the weight w = 60.0 N .  
 

a) What is the tension in the diagonal string? 
b) Find the magnitudes of the horizontal forces F1  and F2  that must be applied to 

hold the system in the position shown. 
 
Solution. 
 
Newton’s first law will suffice for this problem as the system is in equilibrium. We can 
apply it to the hanging weight and to each knot. The tension force at each end of a string 
is the same. 
 

a) Let the tensions in the three strings be T , ′T ,  and ′′T , as shown in Figure 3. The 
free-body diagram for the block is 

 
We can therefore write 
 

 
Fy∑ = ′T −w

= 0,
 (1.27) 

 
  or ′T = w = 60.0 N . The free-body diagram for the lower knot is 
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 5.9. IDENTIFY:   Since the velocity is constant, apply Newton’s first law to the piano. The push applied by the 
man must oppose the component of gravity down the incline. 
SET UP:   The free-body diagrams for the two cases are shown in Figures 5.9a and b. 

G
F  is the force applied 

by the man. Use the coordinates shown in the figure. 
EXECUTE:   (a) 0Σ =xF  gives sin11 0 0F w− . ° =  and 2(180 kg)(9 80 m/s )sin11 0 337 N.F = . . ° =  

(b) 0Σ =yF  gives cos11 0 0n w. ° − =  and .
cos11 0
wn =

. °
 0Σ =xF  gives sin11 0 0F n− . ° =  and 

sin11 0 tan11 0 343 N.
cos11 0
wF w§ ·= . ° = . ° =¨ ¸. °© ¹

 
 

 
Figure 5.9a, b 

 

 5.10. IDENTIFY:   Apply Newton’s first law to the hanging weight and to each knot. The tension force at each 
end of a string is the same. 
(a) Let the tensions in the three strings be T, ,T ′  and ,T ′′  as shown in Figure 5.10a. 

 

 
Figure 5.10a 

 

SET UP:   The free-body diagram for the block is given in Figure 5.10b. 
 

 EXECUTE:    
0Σ =yF  

0T w′ − =  
60 0 NT w′ = = .  

Figure 5.10b   
 

Figure 3 – System for Problem 3 (left) and free-body 
diagram (right). 
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Figure 5.10a 

 

SET UP:   The free-body diagram for the block is given in Figure 5.10b. 
 

 EXECUTE:    
0Σ =yF  

0T w′ − =  
60 0 NT w′ = = .  

Figure 5.10b   
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 And we have 
 

 
 

Fy∑ = T sin 45( )− ′T

= 0,
 (1.28) 

 
  which yields T = 2 ′T = 84.9 N . 

b) We now apply Newton’s first law in the x  direction. For the lower knot we have 
from the above figure 

 
 

Fx∑ = T cos 45( )− F2
= 0,

 (1.29) 

 
or F2 = T 2 = 60.0 N . For the upper knot we have the following free-body 
diagram 

 With a similar calculation we find that F1 = F2 = 60.0 N . Finally, we also see that  
 

 
 

′′T = T sin 45( )
= 60.0 N.

 (1.30) 

 
These last two results could have been easily predicted by treating the whole 
system as a single object and studying the corresponding force diagram  
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SET UP:   The free-body diagram for the lower knot is given in Figure 5.10c. 
 

 EXECUTE:    
0yFΣ =  

sin 45 0T T° − ′ =  
60 0 N 84 9 N

sin 45 sin 45
TT ′ .= = = .

° °
 

Figure 5.10c   
 

(b) Apply 0Σ =xF  to the force diagram for the lower knot: 
0xFΣ =  

2 cos45 (84 9 N)cos45 60 0 N= ° = . ° = .F T  
SET UP:   The free-body diagram for the upper knot is given in Figure 5.10d. 

 

 EXECUTE:    
0xFΣ =  

1cos45 0T F° − =  

1 (84 9 N)cos45= . °F  

1 60 0 NF = .  

Figure 5.10d   
 

Note that 1 2.F F=  
EVALUATE:   Applying 0Σ =yF  to the upper knot gives sin 45 60 0 N′′ = ° = . = .T T w  If we treat the whole 
system as a single object, the force diagram is given in Figure 5.10e. 

 

 0xFΣ =  gives 2 1,F F=  which checks 
0yFΣ =  gives ,T w′′ =  which checks 

Figure 5.10e   
 

 5.11. IDENTIFY:   We apply Newton’s second law to the rocket and the astronaut in the rocket. A constant force 
means we have constant acceleration, so we can use the standard kinematics equations. 
SET UP:   The free-body diagrams for the rocket (weight rw ) and astronaut (weight w) are given in  
Figures 5.11a and 5.11b. TF  is the thrust and n is the normal force the rocket exerts on the astronaut. The 
speed of sound is 331 m/s.  We use y yF maΣ =  and 0v v at= + .  

 

 

Figure 5.11 
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1.3 Friction Forces Revisited 
We have already briefly discussed friction forces. We now seek to quantify them in 
relation to another contact force, i.e., the normal force. The nature of the friction force is 
very complicated. At its basis, it is a microscopic phenomenon involving the making and 
breaking of molecular bonds between the two contacting surfaces. It should therefore not 
be expected that any friction force is constant over time as an object is sliding on a 
surface (obviously we are referring here to the kinetic friction force). This is because the 
number of bonds created or destroyed will vary depending on the roughness of the 
surfaces at different position or the inhomogeneous presence of alien matter between 
them (e.g., dirt or oil). It follows that our assigning of a single, constant force for a given 
problem is an approximation, i.e., it must represent some sort of macroscopic average 
that results from the detailed microphysical phenomena that take place. 

1.3.1 Kinetic Friction 
It is found experimentally that the kinetic friction force is proportional to the normal 
force of contact. If fk  and n  represent these two forces, then they can be related through 
 
 fk = µk n ,  (1.31) 
 
where µk  is the coefficient of kinetic friction. The norms (  ) in equation (1.31) are 
not used and this relation will commonly be written as 
 
 fk = µkn. (1.32) 
    
It should be noted that neither of equations (1.31) or (1.32) are vectorial in nature, since 
fk  and n  are perpendicular to one another.  

1.3.2 Static Friction 
As was stated earlier, friction does not imply motion. In fact, it is usually the case that 
friction is stronger when an objet is immobile. More precisely, the static friction force fs  
on a body is normally stronger than the kinetic friction that settles in once it starts 
moving. We know from experiments that the maximum magnitude that the static friction 
force can take, fs( )max , is proportional to the normal contact force. It follows that 
 
 fs ≤ µsn,  (1.33) 
 
where µs  is the coefficient of static friction. Experimental measurements show that 
typical values range (approximately) from 0.05 < µs <1  (but it can be greater than unity), 
while µk < µs  in general. 
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1.3.3  Rolling Friction 
Interestingly, although the less friction there is between a body on a surface the better the 
former slides on the latter, the same is not true for rolling motions. That is, a good rolling 
action depends on the presence of some friction; rolling would not take place in the limit 
where there is no friction. On the other hand, rolling friction and its corresponding 
coefficient or rolling friction µr , defined as the ratio of the force needed for constant 
speed to the normal force exerted by the surface over which the rolling motion takes 
place, is significantly lower than the coefficient of kinetic friction µk . Typical values for 
µr  range from 10−3  to 10−2 . If you have to move a heavy object, you may do well to put 
wheels under it …  

1.3.4 Fluid Resistance and Friction 
The definition of a fluid can encompass a whole variety of agent. A fluid could be loosely 
defined as a substance (gas or liquid) that deforms under shear stress and easily yields to 
external pressure. Some examples include the atmosphere (air), oils, or the rarefied 
agglomerations of matter (i.e., gases made of molecules and dust) in the interstellar 
medium.  
 
If we take the case of an object in motion in the atmosphere, one could model this (solid) 
body-fluid interaction by considering the many collisions involving the molecules that 
make the atmosphere on the surface of the body. These interactions will transfer linear 
momentum between the colliding partners and affect the motion and kinetics of the body 
as it progresses on its path through the fluid. We have yet to study collisions in detail but 
the motion of an object within a fluid can nonetheless be determined experimentally.  
 
For objects moving a low speed relative to the surrounding fluid the friction, or drag 
force resulting from the numerous body-fluid collisions is found to be proportional to the 
speed v  
 
 f = kv,  (1.34) 
 
with k  the proportionality constant. This friction force is directed in opposition to the 
direction of motion. For larger objects moving at higher speeds (on the order of, say, 10 
m/s) the drag force is proportional to the square of the velocity 
 
 f = Dv2.  (1.35) 
 
Newton’s Second Law can be used to gain more insight, so let us consider an object of 
mass m  sinking into a fluid under the effect of gravity. We therefore find 
 
 mg − f = ma.  (1.36) 
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For motions occurring at low speed where equation (1.34) applies the solutions to 
equation (1.36) for the velocity v = dy dt( )  and the position y  as a function of time can 
be readily shown to be 
 

 
v t( ) = mg

k
1− e−kt m( )

y t( ) = mg
k

t − m
k
1− e−kt m( )⎡

⎣⎢
⎤
⎦⎥
,
 (1.37) 

 
respectively, for t > 0 . The acceleration is given by (also when t > 0 )  
 

 
a = dv

dt
= ge−kt m .

 (1.38) 

 
We find that the velocity, which we assume to be v = 0  at t = 0 , eventually reaches a 
maximum, terminal velocity when t = ∞  (when a = 0 , obviously)    
 

 vt =
mg
k
.  (1.39) 

 
Since this terminal velocity is constant it could have easily been determined with 
equation (1.36) when equilibrium is reached (i.e., when a = 0 ). We would then have that 
 
 mg − kvt = 0,  (1.40) 
 
from which we recover equation (1.39). The non-linear nature of the friction force at 
higher speed (i.e., equation (1.35)) renders it impossible to calculate solutions similar to 
those presented in equations (1.37). But we can still consider equilibrium conditions to 
determine a terminal velocity 
 

 vt =
mg
D
. (1.41) 

 
The existence of a terminal velocity is entirely due to the fact that the friction force scales 
with the velocity of the object. This is to be contrasted with the case of contact friction 
forces, which are independent of the velocity.  

1.4 Circular Motions 
Consider an object that is initially moving with a uniform, rectilinear motion at velocity 
v . One might ask what force must be applied to the object such that it enters into a 
circular orbit of radius R  at the same speed. Referring to Figure 4 we see that over an 
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infinitesimal time dt  the object must “fall” a (radial) distance dr  towards the centre of 
the circular orbit. 
 
Again referring to the figure, we can write 
 
 dr = vdt( )dθ  (1.42) 
 
and 
 
 vdt = Rdθ .  (1.43) 
 
We will now define two quantities: the angular velocity  
 

 
ω ≡ dθ

dt

= v
R

 (1.44) 

 
and the radial acceleration that the body must have in order to get into the circular orbit 
 

 

arad ≡
dvrad
dt

= 1
dt

dr
dt

⎛
⎝⎜

⎞
⎠⎟

= v dθ
dt

 (1.45) 

 
which when using equation (1.44) becomes 

dr

θ

dθ

R
R

v dt
d

Figure 4 – Motion of a body over an infinitesimal amount of 
time . To go from a rectilinear to a circular motion of radius 

, its linear path must be modified by an amount . 
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 arad =
v2

R
=ω 2R.

 (1.46) 

 
This radial acceleration is more commonly known as the centripetal acceleration. 
Because an object moving in uniform motion will remain as such unless subjected to a 
non-zero net force (Newton’s First Law), circular motion (with a constant orbital 
velocity) will only be realized if a net force oriented radially toward the centre of the 
orbit act on the object to induce a centripetal acceleration as defined in equation (1.46). 
This net force must enter Newton’s Second Law when dealing with problems involving 
circular motions. 

1.4.1 Exercises 
4. (Prob. 5.42 in Young and Freedman) A small car with a mass of 0.8 kg travels at 
constant speed on the inside of a track that is a vertical circle with a radius of 5.0 m. If the 
normal force exerted by the track on the car when it is at the top of the track is 6.0 N, 
what is the normal force on the car when it is at the bottom of the track? What is the 
speed of the car? 
 
Solution. 
 
Two forces are acting on the car, gravity and the normal force. At the top, both forces ���are 
toward the center of the circle, so Newton’s second law gives 
 
 mg + nB = marad .  (1.47) 
 
At the bottom, gravity is downward but the normal force is upward, so 
 
 nA −mg = marad .  (1.48) 
 
Solving equation (1.47) for the acceleration 
 

 

arad = g +
nB
m

= 9.8 m/s+ 6N
0.8 kg

= 17.3 m/s2.

 (1.49) 

 
We can now determine that 
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nA = m g + arad( )
= 0.8 kg 9.8 +17.3( )  m/s2

= 21.7 N.
 (1.50) 

 
The normal force at the bottom is greater than at the top because it must balance the 
weight in addition to accelerate the car toward the center of its track. Finally, the speed of 
the car is found to be (with equation (1.46) 
 

 

v = aradR

= 17.3 m/s2 ⋅5 m
= 9.3 m/s.

 (1.51) 

 
 
 
 


