Chapter 1. Newton’s Laws of Motion

Notes:

¥ Most of the material in this chaptertskenfrom Young and Freedman, Chapters
4and 5

1.1 Forces and Interactions

It was Isaac Newton who first introduced the conceptmads and force, to a large
extentto makesenseof the experimentakesultsobtainedby previous scientists. Using
these concepts, or principles, he was able to put forth three fundamental laws of motions
(i.e., Newton’s Laws of Motion) upon which muctof classical physics rests ugdoiwe

review the differentypes of forces encountered Newtonian (or classical) mechanics

before we introduce NewtonOs Laws.

A force is an interaction between two bodiebetweera body and its environmer®ne
intuitive type of force is @ontact force, which often clearly imolvesa direct interaction
(or contact)betweenthe surfaces or boundaries of the bodies involwa can further
discriminatebetween different kinds of contact forces.

1. A body in contact with the surface of another object will experience a force that
is directed normal to that surface. Perhaps the simplest examplaowinal
force is that of a book resting on a table. Since the book does not fall under its
own weight it must be that the table is exerting a force normal to its surface to
keep the book at rest. Another example is that of a block at rest or sliding on an
inclined plare. Even in the case where the block is sliditngreis the presence
of a force oriented perpendicularly to the surface of the piam®t the block
would not be sliding but falling through the plane.

2. The aforementioned normal force is not the only exerted by thglaneon an
object sliding on it. There is #riction force that is oriented parallel to the
surface of contact, but in the directioppositeto that of the sliding. Fction
forces canbe further differentiated depending on whether theeobjs not sliding
(but is about to) or it is already in motion. More precisely, it takes a greater
applied force tostart theobject moving(i.e., to overcome thetatic friction
force) than it takes to keep it slidin@vhen thekinetic friction force is at work).

3. Finally, whenever an object is pulled, through a string or a rope attached to it, it
can beset in motion through gension force (as long as it is stronger than the
static friction force).

! Exceptions to this include anything involving elementary particles or atoms and
molecules (i.e., the realm of quantum mechanics) as well as classical electromagnetism.
The inconsistecy of NewtonOs Laws with MaxwellOs equations of electromagnetism led
to the development of special relativity, by A. Einstein, which expands upon (and
corrects) NewtonOs Laws to situations involving motions nearing the speed of light.
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Contact forces araot the only agents through which bodies interact, howeker.
example electric and magnetic forces as welltlasgravitatioral forceactover distances
in vacuumand therefore do not require any type of contacta(series otontact$ to
make themselvefelt by bodiesSuch forces are referred tolaag-range forces.

1.1.1 The Principle of Superposition

Evidently more than one force or type of force can applied at once to an @bjeatan
imagine that our block sliding on an inclined plane throtighinfluence of gravity could

at the same time be slowed downed through the use of a rope pulled by someone standing
above the block on the plan8uch a block would then be subjected to four different
forces: a normal force, a friction force, a tension fpaed a longange (gravitation)
force.The question arises then as to how these forces combine when acting onAssbody.

it turns out their combined effect is addifivdhat is,we can apply therinciple of
superposition and add all the forces vectoha(since forces are vectors, i.e., they have a
magnitude and a direction).

Mathematically this is expressed as follows, given a set ffrcesF, for i =1,2,...,n
acting on an objec¢heresultant or net force R felt by this object is

R=YF. (1.1)
i=1

When expressed using Cartesian coordinates the forces can be broken with their
components along the-, y-, and z-axis such that

Rx = ZEc,i
i=1
Ry = ZF;, (12)
R =)F,.
i=1
For examplefor the case obur previous slidingolock we have

R=N+f+T+G, (1.3)

where N,f,T,and G are the normal, friction, tension, and gravitational forces,
respectively.

2 Here we assumidat the body can be appropriately modeled as a single point or that all
the forces are applied at its centre of mass.
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1.2 Newton’s Laws

Now that we have determined the kind of forces that are susceptible to affect the
dynamics of bodies in Newtonian mechanics, we now turn to the laws of nature that will
allow us to quantify these interactioddewtonOs Laws aoftensimply stated as:

I. A body remains at rest or in uniform motion unless acted upombyfarce.

[I. A body acted upon by et force moves in such a manner that the time rate of
change of the momentum equals the force.

lll. If two bodies exert forces on each other, these forcesqual in magnitude and
opposite in direction

The First Lawwould be mearngless without the concept of forcbut it conveys a

precise meaning for the conceptaddzermetforceOThis tendency for a body to remain

in its initial state of motion (or at rest) is callatkrtia. One should note that according to

the first law, there is no way to distinguish between Ono net force® and Ono force at allO.
That is, the only thing that matter is the resultants lirrelevant whethetwo or three

forces (or any number for that matterdre applied simultaneously, if they cancel each
other out, then their effect (or lack thereof) is the same as that of having no force at all
applied to the bodythe body will remain in it$nitial state ofuniform motion.We then

say that the body is kquilibrium (since it is not influenced biprces).

The Second Law is very explicit: Force is the time rate of change afé¢hentum. But
what is the momentup E

p! mv, 1.9
with mthe mass, andthe velocity of thébody. We thereforeewrite the Second Law as

_dp
net dt

(15)
_d
= —dt(mv).

Although we still don't have adefinition for the concept of massve can further
transform equatiofiL.5), if we assume that it is a constantyield

=m
net dt (1.6)

with a! dv/dt the acceleration resulting from the action of the net force on the body.

Note that the acceleratias in the same direction as the force and proportional to it (the
constant of proportionality being the mass).
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The concept of mass imade clear with the Third Law, which can be rewritten as
follows:

lII'. If two bodies constitute an ideal, isolated systdran the accelerations of these
bodies are always in opposite direction, and the ratio of the magnitudes of the
accelerations is constant. This constant ratio is the inverse ratio of the masses of
the bodies.

If we have two isolated bodies, 1 and 2, tHenThird Law states that

Fl = _F27 (17)
and from the Second Lawe have
ap, _ _@, (1.8)
dt dt
or using the acceleratian
ma, =! ma,
m_a 1.9
m, &

with a =|a|. If one choosesn, as the reference or unit mass, , or the mass of any
other object, can be measured by comparisahi§fallowed to interact withn,) of their

measured acceleratimnincidentally, we can use equati¢h8) to provide a different
interpretation of NewtonOs Second Law

d
E(p' +p2):0 (1.10)
or
p, +p, = condant. (.11

The momentum is conserved in the interaction of two isolated particles. This is a special
case of theonservation of linear momentum, which is a concept that we will discuss at
length later on

One should note that the Third Law is not a general law of nature. It applies when dealing
with central forces (e.g., gravitation (in the nerelativistic limit), electrostatic, etc.), but

not necessarily to other types of forces (e.g., velagfyendenforces such as between

to moving electric chargesut such considerations are outside the scope of our studies.



1.2.1 Inertial Frames of Reference

The concept of aimertial frame of reference is central to the application of NewtonOs
Laws. An inertial framas one that isn a uniform and nofaccelerating state of motion.

In fact, NewtonOs Laws are only applicable to such frame of references. Conversely,
NewtonOs First Lavan beused to define what an inertial franse

For example, suppose that a bodyt ikanot subjected to any net force is in a dynamical
statethat is in accordance with the Firshw, as seen by an observer at rest in a given
frame of reference. One would therefore define this frambeayg inertial (for that
reason NewtonOs First Liswoften call thdaw of inertia). Now if a second observer at
rest in another frame sees that the body is not moving in a uniform motion, ihen th
second frame of reference camibe inertial. This may due, for example, to the fact that
this frame of refrence istself accelerating in some fashiowhich would account for the
apparent nomniform motion of the observed badyis often stated that NewtonOs Laws
are invariant when moving from one inertial frame to another. This can be better
understood mthematically.

If a particle of massn has a velocityu! relative to an observer who is at rest an inertial
frame K!, while this frame is moving with at a constant veloaityas seen by another
observer at rest in another inertial frarke (note the necessity of having a constant
relative velocityv), then we would expect that the velocityof the particle as measured
in K to be

u=ul+v. (1.12

That is, it would seem reasonable to expect that velocities should betagd#e:when
transforming fron one inertial frame to anotfesuch a transformation is called a
Galilean transformation). If we write the mathematical form ofé Second Law in
frame K we have

1.13
_d(ul+v) 113
m——-=,
dt
butsincev is constant

I
F=m_p (1.14)

dt

® The development of special relativity has showed that this law for the composition of
velocities is approximate and only valid wheedl are small compared to the speed of
light.



The result expressed through equatidnld) is a statement of thévariance (or
covariancg of NewtonOs Second Law. More precisely, the Second Law rétaisarhe
mathematical form no matter which inertial frame is used to express it, as long as
velocities transform according to the simple addition rule stated in eqatl@h

1.2.2 Exercises

1. (Prob. 4.8 in Young and Freedmjaviou walk into an elevator, step onto a scale, and
push the OupO button. You also recall that your normal weight is 625 N. Start answering
each the following questions by drawing a flemly diagram.

a) If the elevator has an acceleration of magnitud&.60 m/s*, what does the scale
read?

b) If you start holding a 3.8kg package by a light vertical string, what will be the
tension in the string once the elevator begins accelerating?

Solution.

a) The elevator and everything in it are accelerating upward, so we apply Newton’s
Second Law in the vertical direction only. Your mass is determined with

m=w/g=625N/9.8 Nkg'' =63.8kg, but you and the package have the same
acceleration as the elevator. Taking +y as the upward direction we use the free-
body diagram of Figurela), where n is the scale reading, we calculate

2R =n-w (1.15)
=MmMa
or
n=w+ma
=625 N+63.8 kg-2.50 m/s’ (1.16)
=784 N.

Figure 1 BDFreebody diagram.



b) Referring to the fre®ody diagram oFigurelb) we write

ZFy:T—wp

(1.17)
= mpa
or
T=w +ma
=3.85 kg-(9.80 m/s* +2.50 m/s” ) (1.18)
=474 N.

2. (Prob.4.57 in Young and Freedmariwo boxesA andB, are connected to each end

of a light rope (se€&igure?2). A constant upward force of 80.0 N is applied to Box
Starting from restbox B descends 12.0 m in 4.00 s. The tension in the rope connecting
the two boxes is 36.0 N. What are the masses of the two boxes?

Solution.

The system is accelerating, so we lggpewtonOs second law to each box and can use the
constant acceleration kinematics for formulas to find the accelersfi®@mow that

a= 3—2‘ (.19
and therefore
qﬁﬂ%@%wyuy$ (1.20)

Figure 2

In one dimension (along thg-axis) when the acceleration is constant equafib80)
becomes



Y=Y, +v0yt+%ayt2, (1.22)

wherey, andv,, are, respectivelythe positionand velocityat t = 0. We therefore have
for boxB (Vv,, =0)

2()’! )’o)

t2
_2"(112.0 m)
- 16¢
=115m/s.

ay—

(1.22)

Alternatively we can writédefining g > 0)
mga, =T —mgg, (2.23

or

T
g+a,
36.0N
= 1.24
(9.8! 1.5)m/s’ (1249

=4.34kg.

mpyg =

And for boxA
mua,=F-T-m,g, (1.25
or

FI T

“oia
_(80.0! 36.0) N
~ (9.8! 1.5)m/s? (120

=5.30kg.

My

Note that even thoughée¢ boxes have the same acceleratloy experience different
forces because they have different masses.



90.0°}

— F,

Figure 3 BDSystem for Problem 3 (left) and fréedy
diagram (right).

3. (Prob. 5.10 in Young and Freednjdn Figure3 the weightw=60.0N .

a) What is the tension in the diagonal string?
b) Find the magnitudes of the horizontal fordésandF, that must be applied to

hold the system in thgosition shown.
Solution.
NewtonOs first law will suffice for this problem as the system is in equilibrium. We can
apply it b the hanging weight and to each knot. The tension force at each end of a string

is the same.

a) Let the tensions in the three strings be T, T!, and T!, as shown in Figure 3. The
free-body diagram for the block is

We can therefore write

25 =g'—w (1.27)

or TI=w=60.0N. The free-body diagram for the lower knot is



T cos45"

And we have

b)

| F,=Tsin(45)" T#
:O,

(1.29)

which yieldsT =+/2T!=849 N .

We now apply NewtonOs first law in tkedirection. For the lower knot we have
from the above figure

| F =Tcog45)" F,
:O’

(1.29)

or F, :T/x/§=60.0N. For the upper knot we have the following fieady
diagram

Tsin45°F - — =N o

With a similar calculation we find thd = F, =60.0N . Finally, we also see that

TU=Tsin(45)
=60.0N.

(1.30)

These last two results could have been easily predicteglediyng the whole
system as a single object and studying the corresponding force diagram
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1.3 Friction Forces Revisited

We have already briefly discussed friction forces. We now seek to quantify them in
relation to another contact force, i.e., the normal fofbe. nature of the friction force is
very complicated. At its basis, it is a microscopic phenomenon involving the making and
breaking of molecular bonds between the twatactingsurfaceslit should therefore not

be expected that any friction force is stant over time as an object is sliding on a
surface (obviously we are referrihgreto the kinetic friction force). This is because the
number of bonds created or destroyed will vary depending on the roughness of the
surfaces at different position or tithomogeneoupresence of alien matter between
them (e.g., dirt or oil)lt follows that our assigning of a single, constant force for a given
problem is an approximation, i.e., it must represent some sort of roapiosverage

that results from the detailed microphysical phenomena that take place.

1.3.1 Kinetic Friction

It is found experimently that the kinetic friction force is proportional to the normal
force of contact. Iff, and n represent these two forces, then they can be related through

(1.31)

b

‘fk‘::uk|n

where i, is thecoefficient of kinetic friction. The norms |( |) in equation(1.31) are
not used and this relation wdbmmonlybewritten as

f. = un. (1.32

It should be noted that neither of equati¢h81) or (1.32) are vectorial in nature, since
f, andn are perpendicular to one another.

1.3.2 Static Friction
As was stated earlier, friction does not imply motion. In fact, it is usually the case that
friction is stronger when an objet is immobile. More precisely, the static friction force

on a body is normally stronger than the kinetic friction that seitiesnce it starts
moving.We know from experiments that the maximum magnitude that the static friction

force can take( fs)max, is proportional to the normal contact force. It follows that
f 1 un, (1.33

where u, is the coefficient of static friction. Experimental measurements show that
typical values range (approximately) frdd05 < u, <1 (but it can be greater than unity),
while u, < u, in general
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1.3.3 Rolling Friction

Interestingly althoughthe less friction there is between a body on a surface the better t
former slides on the latteheé same is not true for rolling mot®That is, a good rolling
action depends on the presence of sdrnation; rolling would not take place in the limit
where there is ndriction. On the other handolling friction and its corresponding
coefficient or rolling friction u , defined aghe ratio of the force needed for constant

spee to the normal force exerted by the surface over which the rolling motion takes
place is significantly lower than the coefficient of kinetic frictign . Typical values for

i range from10~ to 107°. If you have to move heavy object, you may do well to put
wheels under it E

1.3.4 Fluid Resistance and Friction

The definition of a fluid caencompasa whole variety of agenA fluid could be loosely
defined asa substancégas or liquid)that deforns under shear stress and easily st
external pressureSome examples include the atmosphere (air), oils, or the rarefied
agglomerations of matter (i.e., gases made of molecules and dust) in theeliaters
medium.

If we take the case of an object in motion in the atmospbasegould model thigsolid)
bodyfluid interactionby considering the many collisions involving thelecules that
make the atmosphere on the surface of the body. These fittlesawill transfer linear
momentum between the colliding partners and affect the motion and kinetics of the body
as it progresses on its path through the fluid. We have yet to study collisions in detail but
the motion of a object within dluid can nondteless be determined experimentally.

For objects moving a low speedlative to the surrounding fluithe friction or drag
force resulting from the numerous bodlyid collisions is found to be proportional to the
speedv

f=kv, (1.34)
with k the proportionality constanthis friction force is directed in opposition to the

direction of motionFor larger objects moving at higher speéats the order of, say, 10
m/s) the drag force is proportional to the square of the velocity

f =DV (1.35

NewtonOs Second Law can be used to gain more irsiglett us consider an object of
massm sinking into a fluid under the effect of gravity. We therefore find

mg! f =ma (1.36)

-12-



For motions occurring at low speed where equafib84) applies the solutions to
equation(1.36) for the velocityv(: dy/dt) and the positiony as a function of timean

be readily shown to be

v(t) = %(1! e k’/'”)

me"  m % (1.37)
il m Vkt/m
y(1)== !k(lle )g
respectively, for >0 . The acceleration is given lfglso wherr >0)
2z
dt (1.38)
=ge'/™,

We find that the velocity, which we assume toibe0O at r=0, eventually reaches
maximum terminal velocity whent = (whena =0, obviously)

y =28 (1.39)

Since this terminal velocity is constant it could have easily been determined with
equation(1.36) when equilibrium is reached (i.e., wher=0). Wewouldthen have that

mg— kv, =0, (1.40)

from which we recover equatiofi.39). The nonlinear nature of thdriction force at
higher speedi.e., equatior(1.35)) rendersit impossible to calculate solutiosgmilar to
thosepresented in equatior{¢.37). But we can still consider equilibrium conditions to
determine a terminal velocity

Vo=, (149

The existence of a terminal velocity is entirdlyeto the fact that the friction force scales
with the velocity of the objeciThis is to be contrasted with the case of contact friction
forces which are independent of the velocity.

1.4 Circular Motions

Consider an object that is initially moving with a uniform, rectilinear motion at velocity
v. One might ask what force must be applied to the object such that it enters into a
circular orbit of radiuskR at the same speeReferring toFigure4 we see that over an
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doe

dr

dé

Figure 4 BMotion of a body over an infinitesimal amoun
time 7. To go from a rectilinear to a circular motion of ra
R, its linear path must be modified by an amodnt

infinitesimal time dr the object must Ofall((radial) distancedr towards the centre of
the circular orbit.

Again referring to the figure, we can write
dr=(vdt)de (142

and

vdt= Rde. (143

We will now define two quantities: the angular velocity

(144)

and he radial acceleration that the body must hawvaderto get into the circular orbit

— dvrad
arad - d t

1 (dr

do
v_
dt

whichwhenusing equatiorl.44) becomes
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v
R (1.46)
=1/ %R,

This radial acceleration is more commonly known as dééripetal acceleration.
Becausean object moving in uniform motion will remain as such unless subjected to a
nonzero net force(NewtonOs First Law)ircular motion (with a constant orbital
velocity) will only be realized ifa net force oriented radially toward the centre of the
orbit act on the object tonduce a centripetal acceleratiandefined in equatiornl.46).

This net force must enter NewtonOs Second Law when dealing with prablehsg
circular motions.

1.4.1 Exercises

4. (Prob. 5.42 in Young and Freedman) A small car with a mass of 0.8 kg travels at
constant speed on the inside of a track that is a vertical circle with a radius of 5.0 m. If the
normal force exerted by the track on the car when it is at the top of theidr&.0 N,

what is the normal force on the car when it is at the bottom of the tv&bk® is the
speed of the car?

Solution.

Two forces are acting on the car, gravity and the normal force. At the top, both forces are
toward the center of the circle, so Newton’s second law gives

Mg+ Ng = MA. (1.47)
At the bottom, gravity is downward but the normal force is upward, so
n,! mg=ma,_,. (1.48)

Solving equatior{1.47) for the acceleration

By =g+2
o m
9.8 m/s+—_oN (1.49)
0.8 kg
= 17.3m/s,

We can now determine that
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Ny = m(g + aTad)
=0.8kg(9.8+17.9 m/s’ (1.50)
=21.7N.

The normal force at the bottom is greater than at the top because it must balance the

weight in addition to accelerate the car toward the center of its track. Finally, the speed of
the car is found to be (with equation (1.46)

V= a‘radR

=173 m/s?-5 m (152)
=9.3 m/s.
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