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Chapter 3. The Rotation-Vibration Hamiltonian 
Notes: 
• Most of the material presented in this chapter is taken from Bunker and Jensen 

(2005), Chaps. 4 and 5, Bunker and Jensen (1998), Chap. 10, and Wilson, Decius, 
and Cross, Chap. 11. 

3.1 Space-fixed and Molecule-fixed Axes 
In the previous chapter we have used the Born-Oppenheimer approximation to separate 
the Hamiltonian into two parts: the electronic and the rotation-vibration Hamiltonians. 
This separation, made explicit with equations (2.21), allows for the independent analyses 
of electronic and rotation-vibration motions (and states). Similarly, we would like to find 
a way to separate rotation and vibration motions to simplify our study of the behavior and 
spectroscopy of molecules. In other words, we would like to introduce separate sets of 
rotational and vibrational coordinates. 
To do so, it is necessary to define a new set of coordinates, denoted by x, y, z( ) , which 
have their origin at the nuclear centre of mass and an orientation relative to the ξ,η,ζ( )  
axes (defined in Section 2.1) somehow defined by the position of the nuclei only (i.e., the 
position of the electrons are not involved). Because of this, it is common to say that the 
ξ,η,ζ( )  axes are “space-fixed”, while the x, y, z( )  axes are “molecule-fixed”. That is, the 

new axes rotate with the molecule while the former axes do not.  
Although the origin of this new set of coordinates is unambiguously defined, there is a 
fair amount of freedom in defining its orientation relative to the space-fixed coordinates. 
We will soon discuss what conditions will be chosen for this definition, but irrespective 
of the way this will be done it should be clear that the relative orientation of the x, y, z( )  
axes to the ξ,η,ζ( )  axes can be expressed using the so-called Euler angles. We will 
denote the Euler angles by φ,θ,χ( ) , as defined in Figure 3-1. The first rotation 
0 ≤ φ ≤ 2π  is about the ς-axis , the second rotation 0 ≤θ ≤ π  is about the N-axis, which 
is the φ-rotated  η-axis , and the last rotation 0 ≤ χ ≤ 2π  is about the z-axis , which is the 
θ-rotated  ς-axis . With these three rotations, any orientation for the molecule-fixed axes 
relative to the space-fixed axes can be unambiguously assigned a set of values for the 
Euler angles. 

Given the space-fixed coordinates ξi ,ηi ,ζ i( )  for the ith  particle of the molecule, be it a 
nucleus or an electron, we can evaluate its corresponding molecule-fixed coordinates 
with 
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Figure 3-1 – Definition for the Euler angles φ,θ,χ( ) . The origin of both axis systems is 
at the nuclear centre of mass O . 
where the elements of the rotation matrix are the cosine direction coefficient. More 
precisely, we have 
 

 

λxξ = cos θ( )cos φ( )cos χ( ) − sin φ( )sin χ( )
λyξ = − cos θ( )cos φ( )sin χ( ) − sin φ( )cos χ( )
λzξ = sin θ( )cos φ( )
λxη = cos θ( )sin φ( )cos χ( ) + cos φ( )sin χ( )
λyη = − cos θ( )sin φ( )sin χ( ) + cos φ( )cos χ( )
λzη = sin θ( )sin φ( )
λxς = − sin θ( )cos χ( )
λyς = sin θ( )sin χ( )
λzς = cos θ( ).

 (3.2) 

3.2  Molecule-fixed Rovibrational Coordinates 
Now that we have introduced the new molecule-fixed coordinate system (although not in 
details, since we still have to specify the conditions that will completely determine the 
Euler angles), we need to transform the coordinates of each particle that form the 
molecule (nuclei and electrons) into this new system. We emphasize the fact that 
although the Euler angles do not depend on the positions of the electrons, the electrons’ 
positions do depend on the Euler angles. This fact is important, at least in principle, 
because we have endeavored, and succeeded, in Chapter 2 in finding a way (through the 
Born-Oppenheimer approximation) to separate the kinetic energy component of the 
Hamiltonian into independent electronic and nuclear parts. We now need to make certain 
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that the change from the space-fixed to the molecule-fixed coordinates will not spoil this 
simplification. 
To verify this, we go back to the expression for the electronic kinetic energy derived in 
equations (2.11), and rewrite it here for convenience 
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where it is understood that any derivative is taken relative to one of the ξ,η,ζ( )  
coordinates (remember that the nuclei indices run from 1 ≤ i ≤ N , while the electrons’ 
run from N +1 ≤ i ≤ l ).  We can apply the chain rule to equation (3.3) to find that in 
general 
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and so on. But since the Euler angles do not depend on the electronic coordinates then for 
an electron j  we have 
 

 
∂λxξ
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= 0, N +1 ≤ j ≤ l,  (3.5) 

 
and so on for the other partial derivatives of this type. Therefore, for three electrons j, k  
and m  we simply have that 
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and so on for all other similar derivatives involving y, z, η and ς , with, of course, 
N +1 ≤ j,k,m ≤ l . It can be readily shown through the combination of equations (3.4) to 
(3.6) with the fact that the Euler rotation matrix is orthonormal (i.e., λ ⋅ λT = 1̂) we obtain 
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when N +1 ≤ i, j ≤ l . More precisely, this result implies that the form of the electronic 
kinetic energy is unchanged when making the coordinate transformation discussed here. 
Furthermore, it still does not involve the nuclear coordinates. This is exactly what we 
were hoping for.  

But what can be said of the nuclear kinetic energy T̂N ? Is it also unaffected by the change 
of coordinates? From equations (2.21), we have  
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and we see that this term involves the same types of derivatives as that for the electrons, 
with the important difference that the summations run from 2 to N  instead of from N +1  
to l . To answer the question above, we first study the following partial derivative 
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where 2 ≤ j ≤ N  and 2 ≤ k ≤ l , and xk( )  stands for the last three terms of on the right 
hand side of the first of equations (3.9). It is clear from this that the electronic coordinates 
(i.e., xk  for N +1 ≤ k ≤ l ) are dependent on the nuclear coordinates through the Euler 
angles. This dependency is contained in the xk( )  term. Using similar equations for 
∂yk ∂ξ j  and ∂zk ∂ξ j , which will respectively contain yk( )  and zk( )  terms, and the 
chain rule (i.e., the first of equations (3.4)), it is easy to show that for a nucleus j  
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Evidently, the second derivatives (and therefore ∇i

2  and ∇i ⋅∇ j ) will also involve the 
xk( ) , yk( ) , and zk( )  terms. It follows from this that by making the change of variables 
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from the space-fixed to the molecule-fixed coordinates systems we reintroduce the 
electronic dependency into the nuclear kinetic energy term T̂N  (since it is a function of 
∇i
2  and ∇i ⋅∇ j ). This is obviously not what we wanted. 

It would appear that we couldn’t proceed further without spoiling the essential 
simplification obtained earlier with the Born-Oppenheimer approximation. Moreover, 
how could we ever hope to separate the vibration and rotation motions of the nuclei if the 
rovibrational Hamiltonian sees the electronic coordinates back in its formulation? It turns 
out that in most cases the electronic dependency of the rovibrational Hamiltonian is 
small, and can safely be neglected. This again is in line with the Born-Oppenheimer 
approximation that assumes that the electrons are unaffected by the motion of the nuclei. 
We, therefore, make the approximation that 
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with 2 ≤ i, j ≤ N , when referring to equation (3.8) for the nuclear kinetic energy. 

3.3 The Separation of Rotation and Vibration in the Hamiltonian 
Within the context of the Born-Oppenheimer and every other approximations used so far, 
we can now write the quantum mechanical Hamiltonians as  
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for the electronic Hamiltonian and 
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for the rovibrational Hamiltonian. The zero energy Eelec,n  is the minimum value of 

VNN +Velec,n( ) , and the form of the different electrostatic energies appearing in equations 
(3.12) to (3.15) will be easily guessed from equations (2.11) and (2.13). It is also 
understood that we are now using the molecule-fixed coordinates x, y, z( )  when 
evaluating positions or derivatives. 
It is now established that, to a good level of precision, we can separate electronic and 
nuclear motions, as is attested with equations (3.12) to (3.15). As was discussed in 
Chapter 2, the electronic Hamiltonian of equation (3.12) can be used to determine the 
electronic structure of the molecule, and then the arrangement of the different atoms that 
form the molecule. One could therefore imagine that we could simply start with the 
rovibrational Hamiltonian of equation (3.14) and proceed to separate the rotation and 
vibration motions, and solve for their respective spectroscopy. This may seem logical, but 
it is not how things are usually done. 
A brief inspection of the first of equations (3.15) for the nuclear kinetic energy shows that 
the form of this relation is somewhat awkward. For example, the nucleus of index 1 is not 
included in the sums. Of course, its effect is implicit to the equation and is responsible for 
the presence of the “cross products” in the second summation on the right hand side. This 
state of affair came about from our desire to remove the motion of the centre of mass of 
the molecule from the Hamiltonian (see Section 1.5). The analysis will be greatly 
simplified if we can rearrange the rovibrational Hamiltonian so it gains a mathematical 
form similar to that of the electronic Hamiltonian. For that reason, it is beneficial to go 
back to a classical expression (as opposed to the present quantum mechanical form) for 
the rovibrational Hamiltonian, and transform it in a manner that will help the separation 
and analyses of rotation and vibration motions. 
One would then be justified in asking what was the purpose of the whole analysis we 
have performed so far. The answer is that we needed to find a way to separate the 
electronic and rovibrational motions, while introducing the systems of coordinate (i.e., 
space-fixed and molecule-fixed) that are necessary for our analysis. This we have 
accomplished. We now turn our attention to the classical rovibrational Hamiltonian. 

3.3.1 The Classical Rovibrational Hamiltonian 
Note: The material of this section will closely follow that presented in Chapter 11 of 

Wilson, Decius, and Cross (although with a different notation). It is not essential 
to master the material covered here in order to understand the rest of the course. 
One could simply skip most of the derivations and analyses presented here, and 
only remember the final form of the quantum mechanical rovibrational 
Hamiltonian (except perhaps for the section on the Eckart conditions, which 
should be studied).  

We now consider only the nuclear component of the molecule (i.e., no electrons), and we 
use some of the same systems of axes previously introduced. It should be noted that the 
centre of mass of the system is now, by definition, the same as the nuclear centre of mass 
and we denote its position in space by 
 



47 

 RN ≡ XNeX +YNeY + ZNeZ .  (3.16) 
 
The instantaneous position of nucleus i  relative to the space-fixed system of axes that 
has its origin at the position of the centre of mass is given by ξi ,ηi ,ς i( ) , while its 
instantaneous position relative the molecule-fixed axes (with similar origin) is 
 
 ri = xiex + yiey + ziez ,  (3.17) 
 
where ex , ey , and ez  form the unit basis for the molecule-fixed coordinate system. We 
also introduce an equilibrium position against which the instantaneous position of the 
nucleus is compared; we denote this equilibrium position by 
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The difference between the instantaneous and the equilibrium positions, which we call 
the displacement, is  
 
 Δri = Δxiex + Δyiey + Δziez ,  (3.19) 
 
with Δxi ≡ xi − xi

e , etc. If the molecule-fixed system is rotating with an angular velocity 
ω  with respect its space-fixed counterpart, then the spatial velocity v i  of the nucleus is 
 
  v i = RN +ω × ri + ui ,  (3.20) 
 
where  
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e = 0 . Equation (3.21) tells us that ui  is the velocity due to the vibration 
motion of the corresponding particle. With these definitions, the kinetic energy of the 
molecule is defined by 
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where M = mi
i=1

N

∑ . But since ri  is measured from the centre of mass, then we have 
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and by taking the time derivative of this last equation 
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Equation (3.22) is then reduced to 
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Obviously, the first term is just the kinetic energy associated with the centre of mass, and 
we will omit it in everything that follows. The classical nuclear kinetic energy TN  is 
therefore 
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3.3.1.1 The Eckart Conditions 
Examination of equation (3.26) will reveal that the first term on the right hand side 
corresponds to (twice) the energy of rotation and the second term to (twice) the energy of 
vibration. To understand the nature of the last term, we modify it slightly and write 
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But since the velocity ui  is related to the vibration of the ith  particle, it is apparent that 
the term under the summation can be interpreted as the total vibrational angular 
momentum 
 

 Jvib = ri × miui( )
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and the last term on the right hand side of equation (3.26) is (twice) the amount of energy 
due to the coupling of the rotation and vibration motions (it can also be interpreted as a 
Coriolis coupling). Since our goal is to separate these two types of motions in the 
Hamiltonian, it would seem that this last coupling term prevents us from doing so. But all 
is not lost... 
We must remember that we still have not specified the position of the molecule-fixed 
axes x, y, z( )  in relation to the space-fixed positions  ξ1,η1,ς1,… ,ξN ,ηN ,ςN( )  of the 
nuclei. To do so, we will need three equations, i.e., one for each of the Euler angles 
φ,θ,χ( ) . Since we have some freedom in choosing these three equations, one could be 

tempted to set as a condition that Jvib = 0 . Indeed, applying this condition would ensure 
the separation of rotation and vibration motions by removing any coupling between the 
two. However, the three available relations would not be sufficient to specify both ri  and 
ui , which are present in equation (3.28), to satisfy Jvib = 0 .    

To find out what is the next best condition we combine equations (3.17)-(3.19) and (3.28) 
to write 
 

 
Jvib = mi ri

e + Δri( ) × ui⎡⎣ ⎤⎦
i=1

N

∑

= miri
e × ui( )

i=1

N

∑ + miΔri × ui( )
i=1

N

∑ .
 (3.29) 

 
But since we expect that the vibration of the molecule will not displace the nuclei too far 
from their equilibrium positions, it is therefore reasonable to set our axes-defining 
condition with the following approximation 
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An equally adequate way of writing this condition is through the so-called Eckart 
equations  
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The problem set associated with this chapter will provide examples that will show how 
the Euler angles can be evaluated from equation (3.31), but we will for now use it (or 
rather equation (3.30)) to continue our study of the classical rovibronic Hamiltonian. 
Inserting equation (3.30) into equation (3.26) we have 
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We now modify the first term on the right hand side with 
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where 
 

 Iαβ = mi δαβri
2 − ri,αri,β( )

i=1

N

∑ , for α,β = x, y, z  (3.34) 

 
are the instantaneous moments of inertia ( I  is the inertia tensor) with respect to the 
molecule-fixed axes (with ri,x = xi , etc.). Inserting equation (3.33) into equation (3.32) 
we have for the kinetic energy 
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3.3.1.2 The Internal and Normal Coordinates 
A molecule composed of N  nuclei has 3N  displacement coordinates Δα i  (α = x, y, z  
and  i = 1,… ,N ) and corresponding velocities that enter the equation for the Hamiltonian 
(see equation (3.26)). On the other hand, it is well known that a N-body  harmonic 
oscillator has only 3N − 6  degrees of freedom ( 3N − 5  for a linear oscillator), which are 
the quantities normally used to express the Hamiltonian. For example, for a water 
molecule the length of the two O-H bonds and the angle subtended by these bonds are an 
intuitive choice for the three degrees of freedom. These lengths and angles are often 
called internal coordinates Si  ( i = 1,… , 3N − 6 ), and they are linear combinations of 
the displacement coordinates (a linear expansion can be used if the relationships are non-
linear in nature; we then speak of linearized internal coordinates). To these internal 
coordinates we must add the six constraint relations that set the origin and the orientation 
of the molecule-fixed axes (i.e., equations (3.23) and (3.31)). More precisely, we 
introduce the six new coordinates below, each consistent with one constraint relation 
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The normalization factors M −1 2  and Iαα

e( )−1 2 , and the particular notation for the 

displacement coordinates (i.e., mi
1 2Δα i  with α = x, y, z ) are introduced for convenience, 

as will become clearer later on. It should be clear that 
 
 Tx = Ty = Tz = Rx = Ry = Rz = 0. (3.38) 
 
With the introduction of these three translation and three rotation coordinates, we can 
write an invertible matrix equation for the linear combinations linking the internal and 
displacement coordinates 
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⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

.  (3.39) 

 
If we denote the column vector on the left hand side by S  and the one on the right hand 
side by Δα , then we can also write 
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 S = BΔα.  (3.40) 
 
To simplify the problem further, we introduce 3N − 6  normal coordinates Qi , which 
are linearly connected to the internal coordinates through 
 
 S = LQ,  (3.41) 
 
where L  is a 3N  by 3N  matrix, and Q  is the column vector composed of the normal 
coordinates augmented with the Tα  and Rα , α = x, y, z , coordinates, just as was done for 
S  in equation (3.39) (i.e., the lower right 6 × 6  block of L  is a unit sub-matrix). The 
main reason for the introduction of the normal coordinates is that it can be shown that 
their introduction simplifies the kinetic energy of vibration (i.e., the second term on the 
right hand side of equation (3.35)) to 
 

 Tvib =
1
2
dQ
dt

T

⋅
dQ
dt
,  (3.42) 

 
while under the assumption of small amplitude of vibrations the potential energy can be 
approximated to the so-called harmonic potential energy 
 

 VN,n
harm =

1
2

λiQi
2

i=1

3N −6

∑ ,  (3.43) 

 
where λi  are constants (eigenvalues for the problem). In reality, the potential energy will 
not be perfectly harmonic in nature, but will contain higher-order terms that will be 
grouped in the so-called anharmonic potential energy term VN,n

anh . The total potential 
energy is then expressed by 
 
 VN,n = VN,n

harm +VN,n
anh .  (3.44) 

 
However, under the restriction of small vibrations the energy of vibration takes the 
simple form 
 

 Evib
0 =

1
2

dQi

dt
⎛
⎝⎜

⎞
⎠⎟
2

+ λiQi
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

3N −6

∑ . (3.45) 

 
There is, therefore, a great benefit in using the normal coordinates. A so-called normal 
mode is obtained when only one Qi  is allowed to be non-zero. But in order to visualize a 
normal mode, it is necessary to find the relationship between Q and Δα . Using equations 
(3.40) and (3.41), and the fact that Qj ∝ mi

1 2Δα i  for equation (3.42) to hold, it is useful 
to define a new matrix lα i, j  that links Q and Δα  as follows 
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m1
1 2Δx1

m1
1 2Δy1

m1
1 2Δz1


mN
1 2ΔxN

mN
1 2ΔyN

mN
1 2ΔzN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= lα i, j

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Q1
Q2


Q3N −6

Tx

Rz

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,  (3.46) 

 
or 
 

 mi
1 2Δα i = lα i, jQj

j=1

3N −6

∑ .  (3.47) 

 
It follows that because 
 

 
 

mi
1 2Δ α i( )2

i=1

N

∑ = Qj
2

j=1

3N −6

∑ ,  (3.48) 

 
then the l  matrix is orthogonal with 
 

 lα i, jlα i,k
i=1

N

∑
α
∑ = δ jk .  (3.49) 

 
Now that the vibrational energy has been greatly simplified with the introduction of the 
normal coordinates, we seek to express the rotation-vibration coupling term with these 
coordinates. We first rewrite this term as 
 

 

 

ω ⋅ miΔri × ui( )
i=1

N

∑ = ωγ εγαβ mi
1 2Δα i( ) mi

1 2Δ βi( )⎡⎣ ⎤⎦
i=1

N

∑
α ,β ,γ
∑

= ωγ εγαβ lα i, jQjlβi,k Qk
j ,k=1

3N −6

∑⎡
⎣
⎢

⎤

⎦
⎥

i=1

N

∑
α ,β ,γ
∑

= ωγ
Qk εγαβ lα i, jlβi,kQj

j ,k=1

3N −6

∑
i=1

N

∑
α ,β
∑⎡
⎣
⎢

⎤

⎦
⎥

k=1

3N −6

∑
γ
∑ .

 (3.50) 

 
We further simplify the notation for equation (3.50) but introducing the “Coriolis 
coupling constants” matrix ς j ,k

α  with 
 

 ς j ,k
γ = εγαβ lα i, jlβi,k

i=1

N

∑
α ,β
∑ ,  (3.51) 
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such that 
 

 
 
ω ⋅ miΔri × ui( )

i=1

N

∑ = ωγ ς j ,k
γ Qj

Qk
j ,k=1

3N −6

∑
γ
∑ .  (3.52) 

 
Combining equations (3.35), (3.51), and (3.52), the rovibrational kinetic energy becomes 
 

 
 
TN =

1
2
ωTIω +

1
2

Qj
2

j=1

3N −6

∑ + ωγ ς j ,k
γ Qj

Qk
j ,k=1

3N −6

∑
γ
∑ .  (3.53) 

3.3.1.3 The Canonical Form of the Rovibrational Kinetic Energy 
Since we want to find an expression for the Hamiltonian, it follows that we must express 
the kinetic energy in terms of the generalized coordinates and their corresponding 
momenta. Since the potential energy is not dependent on the velocities, the generalized 
momenta will only be a function of the kinetic energy with 
 

 
 
Pk =

∂TN
∂ Qk

= Qk + ωγ ς j ,k
γ Qj

j=1

3N −6

∑
γ
∑ ,  (3.54) 

 
for the momenta associated with the normal modes and 
 

 
 
Mα =

∂TN
∂ωα

= Iαβωβ
β
∑ + ς j ,k

α Qj
Qk

j ,k=1

3N −6

∑ ,  (3.55) 

 
for the components of the angular momentum. We must somehow invert equations (3.54) 
and (3.55) to express the generalized velocities  

Qk  and ωα  as a function of the 
generalized momenta to eliminate them (that is, the velocities) from equation (3.53). As a 
first step, it is clear from equation (3.54) and (3.55) that 
 

 
 

Pk Qk
k=1

3N −6

∑ + Mαωα
α
∑ = Qk

2

k=1

3N −6

∑ + Iαβωαωβ
α ,β
∑ + 2 ωα ς j ,k

α Qj
j ,k=1

3N −6

∑
α
∑ = 2TN.  (3.56) 

 
Next, upon substitution of equation (3.54) for  Qk  on the left hand side of equation (3.56)
we have 
 

 2TN = Mαωα
α
∑ + Pk

2

k=1

3N −6

∑ − ωα ς j ,k
α QjPk

j ,k=1

3N −6

∑
α
∑ ,  (3.57) 

 
but upon the introduction of the vibrational angular momentum 
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 pα = ς j ,k
α QjPk

j ,k=1

3N −6

∑ ,  (3.58) 

 
we get 
 

 2TN = Mα − pα( )ωα
α
∑ + Pk

2

k=1

3N −6

∑ . (3.59) 

 
We can make the same substitution for  Qk  into equation (3.55) to get 
 

 

Mα − pα = Iαβωβ
β
∑ − ς j ,k

α Qj
j=1

3N −6

∑
⎛

⎝⎜
⎞

⎠⎟
ωγ ςm,k

γ Qm
m=1

3N −6

∑
γ
∑

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥k=1

3N −6

∑

= Iαβ − ς j ,k
α Qj

j=1

3N −6

∑ ⋅ ςm,k
β Qm

m=1

3N −6

∑
⎛

⎝⎜
⎞

⎠⎟k=1

3N −6

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ωβ

β
∑

= µ−1⎡⎣ ⎤⎦αβ ωβ
β
∑ ,

 (3.60) 

 
where we have introduced a new matrix µ  whose inverse is defined by 
 

 µ−1⎡⎣ ⎤⎦αβ = Iαβ − ς j ,k
α Qj

j=1

3N −6

∑ ⋅ ςm,k
β Qm

m=1

3N −6

∑
⎛

⎝⎜
⎞

⎠⎟k=1

3N −6

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (3.61) 

 
Inverting equation (3.60) yields 
 
 ωα = µαβ M β − pβ( )

β
∑ ,  (3.62) 

 
and we finally find that 
 

 TN =
1
2

Mα − pα( )µαβ M β − pβ( )
α ,β
∑ +

1
2

Pk
2

k=1

3N −6

∑ ,  (3.63) 

 
and 
 

 HN =
1
2

Mα − pα( )µαβ M β − pβ( )
α ,β
∑ +

1
2

Pk
2

k=1

3N −6

∑ +
1
2

λkQk
2

k=1

3N −6

∑ +VN,n
anh  (3.64) 

 
for the classical rovibrational Hamiltonian. Although equation (3.64) is the result we will 
use in subsequent chapters, we should note that, as it stands, it is composed from a 
mixture of conjugate momenta (Pk ) and ordinary (angular) momenta (Mα − pα , for 
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α = x, y, z ). Indeed, it will soon be necessary to use a modification to equation (3.64) 
where the angular momenta are expressed as conjugate momenta to the Euler angles. So, 
we now endeavor to accomplish just that.  
From equation (3.55), we can write  
 

 

 

Mα =
∂TN
∂ωα

=
∂ φ
∂ωα

∂TN
∂ φ

+
∂ θ
∂ωα

∂TN
∂ θ

+
∂ χ
∂ωα

∂TN
∂ χ

=
∂ φ
∂ωα

Pφ +
∂ θ
∂ωα

Pθ +
∂ χ
∂ωα

Pχ ,
 (3.65) 

 

with  Pφ ≡ ∂TN ∂ φ , etc., and we therefore need to evaluate 
 

∂ φ
∂ωα

, and so on. From Figure 

3-1 and equations (3.2), we can write 
 
 

 
ωα = φ eα ⋅ eφ( ) + θ eα ⋅ eθ( ) + χ eα ⋅ eχ( ),  (3.66) 

 
or more precisely 
 

 

 

ω x = − φ sin θ( )cos χ( ) + θ sin χ( )
ω y = φ sin θ( )sin χ( ) + θ cos χ( )
ω z = φ cos θ( ) + χ.

 (3.67) 

 
This equation can readily be written in a matrix form and inverted to yield 
 

 

 

φ = −ω x csc θ( )cos χ( ) +ω y csc θ( )sin χ( )
θ =ω x sin χ( ) +ω y cos χ( )
χ =ω x cot θ( )cos χ( ) −ω y cot θ( )sin χ( ) +ω z .

 (3.68) 

  
If we write ′Mα ≡ Mα − pα , then we can use equations (3.58), (3.65), and (3.68) to get  
 

 

Pk
′Mx

′My

′Mz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1 0 0 0
−ak − csc θ( )cos χ( ) sin χ( ) cot θ( )cos χ( )
−bk csc θ( )sin χ( ) cos χ( ) − cot θ( )sin χ( )
−ck 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Pk
Pφ
Pθ
Pχ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,  (3.69) 

 
with, for  k = 1,…, 3N − 6 , 
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ak = ς j ,k
x Qj

j=1

3N −6

∑

bk = ς j ,k
y Qj

j=1

3N −6

∑

ck = ς j ,k
z Qj

j=1

3N −6

∑ .

 (3.70) 

 
We can use this result to replace ′Mα  with Pφ , Pθ , and Pχ  in equation (3.64) to write 
 

 HN =
1
2

′Pj ′µ jk ′Pk
j ,k=1

3N −3

∑ +
1
2

λkQk
2

k=1

3N −6

∑ +VN,n
anh ,  (3.71) 

 
with ′Pk  denote the elements of the vector formed with Pk ,Pφ , Pθ , and Pχ  (see equation 
(3.73) below). The elements ′µmn  are those of the matrix resulting from the pre- and post-
multiplication of µαβ  (augmented with a 3N − 6( ) × 3N − 6( )  unit sub-matrix) with the 
matrix (and its transposed version) of equation (3.69). That is, if we denote the matrix of 
equation (3.69) by W , then 
 

 ′µ =W T
1 0
0 µ
⎡

⎣
⎢

⎤

⎦
⎥W .  (3.72) 

 
It is also understood from this notation that in equation (3.71) the last three indices for the 
conjugate momenta in the first summation correspond to Pφ , Pθ , and Pχ . 

The matrix of equation (3.69) can easily be inverted to yield 
 

 

Pk = Pk
Pφ = − ′Mx sin θ( )cos χ( ) + ′My sin θ( )sin χ( ) + ′Mz cos θ( )

+ −ak sin θ( )cos χ( ) + bk sin θ( )sin χ( ) + ck cos θ( )⎡⎣ ⎤⎦Pk
k=1

3N −6

∑

Pθ = ′Mx sin χ( ) + ′My cos χ( ) + ak sin χ( ) + bk cos χ( )⎡⎣ ⎤⎦Pk
k=1

3N −6

∑

Pχ = ′Mz + ckPk
k=1

3N −6

∑ .

 (3.73) 

 
Its determinant, the reciprocal of that of matrix W  of equation (3.69), is calculated to be 
sin θ( ) . Therefore the determinant of ′µ  is given by 
 
 ′µ = µ csc2 θ( ),  (3.74) 
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with µ  the determinant of µ . 

3.3.2 The Quantum Mechanical Rovibrational Hamiltonian 
Now that we have obtained the classical, and canonical, form of the Hamiltonian, the 
only thing left to do is to transform it into the corresponding quantum mechanical 
expression. But as one may have already guessed, this is not as straightforward as we 
would hope. Accordingly, we will have to consider some mathematical intricacies before 
we can achieve our goal. 

3.3.2.1 Mathematical Considerations 
Although it was mentioned in Chapter 1 that the momentum operator P  appearing in 
equations of classical mechanics is to be replaced by the operator  −i∇  to obtain 
corresponding quantum mechanical equations, it is important to realize that this statement 
can only be true in general if Cartesian coordinates are used. For example, care must be 
taken when dealing with the term Pk

2  present in equation (3.64) for the rovibrational 
classical Hamiltonian. Indeed, this term involves the Laplacian ∇2 , and this operator can 
take non-intuitive forms in coordinates other than Cartesian. Consider for example its 
representation in spherical coordinates 
 

 ∇2 =
1
r2

∂
∂r

r2 ∂
∂r

⎡
⎣⎢

⎤
⎦⎥
+

1
r2 sin θ( )

∂
∂θ

sin θ( ) ∂
∂θ

⎡
⎣⎢

⎤
⎦⎥
+

1
r2 sin2 θ( )

∂2

∂ϕ 2 . (3.75) 

 
Obviously, this relation is more complicated in this coordinate system than it is in 
Cartesian coordinates, nor does it lead to the same as setting  
 

 
 
P̂ = −i er

∂
∂r

+ eθ
∂
∂θ

+ eϕ
∂
∂ϕ

⎡

⎣
⎢

⎤

⎦
⎥,  (3.76) 

 
and using P̂2 = P̂ ⋅ P̂  in the Hamiltonian. 
Another aspect that needs to be considered has to do with the normalization of the wave 
function appearing in Schrödinger equation. For example, if the wave function ψ c  is 
used when the Schrödinger equation is expressed with Cartesian coordinates, then we 
have 
 
 ψ c x, y, z( ) 2 dxdydz = 1.∫  (3.77) 
 
Accordingly, if one switches to spherical coordinates equation (3.77) becomes 
 
 ψ c r,θ,ϕ( ) 2 r2 sin θ( )drdθdϕ = 1.∫  (3.78) 
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Although it is perfectly correct to use equations (3.75) and (3.78) to pass from Cartesian 
to spherical coordinates when dealing with the Schrödinger equation, it is often the case 
that one desires to keep the simpler definition for the momentum operator expressed with 
equation (3.76). In general, given a generalized coordinate qk , the corresponding 
momentum P̂k  is defined as 
 

 
 
P̂k = −i ∂

∂qk
. (3.79) 

 
However, the time-independent Schrödinger equation must give the same results 
independently of which formalism one uses. It follows that if we are to use equation 
(3.79) for the definition of the generalized momenta, then we must introduce a 
prescription that will account for the form of the Laplacian (i.e., equation (3.75)) in the 
expression for the Hamiltonian. More precisely, if the Hamiltonian for a single particle of 
mass m  in a potential V  is 
 

 

 

Ĥ = −
2

2m
1
r2

∂
∂r

r2
∂
∂r

⎡
⎣⎢

⎤
⎦⎥
+

1
r2 sin θ( )

∂
∂θ

sin θ( ) ∂
∂θ

⎡
⎣⎢

⎤
⎦⎥
+

1
r2 sin2 θ( )

∂2

∂ϕ 2

⎧
⎨
⎩

⎫
⎬
⎭

+V r,θ,ϕ( ),
 (3.80) 

 
in spherical coordinates, then we cannot simply write that 
 

 Ĥ =
P̂2

2m
+V r,θ,ϕ( ),  (3.81) 

 
if P̂  is given by equation (3.76). 
To see how the expression for the Hamiltonian is to be modified, consider the general 
form of the classical Hamiltonian for a system composed of N  particles of mass mk , 

 k = 1,…,N , each bringing three generalized coordinates (for a total of 3N ) 
 

 
 
H =

1
2

gij qi qj
i, j=1

3N

∑ +V q( ).  (3.82) 

 
In equation (3.82) gij  are the elements of a 3N × 3N  matrix g , and each element is 
dependent on the particle masses and generalized coordinates (i.e., not the velocities). 
Incidentally, this matrix is closely related to the so-called metric tensor of general 
relativity (and tensor calculus). One of its main properties is that it allows for the 
evaluation of the “length” (in a general sense) over an interval in coordinate space. More 
precisely, we have 
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d2 = gijdqidqj

i, j=1

3N

∑ .  (3.83) 

 
This equation can be used to guess the values of gij . We want to make use of this 
connection to tensor calculus to push our analysis forward. To do so, we express the 
Hamiltonian with the momenta using 
 

 
 
pk =

∂T
∂ qk

= gik qi ,  (3.84) 

 
and g jkgik ≡ δ

j
i  (i.e., gij  are the elements of the inverse of g ), to get  qj = g

jk pk  and 
therefore 
 

 H =
1
2

gij pi pj
i, j=1

3N

∑ +V q( ). (3.85) 

 
If we now assert that in quantum mechanics we must substitute  pi → −i∇i , then as 
stated earlier the Laplacian enters the equation through the correspondence 

 g
ij pi pj → −2∇2 . But tensor calculus makes it clear as to how the Laplacian is to be 

calculated in any given coordinate system. More precisely, the divergence of a vector T  
of components T n  is given by 
 

 ∇ ⋅T =
1
g

∂
∂qn

gT n( ),  (3.86) 

 
where g  is the determinant of the matrix g  (of elements gij ). But since the Laplacian is 

the divergence of the gradient, we can write T n = gmn ∂
∂qm

 and  

 

 ∇2 = ∇ ⋅∇ =
1
g

∂
∂qn

ggmn ∂
∂qm

⎛
⎝⎜

⎞
⎠⎟
. (3.87) 

 
It follows that the Hamiltonian becomes 
 

 H =
1
2
g−1 2 pig

1 2gij pj
i, j=1

3N

∑ +V q( ).  (3.88) 

 
It should be noted that this relation is equally valid in classical or quantum mechanics. Of 
course, the quantum mechanical Hamiltonian will act on the wave function ψ c , which is 
expressed using Cartesian coordinates, in such a way as to obey Schrödinger equation 
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 Ĥψ c − Eψ c = 0.  (3.89) 
 
On the other hand, we will require that the wave function ψ  associated with the 
generalized coordinates also obeys the usual normalization rule (but see Section 3.3.2.2 
for an exception to that rule) 
 
 

 
ψ q1,…,qN( ) 2 dτ∫ = 1,  (3.90) 

 
where  dτ = dq1dqN  is the “volume” element associated with the N  generalized 
coordinates qk , for  k = 1,…, 3N . But tensor analysis also tells us of another connection 
that links the generalized coordinates qk  to the Cartesian coordinates xk , yk , zk , etc., of 
the particles. More precisely, we have that 
 
  dx1dy1dz1dxNdyNdzN = g dq1dq3N .  (3.91) 
 
So, combining equations (3.90) and (3.91) with the similar requirement for ψ c  
 
 

 
ψ c

2 dx1dzN∫ = ψ c
2 g dq1dq3N∫ = ψ 2 dq1dq3N∫ = 1,  (3.92) 

  
we find that 
 
 ψ c = g

−1 4ψ .  (3.93) 
 
Inserting this relation in equation (3.89) and multiplying on the left by g1 4  we get 
 
 Ĥψ − Eψ = 0,  (3.94) 
 
as required, and 
 

 Ĥ =
1
2
g−1 4 p̂ig

1 2gij p̂ j
i, j=1

3N

∑ g−1 4 +V q( ).  (3.95) 

3.3.2.2 The Final Form of the Quantum Mechanical Rovibrational Hamiltonian  
It should now be noted that equation (3.95) for the Hamiltonian can be applied to our 
previous result for the classical rovibrational Hamiltonian of equation (3.71), provided 
we make the following associations 
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gij ↔ ′µij

p̂i ↔ Pi

V q( )↔ 1
2

λkQk
2

k=1

3N −6

∑ +VN,n
anh .

 (3.96) 

   
We then get 
 

 ˆ ′HN =
1
2

′µ 1 4 ˆ ′Pi ′µ −1 2 ′µij
ˆ ′Pj

i, j=1

3N −3

∑ ′µ 1 4 +
1
2

λkQk
2

k=1

3N −6

∑ +VN,n
anh .  (3.97) 

 
However, this can be transformed as follows using equations (3.69), (3.72), (3.73), and 
(3.74) 
 

 

ˆ ′HN =
1
2
csc1 2 θ( )µ1 4 ˆ ′Pi sin θ( )µ−1 2WmiµmpWpjWjn

−1P̂nµ
1 4 csc1 2 θ( )

i, j ,m,n, p=1

3N −3

∑

+
1
2

λkQk
2

k=1

3N −6

∑ +VN,n
anh

=
1
2
csc1 2 θ( )µ1 4 ˆ ′Pi sin θ( )Wmiµ

−1 2µmnP̂nµ
1 4 csc1 2 θ( )

i,m,n=1

3N −3

∑

+
1
2

λkQk
2

k=1

3N −6

∑ +VN,n
anh .

 (3.98) 

 
It is, however, fairly straightforward to show that (using equation (3.69) for the elements 
Wim , and  

ˆ ′Pi ≡ −i∂i ) 
 

 ˆ ′Pi sin θ( )Wmi
i=1

3N −3

∑ = sin θ( ) Wmn
ˆ ′Pn

n=1

3N −3

∑ = sin θ( ) P̂m ,  (3.99) 

 
where it is understood that the components P̂m  are those of the vector on the left hand 
side of equation (3.69). Equation (3.98) becomes  
 

 
′ĤN =

1
2
sin1 2 θ( )µ1 4 M̂α − p̂α( )µ−1 2µαβ M̂ β − p̂β( )µ1 4 sin−1 2 θ( )

α ,β
∑

+
1
2
µ1 4 P̂kµ

−1 2P̂kµ
1 4

k=1

3N −6

∑ +
1
2

λkQk
2

k=1

3N −6

∑ +VN,n
anh .

 (3.100) 

 
It was mentioned earlier that the wave function associated with the Hamiltonian is 
usually made to obey the normalization condition expressed by equation (3.90). We will 
here depart from that rule when considering the Euler angles. That is, equation (3.90) will 
be respected for the 3N − 6  normal coordinates Qk , but we will rather use a 
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normalization form similar to that of equation (3.78) for the Euler angles. We therefore 
write 
 
 

 
ψ φ,θ,χ,Q1,…,Q3N −6( ) 2 sin θ( )dφdθdχdQ1dQ3N −6∫ = 1. (3.101) 

 
Because of this prescription we must slightly modify the expression for the Hamiltonian, 
reflecting in effect this choice of definition for the wave function. Accordingly, we 
absorb the sin−1 2 θ( )  factor in the first term of equation (3.100) within the wave function 
and multiply on the left by again sin−1 2 θ( )  to get 
 

 
ĤN =

1
2
µ1 4 M̂α − p̂α( )µ−1 2µαβ M̂ β − p̂β( )µ1 4

α ,β
∑ +

1
2
µ1 4 P̂kµ

−1 2P̂kµ
1 4

k=1

3N −6

∑

+
1
2

λkQk
2

k=1

3N −6

∑ +VN,n
anh .

 (3.102) 

 
At this point, it would be reasonable to assume that we are done and that equation (3.102) 
is the form to be used for the molecular quantum mechanical Hamiltonian. However, J. 
K. G. Watson showed in a rather mind-boggling paper1 that this relation can be 
significantly simplified by a judicious use of diverse commutation relations and sum 
rules. We will not study the details of Watson’s analysis and only use his final result, 
which states that the simplified Hamiltonian is given by 
 

 

 

ĤN =
1
2

Ĵα − p̂α − L̂α( )µαβ Ĵβ − p̂β − L̂β( )
α ,β
∑ +

1
2

P̂k
2

k=1

3N −6

∑ −
2

8
µαα

α
∑

+
1
2

λkQk
2

k=1

3N −6

∑ +VN,n
anh

 (3.103) 

  
where we have used M̂α = Ĵα − L̂α , with Ĵα  and L̂α  the total and electronic angular 
momenta, respectively. It should also be noted that on account of the following relation 
(also established by Watson) 
 
 p̂αµαβ

α
∑ = µαβ p̂α

α
∑ ,  (3.104) 

 
the order of the factors in the first term on the right hand side of equation (3.103) is 
irrelevant. A comparison of equations (3.64) and (3.103) shows the striking resemblance 
between the quantum mechanical and classical Hamiltonians, with the only difference in 
form due to the term 
 

                                                
1 Watson, James K. G. 1968, Molecular Physics, Vol. 15, No. 5, 479-490. 
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U = −

2

8
µαα

α
∑ . (3.105) 

 
This term can be thought of as a mass-dependent addition to the potential energy of the 
molecule, although it actually originates with its kinetic energy. In his paper, Watson also 
gave a prescription for expending µαβ  with a Taylor series in the normal coordinates 
about the molecular equilibrium configuration. But since we don’t expect the positions of 
the nuclei composing the molecule to deviate much from equilibrium, it will be sufficient 
for our purposes to approximate 
 
 

 
µαβ  µαβ

e = I e⎡⎣ ⎤⎦
−1{ }

αβ
.  (3.106) 

 
These elements correspond to the normalizing factor introduced earlier in the definition 
of the Rα  and Tα  coordinates (see equations (3.37)). One nice consequence of this 
approximation is that the products of inertia vanish at equilibrium (i.e., Iαβ

e = 0 , for 

α ≠ β ; see equations (3.31) and (3.34)), and therefore the same is true for µαβ
e  (i.e., 

µαβ
e = 0 , for α ≠ β ).  

Finally, it is common to make further simplifications by neglecting the presence of the 
electronic angular momenta L̂α  (Born-Oppenheimer approximation), the vibrational 
angular momenta p̂α  (small because of the Eckart conditions), the anharmonicity in the 
potential energy VN,n

anh , and U . Combining these simplifications we can express the 
approximate rovibrational Hamiltonian as 
 

 Ĥ rv
0 =

1
2

µαα
e Ĵα

2

α
∑ +

1
2

P̂k
2 + λkQk

2( )
k=1

3N −6

∑  (3.107) 

 
The first term on the right hand side of equation (3.107) is the so-called rigid rotator 
Hamiltonian, while the second term is the harmonic oscillator (vibrational) 
Hamiltonian. 


