
216 

Chapter 13. Electron Spin Double Groups 
Notes: 
• Most of the material presented in this chapter is taken from Bunker and Jensen 

(1998), Chap. 18.  

13.1 Half-integer Angular Momenta and the Operation R  
While determining the classification of the electronic wave function in Section 9.2 we 
found out that cases where there is a strong spin-orbit coupling (i.e., Hund’s case a)) need 
special attention, as the electrons are tied to the molecule-fixed axes and their spins must 
be quantized along this set of axes. Because of this the spin eigenfunctions are not totally 
symmetric and the symmetry and classification of the electronic wave functions cannot 
be determined without considering them. 
We considered the full rotation group K  in Section 10.2 and showed that the character of 
its only class is given by  
 

 χ J( ) Rα⎡⎣ ⎤⎦ =
sin J +1 2( )α⎡⎣ ⎤⎦

sin α 2( ) ,  (13.1) 

 
where Rα  is for a rotation by an angle α , as can be calculated from the representation 
provided by the set of wave functions Dmk

J( ) φ,θ,χ( )  of K mol( )  introduced in equation 
(4.88) of Chapter 4. We can also easily verify from equation (13.1) that 
 

 
χ J( ) Rα +2π⎡⎣ ⎤⎦ = −1( )2J χ J( ) Rα⎡⎣ ⎤⎦
χ J( ) Rα +4π⎡⎣ ⎤⎦ = χ J( ) Rα⎡⎣ ⎤⎦.

 (13.2) 

 
Something interesting happens when we consider cases where J  is half-integer 
(remember that J = N + S , with S  the electronic spin) where we find that 
 
 χ J( ) Rα +2π⎡⎣ ⎤⎦ = −χ J( ) Rα⎡⎣ ⎤⎦.  (13.3) 
 
It would thus appear that the character of a rotation is ambiguous for half-integer angular 
momenta. This is because we expect that 
 

 
χ J( ) Rα +2π⎡⎣ ⎤⎦ = χ J( ) RαR2π⎡⎣ ⎤⎦

= χ J( ) Rα⎡⎣ ⎤⎦,
 (13.4) 

 
since a rotation by 2π  should be equal to the identity operator E . It should be clear that 
equations (13.3) and (13.4) are at odds with each other. This apparent conflict can be 
resolved if we abandon the notion that R2π = E… Instead we will supplement the MS 
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group of a molecule (for cases where J  is half integer) by an operator R ≡ R2π  (and its 
product with all of the elements of the MS group) and treat it as different from E . That is 
to say, we now insist that 
 
 Rα +2π ≠ Rα ,  (13.5) 
 
and as importantly that 
 
 Rα +4π = Rα ,  (13.6) 
 
or 
 
 R4π ≡ R0 = E. (13.7) 
 
Furthermore, we require that R  commutes with all elements of the MS group. This 
augmented group (it is twice as big as the MS group) is called the spin double group. It 
should be noted that the MS group is not a subgroup of the corresponding spin double 
group. The spin double group of the full rotation group is denoted by K 2 . 

13.1.1 Euler Angles Transformations 

Although we need R  to transform the Euler angles in the functions Dmk
J( ) φ,θ,χ( )  (where 

J, k, and m  come into play; see Section 13.1.2 below), it must obviously leave no 
imprint on the Euler angles when dealing with the actual rotations of the molecule-fixed 
axes in relation to the space-fixed axes. A simple way to allow for these is to extend the 
ranges of the Euler angle to 0 ≤θ ≤ π , 0 ≤ φ ≤ 4π , and 0 ≤ χ ≤ 4π , and defining 
 
 R2π θ,φ,χ( ) = θ,φ,χ + 2π( )  or θ,φ + 2π ,χ( ).  (13.8) 
 
(This is consistent with the way we calculated equation (13.1) in Chapter10, and the fact 
that for a given J  the functions Dmk

J( )  transform among each other under the effect of the 
elements of the MS (and now the spin double) group; we therefore prefer that R  not 
affect θ .) Therefore, if we have R4π = R2π( )2 = R0 , then it must be that 
 
 R0 θ,φ,χ( ) = θ,φ,χ( )  or θ,φ + 2π ,χ + 2π( ).  (13.9) 
  
That is, there are two possible transformations for the Euler angles under the identity 
element. Similarly, referring to Table 9-3 on page 154 we find that 
 

 
Rz

β θ,φ,χ( ) = θ,φ,χ + β( )  or θ,φ + 2π ,χ + 2π + β( )
Rα

π θ,φ,χ( ) = π −θ,φ + π ,2π − 2α − χ( )  or π −θ,φ + 3π ,4π − 2α − χ( ),
 (13.10) 

 
and 
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R2πRz

β θ,φ,χ( ) = θ,φ,χ + 2π + β( )  or θ,φ + 2π ,χ + β( )
R2πRα

π θ,φ,χ( ) = π −θ,φ + π , 4π − 2α − χ( )  or π −θ,φ + 3π ,2π − 2α − χ( ).
(13.11) 

 
The existence of two representations is not a problem in practice, as they both lead to the 
same solution.  
It is possible to determine classes, irreducible representations, and character tables for 
any spin double group, just as it is the case for any MS group. Two examples of character 
tables for spin double groups are given below. 

Table 13-1 – The character table of the C2v M( )2  spin double group.  

C2v M( )2 :

Rrot :
 
E
1
R0

 
12( )
2
Rb

π

 
E∗

2
Rc

π

 
12( )∗
2
Ra

π

 
R
1
R2π

 

A1 : 1  1  1  1  1  
A2 : 1  1  −1 −1 1  
B1 : 1  −1 −1 1  1  
B2 : 1  −1 1  −1 1  
E1 2 :  2  0  0  0  −2  

 
In general, character tables, such as Table 13-1 for the C2v M( )2  spin double group, can 
have ordinary permutation (or permutation-inversion) R-type  operators within one class. 

In C2v M( )2 , 12( ),R 12( ){ } , E∗,RE∗{ } , and 12( )∗ ,R 12( )∗{ }  are different classes, for 

example. Also, the MS group corresponding to a spin double group is restricted to the 
sub-table confined on the “top-left” corner of the latter (the C2v M( )  character table is 
delimited by the dotted lines in Table 13-1). 

Table 13-2 – The (simplified) character table for the C3v M( )2  spin double group.  

C3v M( )2 :

Rrot :
 

E
1
R0

 
123( )
2

Rz
2π 3

 
23( )∗
6
Rπ 2

π

 
R
1
R2π

 
R 123( )
2

Rz
8π 3

 

 

A1 : 1  1  1  1  1   
A2 : 1  1  −1 1  1   
E : 2  −1 0  2  −1  

E1 2 :  2  1  0  −2  −1  
E3 2 :  2  −2  0  −2  2  : sep 
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For more complicated tables some classes can be grouped together to simplify the table. 
For example, in the case of C3v M( )2  in Table 13-2 the column for the 23( )∗  class 
actually stands for two classes that have complex conjugate characters for the E3 2  
irreducible representation; “sep” in the last column stands for “separable”. The complete, 
unabridged, character table can then be easily guessed. The full character table for 
C3v M( )2  is given in Table 13-3; it is seen that E3 2  is actually made up of two one-
dimensional irreducible representations (take note that E1 2  is not separable and is a true 
two-dimensional irreducible representation). 

Table 13-3 - The full character table for the C3v M( )2  spin double group.  

C3v M( )2 :

Rrot :
 
E
1
R0

 
123( )
2

Rz
2π 3

 
23( )∗
3
Rπ 2

π

 
R
1
R2π

 
R 123( )
2

Rz
8π 3

 

R 23( )∗
3
Rπ 2
3π

 

A1 : 1  1  1  1  1  1  
A2 : 1  1  −1 1  1  −1 
E : 2  −1 0  2  −1 0  

E1 2 :  2  1  0  −2  −1 0  
E3 2 :  1  −1 i  −1 1  −i  

 1  −1 −i  −1 1  i  
 
It is usual to make the following simplifications in the notation of equivalent rotations in 
character tables 
 

 
R2πRz

β → Rz
β+2π

R2πRα
π → Rα

3π .
 (13.12) 

13.1.2 Rotational Wave Function Transformations 

We now seek to evaluate how the rotational wave functions J,k,m  transform under the 

elements of the K mol( )2  group. In a way similar to what we did in Section 9.4.1, we 
build up these vectors from the fundamental J,1 2,1 2  vector with 

 
 
J,±k,±m = N± Ĵm

∓( )k∓1 2 Ĵs
±( )m∓1 2 J, 12 ,

1
2
,  (13.13) 

 
where N±  is some positive normalization constant. We know from equations (4.86) to 
(4.88) that 
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 J, 1
2
, 1
2
θ,φ,χ = Nei φ+χ( ) 2 −1( )σ cos θ 2( )⎡⎣ ⎤⎦

2J −2σ
sin θ 2( )⎡⎣ ⎤⎦

2σ

σ !( )2 J − 1
2
− σ⎛

⎝⎜
⎞
⎠⎟ ! J +

1
2
− σ⎛

⎝⎜
⎞
⎠⎟ !

σ =0

J −1 2

∑ ,  (13.14) 

 
where 
 

 N =
2J +1
8π 2 J + 1

2
⎛
⎝⎜

⎞
⎠⎟
! J − 1

2
⎛
⎝⎜

⎞
⎠⎟
!.  (13.15) 

 
Using the fact that cos θ 2( ) = sin π −θ( ) 2⎡⎣ ⎤⎦  and sin θ 2( ) = cos π −θ( ) 2⎡⎣ ⎤⎦ , we can 
transform equation (13.14) to 
 

 

J, 1
2
, 1
2
π −θ,φ + π ,2π − 2α − χ =

e− iαNei φ−χ( ) 2 −1( )σ sin θ 2( )⎡⎣ ⎤⎦
2J −2σ

cos θ 2( )⎡⎣ ⎤⎦
2σ

σ !( )2 J − 1
2
− σ⎛

⎝⎜
⎞
⎠⎟ ! J +

1
2
− σ⎛

⎝⎜
⎞
⎠⎟ !

σ =0

J −1 2

∑ .
 (13.16) 

 
Effecting the change of variable τ = J −1 2 − σ  in this equation yields 
 

 

J, 1
2
, 1
2
π −θ,φ + π ,2π − 2α − χ =

−1( )J −1 2 eiπ 2e− iαNei φ−χ( ) 2 −1( )τ sin θ 2( )⎡⎣ ⎤⎦
2τ +1

cos θ 2( )⎡⎣ ⎤⎦
2J −1−2τ

τ! τ +1( )! J − 1
2
− τ⎛

⎝⎜
⎞
⎠⎟ !

⎡
⎣⎢

⎤
⎦⎥

2
τ =0

J −1 2

∑ ,
 (13.17) 

 
which upon comparison with equation (4.86) gives 
 

 J, 1
2
, 1
2
π −θ,φ + π ,2π − 2α − χ = eiπ Je− iα J,− 1

2
, 1
2
θ,φ,χ .  (13.18) 

 
It is now straightforward to show from the first transformation on the right hand side of 
equations (13.10), and equations (13.14) and (13.18) that 
 

 
Rz

β J, 1
2
, 1
2

= eiβ 2 J, 1
2
, 1
2

Rα
π J, 1

2
, 1
2

= eiπ Je− iα J,− 1
2
, 1
2
.
 (13.19) 
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Since we already from equations (9.62), (9.63), and (9.64) that 
 

 

 

Rz
β Ĵm

± = e∓ iβ Ĵm
±Rz

β

Rα
π Ĵm

± = e± i2α Ĵm
∓Rα

π

Rz
β Ĵs

± = Ĵs
±Rz

β

Rα
π Ĵs

± = Ĵs
±Rα

π ,

 (13.20) 

 
then from equation (13.13) we find that 
 

 
Rz

β J,k,m = eikβ J,k,m
Rα

π J,k,m = eiπ Je−2ikα J,−k,m .
 (13.21) 

 
We see that equations (13.21) are a generalization that simplifies to equations (9.66) 
when J  is an integer. 

13.2  Correlation Tables (cf., Section 11.2 in Chapter 11) 
We already know that there can be many symmetry groups for a given molecule. Of 
course, the MS group is one but there are others such the CNPI, the full rotation group 
(K mol( ) ), and the spin double groups. Since each of these groups each have their 
character table, the question arises as to how do these diverse tables and irreducible 
representations relate to each other? More precisely, given a group G , how will its 
irreducible representations correlate to one of his subgroup H ? 

Let us assume that G  is of order g  with elements 
 
G1,G2 ,… ,Gg{ } , and that H  is of 

order h < g  with elements  H1,H2 ,… ,Hh{ } . We also simplify things by assuming that 
Gj = H j , for  j = 1,2,… ,h . This last assumption implies that we know how (the 
elements of) G  transforms under (the elements of) H . This is a situation we have 
encountered many time previously, as a representation Γα  of G  will be in general 
reducible when restricted to H  in such a manner. We, therefore, only need to apply 
equations (6.60) to find the number of times ai

α( )  that an irreducible representation Γ i  of 
H  will appear in the reducible representation Γα  
 

 ai
α( ) =

1
h

χΓα H j⎡⎣ ⎤⎦ χ
Γi H j⎡⎣ ⎤⎦

∗

j=1

h

∑ ,  (13.22) 

 
where χΓα H j⎡⎣ ⎤⎦  and χΓi H j⎡⎣ ⎤⎦  are the characters for Γα  and Γ i  for the operator 
H j = Gj . We then find that 
 
 Γα = ai

α( )Γ i
i
∑ .  (13.23) 
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Table 13-4 – The character table for Cs M( ) . 

Cs M( ) :

Rrot :
 

E
1
R0

 
E∗

1
Rc

π

 

′A : 1  1  
′′A :  1  −1 

 
As an example, let us reduce or correlate C2v M( )  to Cs M( )  (see the top-left corner of 
Table 13-1 for C2v M( )  and Table 13-4 for Cs M( ) ). Applying equation (13.22) we find 
 

 

a ′A
A1( ) = a ′A

B2( ) =
1
2
1+1( ) = 1

a ′′A
A1( ) = a ′′A

B2( ) =
1
2
1−1( ) = 0

a ′A
A2( ) = a ′A

B1( ) =
1
2
1−1( ) = 0

a ′′A
A2( ) = a ′′A

B1( ) =
1
2
1+1( ) = 1,

 (13.24) 

 
and from equation (13.23) 
 

 
A1 C2v M( )⎡⎣ ⎤⎦ = B2 C2v M( )⎡⎣ ⎤⎦ = ′A Cs M( )⎡⎣ ⎤⎦
A2 C2v M( )⎡⎣ ⎤⎦ = B1 C2v M( )⎡⎣ ⎤⎦ = ′′A Cs M( )⎡⎣ ⎤⎦.

 (13.25) 

 
In this simplest of example, every representation from C2v M( )  correlates to only one 
irreducible representation of Cs M( ) . But this is not the rule; it is more common to have  
“one-to-many” correlations. 
It is also often the case that we don’t know ahead of time how a group transforms under 
the group it is to be correlated to. This information must then be obtained on a case-by-
case basis. For example, let us consider the correlation of D 1 2( )  belonging to K mol( )2  

and C3v M( )2 . 

We must find the character of D 1 2( )  under the elements of C3v M( )2 . To do so, we use 
equation (13.1), which we rewrite here for convenience 
 

 χ J( ) Rα⎡⎣ ⎤⎦ =
sin J +1 2( )α⎡⎣ ⎤⎦

sin α 2( ) ,  (13.26) 
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and the first of equations (13.2) when R2π  is involved 
 
 χ J( ) R2πRα⎡⎣ ⎤⎦ = −1( )2J χ J( ) Rα⎡⎣ ⎤⎦.  (13.27) 
 
We will also need the following for cases where sin J +1 2( )α⎡⎣ ⎤⎦ = sin α 2( ) = 0  
 

 χ J( ) Rα⎡⎣ ⎤⎦ =
2 J +1 2( )cos J +1 2( )α⎡⎣ ⎤⎦

cos α 2( ) .  (13.28) 

 
The procedure consists into applying the equivalent rotation, i.e., Rrot , for each elements 

of C3v M( )2  in Table 13-2 in D 1 2( ) , and calculate the corresponding characters using 
equations (13.26) to (13.28). We can therefore calculate the following 
 

 

E→ R0 , χ 1 2( ) R0⎡⎣ ⎤⎦ = 2

123( )→ Rz
2π 3, χ 1 2( ) Rz

2π 3⎡⎣ ⎤⎦ = 1

23( )∗ → Rπ 2
π , χ 1 2( ) Rπ 2

π⎡⎣ ⎤⎦ = 0

R→ R2π , χ 1 2( ) R2π⎡⎣ ⎤⎦ = −2

R 123( )→ R2πRz
2π 3, χ 1 2( ) R2πRz

2π 3⎡⎣ ⎤⎦ = −1

 (13.29) 

 
We could use equations (13.22) and (13.23), but it is clear from Table 13-1 that 
 
 Γes D 1 2( )⎡⎣ ⎤⎦ = E1 2 . (13.30) 

 
We can perform the same procedure for D 1( )  to find 
 

 

E→ R0 , χ 1( ) R0⎡⎣ ⎤⎦ = 3

123( )→ Rz
2π 3, χ 1( ) Rz

2π 3⎡⎣ ⎤⎦ = 0

23( )∗ → Rπ 2
π , χ 1( ) Rπ 2

π⎡⎣ ⎤⎦ = −1

 (13.31) 

 
It is to be noted that there is no need to calculate characters for operators involving R , 
since this operator does not affect the character when J  is integer (see equation (13.27)). 
We therefore find that 
 
 Γes D 1( )⎡⎣ ⎤⎦ = A2 ⊕ E.  (13.32) 
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13.3 An Example: The CH3O  Symmetric Top Radical 

We now make use of everything covered so far in this chapter to evaluate the symmetry 
of the states for the CH3O  symmetric top, which is a radical (called the methoxy radical) 
of C3v M( )2  symmetry. This molecule has an 2E  electronic ground state (i.e., S = 1 2 ) 
with a totally symmetric (i.e., A1 ) vibrational ground state. 

13.3.1 Hund’s Case b) 
In this case of weak spin orbit coupling, the symmetry of the electronic spin wave 
function is Γes = A1  and, therefore Γeso = E  (‘eso’ stands for ‘electronic spin and orbit’). 
Although J = N ±1 2 , the term “weak coupling” of the electron spin to the molecule-
fixed axis implies that the symmetry of a rotational wave function is solely determined 
with the N  quantum number (an integer), not J   (half-integer in this case). We must 
therefore determine the classification of the rotational wave function N ,±K ,m  through 
its transformation under the different Rrot  of C3v M( ) . Using equations (13.21), we find 
 

 

 

E N ,±K ,m = R0 N ,±K ,m = N ,±K ,m
123( ) N ,±K ,m = Rz

2π 3 N ,±K ,m = e± i2Kπ 3 N ,±K ,m

23( )∗ N ,±K ,m = Rπ 2
π N ,±K ,m = −1( )N e∓ iKπ N ,∓K ,m

= −1( )N+K N ,∓K ,m .

 (13.33) 

 
This leads to the following characters 
 

C3v M( ) : E  123( )  23( )∗  
K = 0 : 1  1  −1( )N  
K > 0 : 2  2cos 2Kπ 3( )  0  

  
and irreducible representations 
 

K  Γ rot  

0
N  even
N  odd

⎧
⎨
⎩

 
A1
A2

 

3n ±1  E  
3n ± 2  E  
3n ± 3 A1⊕ A2  

 
for n  an integer. It is to be noted that the species realized for a given N  can be directly 
obtained by correlating D N( )  and C3v M( ) . We would then find that 
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Figure 13-1 – The symmetry labels of the energy levels of the CH3O  radical in the 2E  
vibronic ground state using Hund’s case b) (‘rves’ stands for ‘rovibronic and electronic 
spin’). 
 

 

 

Γ rot D 0( )⎡⎣ ⎤⎦ = A1

Γ rot D 1( )⎡⎣ ⎤⎦ = A2 ⊕ E

Γ rot D 2( )⎡⎣ ⎤⎦ = A1⊕ 2E, … ,

 (13.34) 

 
which is in agreement with the previous result. The rovibronic-electron spin species Γ rves  
are given in Figure 13-1. 

13.3.2 Hund’s Case a) 
We now have strong spin orbit coupling, and we must now use the spin double group 
C3v M( )2 . Since S = 1 2 , then we must correlate D 1 2( )  of K mol( )2  with C3v M( )2  to find 
the electronic spin symmetry. This was done previously, resulting in equation (13.30) 
rewritten here for convenience 
 
 Γes D 1 2( )⎡⎣ ⎤⎦ = E1 2 . (13.35) 

 
We can then write from Table 13-2 
 
 Γeso = E1 2 ⊗ E = E1 2 ⊕ E3 2 .  (13.36) 
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We must now realize that the term “strong coupling” of the electronic spin to the 
molecule-fixed axis implies that the symmetry of a rotational wave function must be 
determined with the J  quantum number, not N . We must now consider the fact that J  
is half-integer for determining the classification of the rotational wave functions. Using 
once again equation (13.21) we have 
 

 

 

E J,±K ,m = R0 J,±K ,m = J,±K ,m
123( ) J,±K ,m = Rz

2π 3 J,±K ,m = e± i2Kπ 3 J,±K ,m

23( )∗ J,±K ,m = Rπ 2
π J,±K ,m = eiπ Je∓ iKπ J,∓K ,m

= ei J ∓K( )π J,∓K ,m
R J,±K ,m = R2π J,±K ,m = e± i2Kπ J,±K ,m

R 123( ) J,±K ,m = R2πRz
2π 3 J,±K ,m = e± i8Kπ 3 J,±K ,m .

 (13.37) 

 
This leads to the following characters 
 

C3v M( )2 :  E  123( )  23( )∗  R  R 123( )  
 2  2cos 2Kπ 3( )  0  2cos 2Kπ( )  2cos 8Kπ 3( )  

  
and irreducible representations 
 

K  Γ rot  K  Γ rot  K  Γ rot  
3n ±1 2  E1 2  3n ± 3 2  E3 2  3n ± 5 2  E1 2  

 
for n  an integer. Correlation of D J( )  of K mol( )2  with C3v M( )2  will yield 
 

 

 

Γ rot D 1 2( )⎡⎣ ⎤⎦ = E1 2

Γ rot D 3 2( )⎡⎣ ⎤⎦ = E1 2 ⊕ E3 2

Γ rot D 5 2( )⎡⎣ ⎤⎦ = 2E1 2 ⊕ E3 2 , … ,

 (13.38) 

 
which is in agreement with the previous result. The rovibronic-electron spin species Γ rves  
are given in Figure 13-2. 
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Figure 13-2 - The symmetry labels of the energy levels of the CH3O  radical in the 2E  
vibronic ground state using Hund’s case a) (‘eo’ stands for ‘electronic orbit’). 
 


