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Chapter 6. Hamiltonian Symmetry 
Notes: 
• Most of the material presented in this chapter is taken from Bunker and Jensen 

(1998), Chaps. 1 to 5, and Bunker and Jensen (2005), Chaps. 7 and 8.  

6.1 Hamiltonian Symmetry Operations 
In the previous chapter we were concerned with symmetry operations that left unchanged 
the geometrical appearance of a molecule in its equilibrium configuration. It is, however, 
unclear how symmetries related to the appearance of a molecule at equilibrium has 
anything to do with the physics of this same molecule as it rotates, vibrates, or changes its 
electronic states (and is therefore away from equilibrium). What we should really be 
focusing on are operations that leave the molecular Hamiltonian unchanged, or commute 
with it; these we call Hamiltonian symmetry operations. We now study these operators, 
while the relationship between the two sets of operators corresponding to geometrical and 
Hamiltonian symmetries will be explored later in this chapter.  

6.1.1 Nuclear Permutations   
A permutation operation is one that changes the order of an ordered set of numbers. 
More precisely, a permutation  abcdyz( )  replaces a by b , b by c , c by d ,  … , y by z , 
and z by a . For example, if the permutation operators 12( )  and 123( )  are applied to the 
ordered set 321 , then we get the following results 
 

 
12( )321 = 312
123( )321 = 132.  (6.1) 

 
A permutation involving only two elements, e.g., 12( ) , is usually called a transposition. 
From this definition, it should be clear that 
 
 12( ) = 21( ), 23( ) = 32( ), 13( ) = 31( ),  (6.2) 
 
and 
 
 123( ) = 312( ) = 231( ), 132( ) = 321( ) = 213( ), etc. (6.3) 
 
When applied to molecules permutation operators act on nuclei only, not electrons. More 
precisely, in order for a permutation to keep the Hamiltonian of a molecule invariant 
permutations can only affect identical nuclei. For example, interchanging the positions of 
the two hydrogen nuclei of a water molecule will not change its energy (i.e., 
Hamiltonian), but exchanging the position of a hydrogen nucleus with that of the oxygen 
nucleus completely changes the state of the system. Thus, the permutation of like nuclei 
is a Hamiltonian symmetry operation, but the permutation of nuclei of different nature is 
not.  
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Figure 6-1 – The effect of the permutation 12( )  on a water molecule (not necessarily at 
equilibrium).  

Moreover, it is important to realize that the permutated nuclei also exchange their spins. 
If that were not the case, then the absolute spatial position of the spins would change and, 
therefore, potentially bring a change in the energy content of the molecule (because of 
spin-orbit or spin-spin couplings, for example).  
An example of a permutation is shown in Figure 6-1 where the effect of the 12( )  
operation on a vibrating water molecule is presented. The hydrogen and oxygen nuclei 
are respectively labeled 1, 2, and 3, the spins are represented with arrows, and the 
electron denoted by ‘e’ (the ‘+ ’ sign signifies that the electron is above the plane of the 
page; a ‘− ’ would indicate that it is below). Finally the centre of mass is represented by 
the cross ‘× ’. 

6.1.1.1 The Effect of a Permutation on a Function 
Let us suppose that we have a function of the positions and spins of the nuclei that 
compose a molecule upon which we apply a permutation. More precisely, consider the 
wave function ψ  associated with a water molecule and further define its transformation 
by the permutation 12( )  with 
 

 ψ
12( ) R1,σ1,R2 ,σ 2 ,R3,σ 3,…,R13,σ13( ) = 12( )ψ R1,σ1,R2 ,σ 2 ,R3,σ 3,…,R13,σ13( ),  (6.4) 

 
with Ri  and σ i  the space-fixed position and spin of particle i , and where labels 1 to 3 
are used for the nuclei and labels 4 to 13 for the ten electrons composing the molecule. 
Using our previous definition for a permutation we have 
 

 

ψ 12( ) R1,σ1,R2 ,σ 2 ,R3,σ 3,…,R13,σ13( ) = 12( )ψ R1,σ1,R2 ,σ 2 ,R3,σ 3,…,R13,σ13( )
=ψ R2 ,σ 2 ,R1,σ1,R3,σ 3,…,R13,σ13( ).

 (6.5) 

 
For example, let us consider the following (totally unphysical) wave function (unrelated 
to the water molecule) 
 
 ψ X1,X2 ,X3( ) = X1 + 2X2 + 3X3,  (6.6) 
 
from which we can calculate the following arbitrary permutation operation 
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ψ 123( ) = 123( )ψ X1
1
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2
 ,X3

3
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⎠
⎟

=ψ X1
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⎝
⎜

⎞

⎠
⎟ =ψ X3

1
 ,X1

2
 ,X2

3


⎛

⎝
⎜

⎞

⎠
⎟

= X3 + 2X1 + 3X2 ,

 (6.7) 

 
where the positions and permutations of the labels is made clearer by the curly braces. 
Alternatively, we can work out this simple problem with the following notation  
 

 
ψ 123( ) = 123( ) X1 + 2X2 + 3X3[ ]

= ′X1 + 2 ′X2 + 3 ′X3
= X3 + 2X1 + 3X2 .

 (6.8) 

 
In general, for a given operator R  (not necessarily a permutation; see below) we write 
 

 
 

ψ R R1,σ1, …,Rl ,σ l( ) = Rψ R1,σ1, …,Rl ,σ l( )
=ψ ′R1, ′σ1, …, ′Rl , ′σ l( ),

 (6.9) 

 
where ′Ri  and ′σ i  are the coordinates and spin of the particle i  after the operation has 
been effected. 

6.1.1.2 The Successive Applications of Permutations 
Let us consider the following compounded permutation on an ordered set 
 

 
132( ) 23( )123 = 132( ) 23( )123⎡⎣ ⎤⎦

= 132( )132 = 321.
 (6.10) 

 
Comparing the starting and final states, i.e., 123  and 321 , it is easy to see that the 
compounded permutation can be replaced by a simple permutation with 
 
 132( ) 23( )123 = 13( )123 = 321,  (6.11) 
 
or 
 
 132( ) 23( ) = 13( ).  (6.12) 
 
In general the product of two permutations does not depend on what ordered set it is 
applied to, and it is possible to evaluate it without having recourse to an ordered set. For 
example, it can be said that on the left hand side of equation (6.12): 1 is first replaced by 
1 (the 23( )  permutation) and then by 3 (the 132( )  permutation); 2 is first replaced by 3 
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(the 23( )  permutation) and then by 2 (the 132( )  permutation); 3 is first replaced by 2 
(the 23( )  permutation) and then by 1 (the 132( )  permutation). Summarizing all this we 
have 
 
 3←1←1 = 3←1, 2← 3← 2 = 2← 2, 1← 2← 3 = 1← 3,  (6.13) 
 
which is the same as expressed in equation (6.12). It is instructive to reverse the order of 
the permutations, i.e., consider 23( ) 132( ) . In this case we have: 1 is first replaced by 3 
and then by 2; 2 is first replaced by 1 and then by 1; 3 is first replaced by 2 and then by 3. 
Combining everything we have 
 
 23( ) 132( ) = 12( ).  (6.14) 
 
It should be clear from this that two permutations do not commute in general.  
Let us go back to our wave function ψ  of equation (6.6) and transform it with the left 
hand side of equation (6.14) 
 

 

 

ψ 23( ) 132( ) = 23( ) 132( )ψ X1
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⎠
⎟

= X2 + 2X1 + 3X3.

 (6.15) 

 
Another important aspect to consider is that any permutation can be expressed as a 
product of transpositions. Although there can be many representations for a given 
permutation, it should be clear from the discussion above that the following holds 
 
 abcdef( ) gh( ) = ab( ) bc( ) cd( ) de( ) ef( ) gh( ). (6.16) 
 
A given permutation is called even or odd depending on whether it has an even or odd 
number of transpositions in its transposition product (the permutation of equation (6.16) 
is even). 
Now consider the operation 123( ) 132( ) . After a little thought, one will find that 1 is 
replace by 1, 2 by 2 and 3 by 3; an operation impossible to represent by a permutation! 
This is the identity operation E  that leaves a system unchanged; it is equivalent to 
“doing nothing”. We therefore write 
 
 123( ) 132( ) = E,  (6.17) 
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and 
 
 132( ) = 123( )−1 .  (6.18) 
 
That is, 132( )  is the inverse of 123( ) . This result leads us to a more general result 
concerning the inverse of any permutation, i.e., 
 
  abcyz( )−1 = azycb( ).  (6.19) 
 
A little thought should suffice to convince you of this… It should also be obvious that  
 
  abcyz( )E = abcyz( ).  (6.20) 

6.1.2 The Complete Nuclear Permutation (CNP) Group of a Molecule 
We have introduced in Chapter 5 the four axioms that define a group. Although we did so 
in the context of point groups, these axioms also apply to groups consisting of 
permutation operators. We list them here again for convenience  

1. The identity E  is an operator of the set. 
2.  The operators multiply associatively; i.e., given three operators R, S  and T , then it 

is true that RS( )T = R ST( ) . 
3. If R and S  are two operators of the set, then RS  is also an operator contained in the 

set. 
4. The inverse of each operator is a member of the set. 
 
If we were to consider the case of the H3

+  molecule with the nuclei labeled with 1, 2, and 
3, as was done in Chapter 5, and we listed all of the possible permutations of the nuclei 
that leave the Hamiltonian unchanged in a set, we would get 
 
 E, 12( ), 23( ), 13( ), 123( ), 132( ){ }.  (6.21) 
 
Furthermore, if we build a multiplication table from these operators we have the result 
shown in Table 6-1. A thorough study on this table will convince the reader that the four 
axioms are met by this set, which therefore forms a group. Evidently, this would also be 
the case for any other molecule that possesses three (an no other) identical nuclei, e.g., 
methyl fluoride (CH3F ). This set of all possible permutations of identical nuclei is called 
the complete nuclear permutation (CNP) group. This particular CNP group for three 
identical nuclei is called S3 ; in general the group Sn  contains n!  operators. As the 
number of groups of identical nuclei in a molecule increases so does the number of 
permutations. For example, the CNP of ethylene (C2H4 ) is made of the so-called direct 
product of the CNP (S4 ) for the hydrogen nuclei and the CNP ( S2 ) for the carbon nuclei  
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Table 6-1 – The multiplication table for the possible permutations of the H3
+  molecule. 

The table is calculated by first applying the operator of the top row and then the operator 
of the left column. 

 E  12( )  23( )  13( )  123( )  132( )  
E  E  12( )  23( )  13( )  123( )  132( )  
12( )  12( )  E  123( )  132( )  23( )  13( )  
23( )  23( )  132( )  E  123( )  13( )  12( )  
13( )  13( )  123( )  132( )  E  12( )  23( )  
123( )  123( )  13( )  12( )  23( )  132( )  E  
132( )  132( )  23( )  13( )  12( )  E  123( )  

 
 CNP C2H4( ) = S4 ⊗ S2 ,  (6.22) 
 
and will contain 4! ×2!= 48  operators. As a trivial example, if we have two S2  CNP 
groups with their respective nuclei labeled 1,2{ }  and 3,4{ }  
 

 
S2
a = E, 12( ){ }
S2
b = E, 34( ){ },  (6.23) 

 
then the resulting CNP group will be 
 
 S2

a ⊗ S2
b = E, 12( ), 34( ), 12( ) 34( ){ }.  (6.24) 

 
Even for relatively small molecules, the CNP group can therefore quickly become 
enormous and cumbersome to handle. 

6.1.3 The Inversion Operator E∗  and Parity 
The permutation operators introduced so far are not the only Hamiltonian symmetry 
operators. Consider for example the inversion operator E∗ , which consists of inverting 
the spatial coordinates of all nuclei and electrons in a molecule. This is done using the 
X,Y ,Z( )  space-fixed coordinate system that has its origin at the molecular centre of 

mass. The effect of this operator on the water molecule is shown in Figure 6-2. The 
inversion leaves the spin of the particles unchanged. That is, the spins stay attached to 
their corresponding particles. The effect of E∗  on a function can be assessed with 
equation (6.9) 
 

 

 

ψ E∗

R1,σ1, …,Rl ,σ l( ) = E∗ψ R1,σ1, …,Rl ,σ l( )
=ψ ′R1, ′σ1, …, ′Rl , ′σ l( )
=ψ −R1,σ1, …,−Rl ,σ l( ).

 (6.25) 
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Figure 6-2 – The effect of E∗  on the water molecule. The spatial coordinates of all nuclei 
and electrons are inverted, while the spins stay attached to their corresponding particles. 
Going back to our simple earlier example where 
 
 ψ X1,X2 ,X3( ) = X1 + 2X2 + 3X3,  (6.26) 
 
we have 
 

 ψ E∗

= −X1 − 2X2 − 3X3
= −ψ .

 (6.27) 

 
If a function f  is such that  
 
 f E

∗

= f ,  (6.28) 
 
then it is said to have positive parity. On the other hand, if 
 
 f E

∗

= − f ,  (6.29) 
 
as was the case in the last example, then it has negative parity. 
The fact that the inversion is symmetry operator can be asserted from the fact that neither 
the kinetic nor the potential energies of a molecule are affected by a change in the sign of 
the coordinates.  

6.1.4 The Complete Nuclear Permutation Inversion (CNPI) Group of a Molecule   
If we intend to define a group for a molecule which includes the permutation and the 
inversion operators, then by axiom 3 for the definition of a group the operators resulting 
from the combination of a permutation and the inversion must also be included. For 
example, the permutation-inversion operator 
 
 12( )∗ ≡ E∗ 12( ) = 12( )E∗  (6.30) 
 
must be part of the group. We should, however, ensure that this new operator also leaves 
the Hamiltonian unchanged. It is trivial to show that this is so in general with P∗ = E∗P , 
where P  is some permutation, 
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 P∗Ĥ 0 = E∗PĤ 0 = E∗Ĥ 0P = Ĥ 0E∗P = Ĥ 0P∗,  (6.31) 
 
as both operators E∗  and P  leave the (rovibronic) Hamiltonian unchanged. (Here we use 
the approximate rovibronic Hamiltonian resulting from the Born-Oppenheimer 
approximation, the neglect of rotation-vibration coupling, etc.; hence the superscript.) 
The permutation-inversion operator is therefore a symmetry operation. It is important to 
note that the statement that an operator R  is a Hamiltonian symmetry operation is 
equivalent to saying that it commutes with the Hamiltonian 
 
 R, Ĥ 0⎡⎣ ⎤⎦ = 0,  (6.32) 
 
as can be inferred from equation (6.31). Incidentally, this also tells us that the 
transformed wave function ψ R = Rψ  shares the same energy as the original 
eigenfunction ψ , and that it is also an eigenfunction of the Hamiltonian, as 
 
 Ĥ 0ψ R = Ĥ 0Rψ = RĤ 0ψ = Eψ

0Rψ = Eψ
0ψ R ,  (6.33) 

 
where Eψ

0  is the energy associated with ψ  (i.e., the corresponding eigenvalue of the 
Hamiltonian). We will come back to this important fact in the next chapter.   
The group formed by combining the elements of the CNP group and the corresponding 
permutation-inversion operations is the so-called complete nuclear permutation 
inversion (CNPI) group. It is expressible as the direct product 
 
  CNPI = CNP⊗ E,  (6.34) 
 
where 

 
E = E,E∗{ } . We therefore find that the CNPI group as twice as many elements as 

the corresponding CNP group. For example, the CNPI group for the H3
+  molecule is 

 
 E, 12( ), 23( ), 13( ), 123( ), 132( ),E∗, 12( )∗ , 23( )∗ , 13( )∗ , 123( )∗ , 132( )∗{ }.  (6.35) 

 
The effect of the 23( )∗  operation on the H3

+  molecule is shown in Figure 6-3. 

Figure 6-3 – The effect of the permutation-inversion 23( )∗  on the H3
+  molecule. 
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We mentioned earlier that the size of the CNP group can render it cumbersome to use, 
this comment is even more appropriate for the CNPI group.  

6.2 The Molecular Symmetry (MS) Group 
Although we have established that the CNPI group is a symmetry group of a molecule 
and, as we will see later, it can be used to specify the molecular state, it is generally best 
not to use it for this purpose. The reason for this lies in the fact that because of the large 
number of operators it contains the CNPI group can lead to a larger number of 
representations for a molecule than can be discerned observationally through experiments 
of finite precision. It is said that symmetry operations that link two indistinguishable 
representations are called unfeasible. The subset of all feasible symmetry operations is 
that of the so-called molecular symmetry (MS) group. The MS group, which we now 
introduce, is a subgroup of the CNPI group. 

6.2.1 Tunneling and the CNPI Group   
Consider the two equilibrium versions of the methyl fluoride CH3F  molecule shown in 
Figure 6-4. The version on the left has the hydrogen nuclei arranged in a clockwise 
configuration when looking up the C-F axis, while the one on the right is anticlockwise in 
character. It should be clear that these two representations of the molecule, and their like 
deformations, will have similar energy levels.  
Indeed, it is usually the case that a potential barrier separates the potential energy minima 
of two such molecular configurations (see Figure 6-5). A molecule can only pass from 
one configuration to the other by tunneling through the barrier. When this barrier 
potential is high enough, as is the case for methyl fluoride, we can neglect the possibility 
of tunneling and these configurations can be considered to exist independently. As these 
representations are indistinguishable experimentally, there are no advantages in allowing 
for both their existence when studying the spectroscopy of this molecule. We will bring a 
significant simplification to the problem by considering only one representation. 
Molecules that show no tunneling are called rigid molecules (please note that this kind of 
“rigidity” still allows for nuclear vibrations). Those that exhibit tunneling are called non-
rigid molecules; ammonia (NH3 ) is one example. 

Figure 6-4 – The two versions of methyl fluoride molecule at equilibrium. The version on 
the left (right) has the hydrogen nuclei arranged in a clockwise (anticlockwise) 
configuration when looking up the C-F axis. The solid, broken, and thick lines are in, 
behind, and in front of, the plane of the page, respectively. 
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The question we must now answer is: how can we identify or recognize equivalent 
molecular configurations? A careful study of Figure 6-4 will reveal that it is not possible 
to transform the methyl fluoride molecule from one version to the next by a mere rotation 
(the Cn  point group symmetry operation). If we therefore define the MS group as 
containing only permutation and permutation-inversion symmetry operations that leaves 
the molecule within a given configuration, then we must discard any CNPI operator that 
connect two indistinguishable versions.  
For example, since we know that the methyl fluoride possesses the same CNPI group as 
the H3

+  ion, we can write from equation (6.35) that 
 

 
CNPI CH3F( ) = E, 12( ), 23( ), 13( ), 123( ), 132( ){ ,

E∗, 12( )∗ , 23( )∗ , 13( )∗ , 123( )∗ , 132( )∗}.  (6.36) 

 

Figure 6-5 – A representation for the potential of the methyl fluoride molecule. The two 
minima correspond to the two versions shown Figure 6-4. The molecule can go from one 
version to the other by tunneling through the potential barrier. The MS group of CH3F  
(with no tunneling) is determined by using only one part of the potential only (the shaded 
area).    
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Since the 12( ) , 13( ) , and 23( )  permutations change the handiness of a configuration, 
then they must be excluded from the MS group (i.e., they are unfeasible), while 
123( )  and 132( )  are included (i.e., they are feasible). It will be easier to evaluate the 

effect of the permutation-inversion operators by first visualizing the transformation 
brought about by the inversion operator. This is shown in Figure 6-6. It is seen that E∗ , 
like 12( ) , 13( ) , and 23( ) , transforms the clockwise version of the molecule into its 
anticlockwise version and is, therefore, not part of the MS group. However, combining 
the inversion with a handiness-changing permutation, such as 12( ) , 13( ) , and 23( ) , will 
cancel its corresponding effect on the handiness on the molecule and yield a feasible 
operator. Because of this we determine the MS group of methyl fluoride to be 
   
 MS CH3F( ) = E, 123( ), 132( ), 12( )∗ , 13( )∗ , 23( )∗{ }.  (6.37) 

 
Clearly, the MS group of methyl fluoride is significantly smaller than the corresponding 
CNPI group and will be a lot easier to handle.  
Finally, it is important to realize that since the structure of a molecule is dependent on its 
electronic state, then different electronic states will in general yield different MS groups.  

6.3 The Relationship between the MS and the Point Groups 
We know that both the MS and point groups deal with the symmetry of molecules. It is 
important to realize, however, that both approaches are very different. On the one hand, a 
MS group deals with the symmetries of the Hamiltonian, while on the other hand the 
point group of the molecule under study only considers its geometrical symmetries at 
equilibrium. Since the molecule is rotating and vibrating, we are left to wonder how the 
latter could ever be of any use for spectroscopy. However, point groups have been around 
and used for molecular spectroscopy analyses for a much longer period than MS groups 
have. But MS groups were introduced in part to palliate for the shortcomings of point 
groups. In fact, on the back cover of their “Fundamentals of Molecular Symmetry” book 
Bunker and Jensen write “Usually the point group is only useful for isolated, non-rotating 
molecules, executing small amplitude vibrations in isolated electronics states. However, 
for the chemical physicist or physical chemist who wishes to go beyond these limitations, 
the MS group is nearly always required.” So, MS groups are more powerful than point 
groups... but what is the connection between the two? 

Figure 6-6 – The effect of the inversion E∗  on the methyl fluoride molecule. It is seen 
that it transforms the clockwise version of the molecule into its anticlockwise version.  
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6.3.1 Non-linear Rigid Molecules 
We first consider non-linear rigid molecules and concentrate on a given MS group 
operator (i.e., a permutation or permutation-inversion operation) and try to see if it has 
any connection to some other point group operator. For example, consider the 123( )  
permutation of the H3

+  molecule shown in Figure 6-7 (a) and (b). We already know the 
effect of a permutation (i.e., exchange of positions and spins between like nuclei), but we 
must realize it will also bring a rotation of the molecule-fixed axes (i.e., the x- , y- , and 
z-axes  shown in Figure 6-7) through a change in the Euler angles. However, because we 
know that point group operations are made about the space-fixed axes we must expect 
that at least one other type of operators (perhaps more) will be combined with the 
operators of the point groups to equate a permutation such as the one studied here. 
Indeed, it is found that in general two more types of operators are needed. More 
precisely, any given MS group operator can be broken in three successive operators as 
follows: 
a. A point group operation Rve  effected about the space-fixed coordinate axes (which 

therefore leaves the molecule-fixed unchanged) that transforms the nuclear 
vibrational coordinates, and electronic coordinates and spins. 

Figure 6-7 – The effect of the 123( )  permutation on the H3
+  molecule, and its 

decomposition in a space-fixed rotation (C3
2 ), a molecule-fixed rotation (Rz

2π 3 ), and a 
nuclear spin permutation ( p 123( ) ) operators. The filled (open) circles stand for the nuclei 
positions when the molecule is deformed (at equilibrium). 
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b. A rotation operator Rrot  effected about the molecule-fixed coordinate axes, which 
changes the values of the Euler angles that specify the orientation of the molecule in 
space. 

c. A nuclear spin permutation operator Rns . 

Mathematically speaking, any MS group operator R  can be expressed as 
 
 R = RveRrotRns ,  (6.38) 
 
where the order of the three operators on the right hand side is irrelevant, since they all 
commute with each other. A careful study of Figure 6-7 will, for example, reveal that 
 
 123( ) = C3

2Rz
2π 3p 123( ),  (6.39) 

 
where C3

2  is the three-fold rotation operator defined in Chapter 5, Rz
2π 3  is a rotation of 

2π 3  radians about the molecule-fixed z-axis , and p 123( )  consists of a permutation (in 

the usual fashion) on the nuclear spins. Other examples for the H3
+  ion are 

 

 
E = ER0 p0
E∗ = σ hRz

π p0
23( )∗ = σ xyRx

π p 23( ),

 (6.40) 

 
where R0  and p0  are identity operators, and σ xy  is for a reflection about the xy-plane  
(i.e., it is a σ v  operator, as defined in Chapter 5). 

The connection between the MS and point groups can now be better understood, at least 
for non-linear molecules. That is, the point group is only part of the whole picture: it will 
only be useful when dealing with vibronic spectroscopy and needs to be complemented 
with molecule-fixed rotations and nuclear spin permutations to allow a treatment of the 
full rovibronic spectroscopy of molecules, as the MS group does.  
For non-linear rigid molecules, to each elements of the MS group will correspond only 
one operator Rve  and vice-versa. The set of all Rve  forms the molecular point group. 
For that reason, it is common to denote MS groups using the name of the corresponding 
molecular point group (with a slight modification). For example, the MS group of the H3

+  
molecule is D3h M( ) .  

The operators Rrot  are part of the so-called molecular rotation group (to be considered 
later); at times they consist of only a subgroup, at other times the whole group. The 
operators Rns  are part of the so-called nuclear spin permutation group. 

6.3.2 Linear Rigid Molecules 
Linear molecules must be treated differently. The reason is that there is not a one-to-one 
correspondence between their point and MS groups. For example, the unsymmetrical 
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HCN molecule has C∞v  for its point group and E,E∗{ }  for its MS group. The first one 
has an infinite number of elements, while the second has only two. Consequently, 
vibronic states will be labeled (see Chapter 7) using the point group and the rovibronic 
states using the MS group. However, it is possible to introduce the so-called extended 
MS group of a linear molecule, which can be used for both purposes (see Chapter 12). 
The extended MS group of HCN is thus denoted by C∞v EM( ) .  

6.3.3 The Relationship between E∗  and i  
For a centro-symmetric molecule there will always exist a permutation-inversion 
operator, say, Ri , which can be written in the following form 
 
  Ri = A ′A( ) B ′B( ) Z ′Z( )∗ ,  (6.41) 
 
where each pair A ′A , B ′B , etc., consists of identical nuclei positioned symmetrically 
about the nuclear centre, in the equilibrium configuration. For example, the carbon 
dioxide and ethylene molecules have  
 

 
Ri
CO2 = 12( )∗

Ri
C2H4 = 14( ) 23( ) 56( )∗ ,

 (6.42) 

 
respectively (for CO2 , the labels 1 and 2 are for the oxygen nuclei; for C2H4 , the labels 1 
and 4, and 2 and 3, are for the two pairs of hydrogen nuclei (each pair has one nucleus at 
each end of the molecule), while 5 and 6 are for the carbon nuclei). Because of the 
relative positions of the nuclei and the combination of the permutation(s) with the 
inversion E∗  these operators leave the Euler angles unchanged. On the other hand, the 
vibronic coordinates are inverted and nuclear spins are exchanged within each pair of 
transposed nuclei. Thus, the operator Ri  is made of the following composition 
 
 

 
Ri = iR

0 p A ′A( ) B ′B( ) Z ′Z( ).  (6.43) 
 
We conclude from this that the point group inversion operator i  is not the same as the 
MS group inversion operator E∗ . As stated earlier, the latter one is used to denote the 
parity (‘+ ’ or ‘− ’) of a molecule, while i  gives the ‘g’ and ‘u’ labels for the vibronic 
states of a centro-symmetric molecule. 

6.4 Representations and Character Tables 
In this section we list some of the important definitions and results of group theory. 
Although the material presented here might appear somewhat abstract at first, its 
usefulness will become clearer when applied to molecular spectroscopy in the following 
chapters. 
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6.4.1 Matrix Groups 
Consider the following set of matrices, which we call Γ3  
 

 

Γ3 = M E ,M 12( )∗ ,M 23( )∗ ,M 31( )∗ ,M 123( ),M 132( ){ }
=

1 0
0 1
⎡

⎣
⎢

⎤

⎦
⎥,
1 0
0 −1
⎡

⎣
⎢

⎤

⎦
⎥,

−1 2 3 2

3 2 1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

⎧
⎨
⎪

⎩⎪

−1 2 − 3 2

− 3 2 1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

−1 2 3 2

− 3 2 −1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,
−1 2 − 3 2

3 2 −1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪
.

 (6.44) 

 
By forming the multiplication table for these six matrices, it would be easy to verify that 
that Γ3  meets the requirements spelled out by the axioms defining a group (see page 
103). That is, it is always possible to represent a group, and all of its abstraction, with a 
set of matrices; Γ3  in particular is the representation of a group. 

6.4.2 Isomorphism and Faithful Representations  
An isomorphism is a one-to-one correspondence between the elements of two sets. To 
illustrate this concept consider the C3v M( )  MS group of equation (6.21) and the Γ3  
matrix group of equation (6.44). It turns out that if we make the following associations  
 

 

E ↔ M E ,

12( )∗ ↔ M 12( )∗ , 23( )∗ ↔ M 23( )∗ , 13( )∗ ↔ M 13( )∗ ,

123( )↔ M 123( ), 132( )↔ M 132( ),

 (6.45) 

 
we find that the two corresponding multiplication tables match perfectly. The 
multiplication tables for C3v M( )  and Γ3  are said to be isomorphic. A matrix group that 
is isomorphic to another group is said to be a faithful representation of that group.  
The same can be said when considering the point group D3  
 
 D3 = E,C2 , ′C2 , ′′C2 ,C3,C3

2{ }.  (6.46) 
 
That is, it can be shown that Γ3  is isomorphic to, and a faithful representation of, D3 . 
Obviously, from what we have seen in the last section, the MS and molecular point 
groups of non-linear molecules are also isomorphic to one another. 

6.4.3 Homomorphism and Unfaithful Representations 
A homomorphism is a many-to-one correspondence between two sets of different order 
(i.e., size). For example, consider the two one-dimensional matrix groups Γ1  and Γ2  
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Γ1 : 1{ }
Γ2 : 1,−1{ },  (6.47) 

 
and their associations to the C3v M( )  group 
 

 
C3v M( ) : E 12( )∗ 23( )∗ 13( )∗ 123( ) 132( )

Γ1 : 1 1 1 1 1 1
Γ2 : 1 −1 −1 −1 1 1

 (6.48) 

 
Clearly any element of Γ1  and Γ2  is mapped to more than one element of C3v M( ) . It is 
said that the respective mappings of C3v M( )  onto Γ1  and Γ2  are homomorphic. 
Moreover, if a group is homomorphic onto a matrix group, then the matrix group is said 
to be an unfaithful representation of the group.   

6.4.4 Equivalent, Reducible, and Irreducible Representations 

Starting from a representation for a group, such as Γ3  for C3v M( ) , it is always possible 
to obtain an equivalent representation through a similarity transformation. That is, 
given a matrix A  we can obtain six new matrices ′M  from the six M  matrices defined 
in equation (6.44) with 
 
 ′M = A−1MA.  (6.49) 
 
One could easily verify that the new set ′M{ }  is also a matrix group. There are also two 
important facts concerning matrix representations that we need to know: 

i. Given a representation, it is always possible to find a similarity transformation so 
that all the matrices in the new representation are unitary. 

ii. A similarity transformation does not change the trace of the matrices, which are 
therefore the same for all representations. This is easily proven as follows 

 

 

Tr ′M( ) = ′M jj
j
∑ = Ajk

−1MklAlj
j ,k ,l
∑

= Mkl AljAjk
−1

j
∑

k ,l
∑ = Mklδkl

k ,l
∑

= Mkk
k
∑ = Tr M( ).

 (6.50) 

 
The trace of a matrix is called the character of the matrix.  
Beside a similarity transformation, it is also possible to obtain a new representation of a 
group by combining the different representations of that group. For example, starting 
with the representations Γ2  and Γ3  of C3v MS( )  we can form the following three-
dimensional reducible representation  
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Γsum =
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,
1 0 0
0 −1 0
0 0 −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

−1 2 3 2 0

3 2 1 2 0
0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

,

−1 2 − 3 2 0

− 3 2 1 2 0
0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,

−1 2 3 2 0

− 3 2 −1 2 0
0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,

−1 2 − 3 2 0

3 2 −1 2 0
0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎫

⎬
⎪
⎪

⎭
⎪
⎪

.

(6.51) 

 
Note that every matrix in Γsum  is block diagonal. From equations (6.44), (6.45), and 
(6.48), we can see that each matrix is made of two blocks from corresponding matrices of 
Γ2  and Γ3 . This is symbolically expressed by 
 
 Γsum = Γ2 ⊕Γ3.  (6.52) 
 
Furthermore, it should be clear from our previous discussion concerning the character of 
matrices that the character of Γsum  is the sum of the characters of Γ2  and Γ3 . This is 
expressed as follows 
 
 χΓsum R[ ] = χΓ2 R[ ] + χΓ3 R[ ],  (6.53) 
 
where χΓi R[ ]  is the character in the representation Γ i  of the matrix DΓi R[ ]  associated 
with the symmetry operator R  of the corresponding MS group (in this case C3v M( ) ). A 
representation that cannot be brought into a block diagonal form through any similarity 
transformation is called an irreducible representation. It can be shown from the so-
called Great Orthogonality Theorem (GOT) of group theory that the matrix elements 
DΓi R[ ]mn  and DΓ j R[ ] ′m ′n  of two irreducible representations Γ i  and Γ j  satisfy the 
following relation 
 

 
li
h
DΓi R[ ]mn

∗ l j
h
DΓ j R[ ] ′m ′n

R
∑ = δ ijδm ′m δn ′n ,  (6.54) 

 
where h  is the order of the group, li  and l j  are the dimensions of the matrices of the 
irreducible representations Γ i  and Γ j , respectively, and the summation is over all the 
elements R  of the group. Perhaps more important for our purposes is the so-called little 
orthogonality theorem obtained by setting m = n , ′m = ′n  and summing over m  and 
′m  in equation (6.54) to get 
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li
h
DΓi R[ ]mm

∗ l j
h
DΓ j R[ ] ′m ′m

R
∑

m, ′m
∑ =

li
h
χΓi R[ ]∗ l j

h
χΓ j R[ ]

R
∑

= δ ijδm ′m δm ′m
m, ′m
∑ = δ ijδmm

m
∑ = liδ ij ,

 (6.55) 

 
or alternatively, 
 
 χΓi R[ ]∗ χΓ j R[ ]

R
∑ = hδ ij  (6.56) 

 
It turns out that for finite groups there exist a finite number of irreducible representations 
(see the discussion on classes below). For example, Γ1 , Γ2  and Γ3  are the only possible 
irreducible representations for C3v M( ) , and therefore any representation Γ  can be 
expressed as follows 
 
 Γ = a1Γ1 ⊕ a2Γ2 ⊕ a3Γ3,  (6.57) 
  
with the corresponding characters 
 
 χΓ R[ ] = a1χΓ1 R[ ] + a2χΓ2 R[ ] + a3χΓ3 R[ ],  (6.58) 
 
where ai  is an integer. 

6.4.5 Reduction of a Representation 
As we will see in the next chapter, irreducible representations are used to label molecular 
states. Usually, one will have to start with a reducible representation and decompose it 
into a sum of irreducible representations (as in equation (6.57)) in order to produce the 
desired labels. That is, we want to evaluate the different coefficients ai  in equations 
(6.57) and (6.58). To do so we generalized equation (6.58) to 
 
 χΓ R[ ] = ajχ

Γ j R[ ]
j
∑ ,  (6.59) 

 
and we multiply by χΓi R[ ]∗  on both sides of this equation and use the little orthogonal 
theorem (i.e., equation (6.56)) to get 
 

 ai =
1
h

χΓ R[ ]χΓi R[ ]∗
R
∑  (6.60) 

 
Since the reduction depends entirely on the characters of the different representations, the 
characters of MS groups have been tabulated into so-called character tables (see below) 
to facilitate calculations.   
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6.4.6 Classes of Operators 
The operators of a group can always be separated into classes. Two elements A and B  
belong to the same class if there exists another group element C  such that 
 
 B = C−1AC.  (6.61) 
 
It follows from this definition that the identity E  is always in a class of its own. Equation 
(6.61) also implies that operators belonging to the same class have the same character 
(see equations (6.49) and (6.50)).  
The actual meaning of this separation between the elements of a group is that operators 
belonging to the same group are of all of a same type of operations. For example, 
referring to Table 5-2 for the D3h  point group we see that the subsets C3,C3

2{ } , 

C2 , ′C2 , ′′C2{ } , σ v, ′σ v, ′′σ v{ } , and S3,S3
2{ }  are made of the same kind of operators (i.e., 

rotations about the symmetry axis, rotations about two-fold axes perpendicular to the 
symmetry axis, vertical reflection, and improper rotations about the symmetry axis), and 
therefore form separate classes. The operators E  and σ h  are in classes by themselves. 

Similarly, the classes of C3v M( )  are E{ } , 12( )∗ , 23( )∗ , 13( )∗{ } , and 123( ), 132( ){ }  (i.e., 

the identity, the set of all transposition-inversions, and the set of all permutations of three 
nuclei). Another important characteristic of classes is the fact that there are equal 
numbers of classes and irreducible representations. 

Table 6-2 – The character table of the C3v M( )  group. 

C3v M( ) : E
1

 
123( )
2

 23( )∗
3

 
 

C3v :  E  2C3  3σ v   
Equiv. rotation R0  Rz

2π 3  Rπ 2
π   

A1 : 1 1 1 :Tz , α zz , α xx +α yy  
A2 : 1 1 −1 : Ĵz , Γ µA( )  
E : 2 −1 0 : Tx ,Ty( ), Ĵx , Ĵy( ), α xx −α yy ,α xy( )  

6.4.7 Character Tables 
The characters of the irreducible representations of a group are listed in its character 
table. In this table the group operators are divided according to their classes, although 
usually only one operator per class is listed, since they all have the same character. The 
number of elements in each class is stated, however. For example, the character table of 
the C3v M( )  group is given in Table 6-2. The first two rows give the classes of elements 
and the number of elements in each class of the MS group, the third row does the same 
for the molecular point group, while the fourth row (equivalent rotation) will be discussed 
later. As there are three classes, we expect to have three irreducible representations, 
which we find with their corresponding characters in the last three rows. The 
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representation A1  has a character of 1 for all classes; it is called the totally symmetric 
representation because of this (it will generally be referred to as Γ s( ) ). The last column 
on the right will also be explained later. Finally, we can guess the dimension of a given 
irreducible representation by looking at the character of the identity element. It follows 
from this that both A1  and A2  are one-dimensional, while the E  representation is two-
dimensional. 
 
 
 
 


