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Chapter 12. Linear Molecules 
Notes: 
• Most of the material presented in this chapter is taken from Bunker and Jensen 

(1998), Chap. 17.  

12.1 Rotational Degrees of Freedom 
For a linear molecule, it is customary to align the molecule-fixed z-axiswith that which 
joins the different nuclei composing the molecule. It follows that the orientation of the 
nuclei of the (rigid) molecule is completely specified with only two Euler angles, 
φ  and θ , not three as was the case for non-linear molecules. As was discussed in 
previous chapters, a linear molecule made up of N  nuclei will have 3N − 5  vibration 
degrees of freedom, as opposed to 3N − 6  for the general non-linear molecule. 
Although it is perfectly feasible to write down a Hamiltonian using only two Euler 
angles, the absence of a third angle brings a fair amount of complications when the 
resulting Hamiltonian is compared to that for non-linear molecules, on which we have 
based everything we developed so far. For example, it is then found that 
− The components of the molecule-fixed angular momentum do not obey the 

“anomalous” commutation relations given in equation (4.70). 
− The rotational eigenfunctions are not the same as derived in Chapter 4 (i.e., the kets 

J,k,m ). 

− The rotational Hamiltonian and the associated energies for a linear molecule are 
more complicated than for a non-linear molecule. 

These reasons alone are sufficient to incite us to seek a treatment for linear molecules that 
would fit within the framework developed for non-linear molecules. 

Figure 12-1 – Position of the molecule-fixed axes attached to a diatomic molecule in 
relation to the space-fixed axes using the two Euler angles φ  and θ .  
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12.2 The Isomorphic Hamiltonian 
It is found that re-introducing the Euler angle χ  in the Hamiltonian and setting it to some 
arbitrary value resolves the aforementioned difficulties. This new Hamiltonian, called the 
isomorphic Hamiltonian, has one more degree of freedom and more eigenvalues and 
eigenfunctions. The correct number and set of eigenvalues and eigenfunctions (of the 
original Hamiltonian) are recovered by setting χ  to a constant, which is equivalent to 
setting its conjugate angular momentum along the molecular axis to zero.  Figure 12-2 
shows the orientation of the new set of molecule-fixed axes ( ′x , ′y , and ′z ) relative to 
original set ( x, y, and z ). In this new coordinate system the components of the angular 
momentum are 
 

 

Ĵx − p̂x − L̂x( ) = ˆ′Jx − ˆ ′px − ˆ ′Lx( )cos χ( ) − ˆ′Jy − ˆ ′py − ˆ ′Ly( )sin χ( )
Ĵy − p̂y − L̂y( ) = ˆ′Jy − ˆ ′py − ˆ ′Ly( )cos χ( ) + ˆ′Jx − ˆ ′px − ˆ ′Lx( )sin χ( )
Ĵz − p̂z − L̂z( ) = ˆ′Jz − ˆ ′pz − ˆ ′Lz( ) = 0,

 (12.1) 

 
where Ĵi , p̂i , and L̂i  are the total, vibrational, and electronic orbital angular momenta. 
 

Figure 12-2 – The two sets of molecule-fixed axes. The Euler angle χ  relating the two 
systems of coordinates is arbitrary. Also shown is a two-dimensional (i.e., twice 
degenerate) bending vibration mode of amplitude Q2  and angle α2 = χ +α2

′  in the 

original Hamiltonian, and of amplitude Q2  and angle α2
′  in the isomorphic Hamiltonian. 
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Evidently, the addition of the initially missing Euler angle does not affect the electronic 
and vibrational isomorphic Hamiltonians, while it transforms the rotational Hamiltonian 
(where the difficulties reside) into a form that closely resembles that of a prolate 
symmetric top (with the exception that Ae = 0 , see equations (4.94) and (4.95)). 
Accordingly, it becomes possible to set up a general total wave function composed of a 
product of electronic, vibrational (harmonic oscillator), and rotational (rigid rotor) wave 
functions. We further have that  
 

 

 

ˆ′Jz Φrot = k Φrot

ˆ ′pz Φvib = l Φvib

ˆ ′Lz Φelec = Λ Φelec

 (12.2) 

 
and in accordance with the last of equations (12.1) we set 
 
 k = Λ + l. (12.3) 
 
Focusing on the rotational component (since this is where the difficulties resided with the 
original Hamiltonian) we have for the isomorphic rigid rotor Hamiltonian (compare with 
equations (4.94) and (4.95)) 
 

 
Ĥ rot

iso = Be ˆ′Jx
2 + ˆ′Jy

2( )
= Be ˆ′J 2 − ˆ′Jz

2( ),  (12.4) 

 
for which the eigenfunctions are those of symmetric tops (see equation (4.86)) 
 

 Φrot
iso θ,φ,χ( ) = 1

2π
Θ jkm θ( )eimφeikχ .  (12.5) 

     
As was discussed in Chapter 4, linear molecules composed of N atoms (and therefore 
having 3N − 5  vibrational degrees of freedom) have N −1  one-dimensional stretching 
normal modes, and N − 2  two-dimensional bending normal modes. The resulting 
vibrational wave function can be written as (see equations (4.22) and (4.40)) 
 
  Φvib

iso = Φv1 , ,v2N−3
Q1,  ,Q2N −3( )eil1 ′α1eilN−2 ′αN−2 ,  (12.6) 

 
where Q1  to QN −2  are the amplitudes of the two-dimensional bending modes and QN −1  to 
Q2N −3  for the non-degenerate stretching modes. The N − 2  angles ′α j  associated with the 
amplitude Qj  are of the type shown in Figure 12-2. Accordingly, for the second bending 
mode we have, for example,  
 
 α2

′ = α2 − χ,  (12.7) 
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where α2  is the corresponding angle in the original Hamiltonian. The total vibrational 
angular momentum about the molecule axis from the second of equations (12.2) is 
 

 
 
l = l j

j=1

N −2

∑ .  (12.8) 

 
The last of equations (12.2) implies that ˆ ′Lz  commutes with the electronic isomorphic 
Hamiltonian (i.e., they share the same wave functions), which also means that we can 
write for the electronic isomorphic wave functions  
 
 Φelec

iso =ψ elece
iΛ ′χe ,  (12.9) 

 
where ψ elec  is some function of the electronic coordinates (similar to Θ jkm θ( )  or 

 Φv1 , ,v2N−3
Q1,  ,Q2N −3( ) , for example), and ′χe  is the conjugate angle for ˆ ′Lz  (i.e., 

defining electronic rotation about the ′z -axis ). Just as was the case for the degenerate 
bending modes we have 
 
 χe′ = χe − χ,  (12.10) 
 
where χe  is the corresponding angle in the original Hamiltonian.  

The important thing to note is that all three wave functions (i.e., equations (12.5), (12.6), 
and (12.9)) contain complex exponential that are functions of ′z -axis  angles. The full 
rovibronic wave function is, of course, the product of these functions and is subjected to 
equations (12.2) and (12.3). 

12.3 The MS Groups of Linear Molecules  
The only two possible MS groups for linear molecules are D∞h M( )  for centrosymmetric 
molecules (e.g., H2 , CO2 ) and C∞v M( )  for non-centrosymmetric molecules (e.g., CO, 
HCN). The C∞v M( )  group contains only the E  and E∗ , while D∞h M( )  contains the four 

elements E, p( ), E∗, and p( )∗ , where p( )  is the permutation of all pairs of identical 
nuclei located symmetrically about the nuclear centre of mass. The corresponding 
character tables are given in Table 12-1 and Table 12-2 (for CO2 ). 

Table 12-1 – The character table for the C∞v M( )  group. 

C∞v M( ) : E  E∗   
Σ+ ,+ : 1  1   
Σ− ,− : 1  −1 :Γ µA( )  
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Table 12-2 – The character table for the D∞h M( )  group of CO2 , with the labels 
associated to the oxygen nuclei. 

D∞h M( ) :  E  12( )  E∗  12( )∗   
Σg

+ ,+s : 1  1  1  1   
Σu

+ ,+a : 1  −1 1  −1  
Σg

− ,−a : 1  −1 −1 1   
Σu

− ,−s : 1  1  −1 −1 :Γ µA( )  

 

As can be inferred from Table 12-1 the two irreducible representations of C∞v M( )  (i.e., 
Σ± ) are labeled according to their parity, i.e., their character under E∗ . For the D∞h M( )  
group Table 12-2 shows that the four irreducible representations are labeled +s  (or Σg

+ ), 

+a  (or Σu
+ ), −s  (or Σu

− ), and −a  (or Σg
− ), where the ‘ ± ’ sign is set by the parity (i.e., 

their character under E∗ ), the ‘s’ or ‘a’ by the character under p( ) , and the ‘g’ or ‘u’ by 

the character under p( )∗ . 

12.3.1 The Symmetry Classification of the Wave Functions under the MS Groups 
The isomorphic rovibronic wave functions are obtained by the product of equations 
(12.5), (12.6), and (12.9). If we focus on HCN or CO2  as examples, we then have 
 

 
Φrve
iso =

1
2π

Θ jkm θ( )Φv1 , v2 ,v3
Q1,Q2 ,Q3( )ψ elece

imφeikχeil ′α2 eiΛ ′χe

=
1
2π

Θ jkm θ( )Φv1 , v2 ,v3
Q1,Q2 ,Q3( )ψ elece

imφeilα2 eiΛχe ,
 (12.11) 

 
where the label ‘2’ was chosen for the bending mode and equations (12.3), (12.7), and 
(12.10) were used to get the last equation. The last relation can easily be classified within 
the appropriate MS group since any dependency on the arbitrary Euler angle χ  has 
disappeared. It is in fact the case that Φrve

iso  is only a function of θ, φ, α2 , Q1, Q2 , Q3 , and 
the electronics coordinates. These all have very well defined transformation properties 
under the respective elements of the C∞v M( )  and D∞h M( )  groups. More precisely, we 
have for the angular transformations 
 

 

E∗ θ,φ( )→ π −θ,φ + π( )
E∗α2 →π −α2

E∗χe →π − χe .
 (12.12) 
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Figure 12-3 – Transformation of the Euler angles φ  and θ  and α2  under the effect of 
E∗ . 

These transformations are determined in the same manner as was done in Chapter 9, and 
can be verified through Figure 12-3 ( χe  is similar in nature to α2  and therefore 
transforms in the same manner). For the normal coordinates we find that 
 
 E∗ Q1,Q2 ,Q3( )→ Q1,Q2 ,Q3( ),  (12.13) 
 
as Q1  and Q3  are stretching modes along the z-axis  and are therefore unchanged, as is 
Q2  since it is a vibration amplitude and therefore unsigned. The other electronics 
coordinates (beside χe ) and orbitals will transform as shown in Chapter 9. 

For the D∞h M( )  group of centro-symmetric molecules we must then augment equations 
(12.12) with 
 

 
p( ) θ,φ,α i( )→ π −θ,φ + π ,−α i( )
p( )∗ θ,φ,α i( )→ θ,φ,α i + π( ).

 (12.14) 

 
As an example, let us we set Λ = 0  for the electronic ground state, then k = l  and the 
isomorphic rovibrational wave function is  
 

 Φrv
iso =

1
2π

Θ jlm θ( )Φv1 , v2 ,v3
Q1,Q2 ,Q3( )eimφeilα2 . (12.15) 
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This wave function (or associated ket) can then be symmetry-classified using equations 
(12.15), (12.12), and (12.14). If we define the ket corresponding to the Φrv

iso  wave 
functions with J,l,m,v1,v2 ,v3  we then have 
 

 

E J,l,m,v1,v2 ,v3 = J,l,m,v1,v2 ,v3
E∗ J,l,m,v1,v2 ,v3 = −1( )J + l J,−l,m,v1,v2 ,v3
p( ) J,l,m,v1,v2 ,v3 = −1( )J J,−l,m,v1,v2 ,v3
p( )∗ J,l,m,v1,v2 ,v3 = −1( )l J,l,m,v1,v2 ,v3 .

 (12.16) 

 
[NB: These relations were determined using Table 9-3 and equations (9.66), with the 
realization that if we substitute in them l→ k  and α2 → χ  we find the following 
correspondences  
 

 

E→ R0

E∗ → Rπ 2
π

p( )→ R0
π

p( )∗ → Rz
π ,

 (12.17) 

 
using the definitions for Rα

π  and Rz
β  given in Chapter 9.] 

If follows from equations (12.16) that for HCN (i.e., C∞v M( ) ) 
 

 

Φrv
+ =

Jeven ,0,m,v1,v2 ,v3 , l = 0

1
2

J, l ,m,v1,v2 ,v3 + J,− l ,m,v1,v2 ,v3⎡⎣ ⎤⎦, l ≠ 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

Φrv
− =

Jodd ,0,m,v1,v2 ,v3 , l = 0

1
2

J, l ,m,v1,v2 ,v3 − J,− l ,m,v1,v2 ,v3⎡⎣ ⎤⎦, l ≠ 0.

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (12.18) 

 
For CO2  (i.e., D∞h

M( ) ) we have for l = 0  
 

 
Φrv

+s = Jeven ,0,m,v1,v2 ,v3
Φrv

−a = Jodd ,0,m,v1,v2 ,v3 ,
 (12.19) 

 
while for l ≠ 0  
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Φrv
+s =

1
2

Jeven , l even ,m,v1,v2 ,v3 + Jeven ,− l even ,m,v1,v2 ,v3⎡⎣ ⎤⎦

Φrv
+a =

1
2

Jeven , l odd ,m,v1,v2 ,v3 + Jeven ,− l odd ,m,v1,v2 ,v3⎡⎣ ⎤⎦

Φrv
−a =

1
2

Jodd , l even ,m,v1,v2 ,v3 + Jodd ,− l even ,m,v1,v2 ,v3⎡⎣ ⎤⎦

Φrv
−s =

1
2

Jodd , l odd ,m,v1,v2 ,v3 + Jodd ,− l odd ,m,v1,v2 ,v3⎡⎣ ⎤⎦.

 (12.20) 

 
Although this symmetry classification procedure works well for the rovibronic and 
rovibrational wave functions, it fails, however, when we consider the rotational and 
vibrational wave functions separately. This is because both equations (12.5) and (12.6) 
are dependent on the arbitrary Euler angle χ  (remember equation (12.7)). The problem 
resides in the fact that there is no unique way to determine how this arbitrary angle 
transforms under the elements of the MS groups of linear molecules. Accordingly, it 
follows that we cannot specify the transformation of these wave functions and, therefore, 
their symmetry classifications within these MS groups. 

12.4 The Extended MS Groups of Linear Molecules 
Although we just saw that the MS group cannot be used to determine the symmetry of 
rotational or vibrational wave functions, it has been known for a long time that the point 
groups of linear molecules (C∞v  and D∞h ) can be used for the vibrational problem. 
Returning to our isomorphic formulation of the problem, we will now see that these 
groups will also work well for the vibronic portion. 
Considering once again HCN and CO2  as examples we have 
 

 
Φve
iso = Φv1 , v2 ,v3

Q1,Q2 ,Q3( )ψ elece
il1 ′α2 eiΛ ′χe

= Φv1 , v2 ,v3
Q1,Q2 ,Q3( )ψ elece

− ikχeilα2 eiΛχe ,
 (12.21) 

  
where the dependency on χ  is made explicit. But since we know from our discussion in 
Chapter 6 that dealt with the relationship between the MS and point groups that the latter 
leaves the molecule-fixed axes (and the Euler angles) unchanged, it follows that the 
′α2  and ′χe  vibronic angles have very well defined transformation properties within the 

point groups (see equations (12.24) below). As a result vibrational and electronic, as well 
as vibronic, wave functions are readily classified with the point groups. 
The different elements that can compose these point groups are as follows: 
− C∞

ε , a right-handed rotation of the vibronic variables about the ′z -axis  through an 
angle ε . There is an infinite number of such rotations, note that E = C∞

0 . 
− C2

ε 2 , a two-fold rotation of the vibronic variables about an axis that makes an angle 
(right-handed) of ε 2  relative to the ′x -axis . There are two such rotations for each 
value of ε . 
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− σ v
ε 2 , a reflection about a plane containing the ′z -axis  and another that makes an 

angle (right-handed) of ε 2  relative to the ′x -axis .  
− S∞

ε , an improper rotation that is the product of C∞
ε  and σ h , the plane perpendicular 

to the molecular axis (i.e., the ′z -axis ). There is an infinite number of such 
improper rotations, note that S∞

0 = σ h  and S∞
π = i . 

All of these elements are present in D∞h , while C2
ε 2  and S∞

ε  do not occur in C∞v . 

Correspondingly, we introduce the so-called extended MS groups C∞v EM( )  and 
D∞h EM( )  for which the character tables are given in Table 12-3 and Table 12-4. Each 
element composing these groups is chosen as to correspond to one (and only one) point 
group element. More precisely, we have   
 

 

E→ E
Eε → C∞

ε

p( )ε → C2
ε 2

Eε
∗ → σ v

ε 2

p( )π +ε
∗ → S∞

π +ε .

 (12.22) 

 
The elements p( )ε  and p( )π +ε

∗  are not part of C∞v EM( ) . In equations (12.22), as well as 
in Table 12-3 and Table 12-4, we have 0 ≤ ε ≤ 2π  but independently for each operator. 
The main idea in introducing these groups is to combine the power of the MS groups for 
the classification of rovibronic wave functions with that of the point groups for the 
vibronic wave functions.  

Table 12-3 – The character table for the C∞v EM( )  group (e.g., HCN), with the z-axis  
along the molecular axis. 

C∞v EM( ) :

C∞v :
Rrot :

 

E0
1
E
R0

 

Eε

2
2C∞

ε

Rz
−ε

 

 






 

∞Eε
∗

∞

∞σ v
ε 2

R π +ε( ) 2
π

  

+( )Σ+ :  1  1     1  :Tz  

−( )Σ− :  1  1     −1 : Ĵz ,Γ µA( )  
Π : 2  2cos ε( )     0  : Tx ,Ty( ), Ĵx , Ĵy( )  
Δ : 2  2cos 2ε( )     0   

                
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Table 12-4 – The character table for the D∞h EM( )  group for CO2 , with the z-axis  along 
the molecular axis. 

D∞h EM( ) :

D∞h :
Rrot :

 

E0
1
E
R0

 

Eε

2
2C∞

ε

Rz
−ε

 

 






 

∞Eε
∗

∞

∞σ v
ε 2

R π +ε( ) 2
π

 

12( )π
∗

1
i
R0

 

12( )π +ε
∗

2
2S∞

π +ε

Rz
−ε

 

 






 

∞ 12( )ε
∞

∞C2
ε 2

Rε 2
π

  

+s( )Σg+ :  1  1     1  1  1     1   
+a( )Σu

+ : 1  1     1  −1 −1    −1 :Tz  
−a( )Σg− : 1  1     −1 1  1     −1 : Ĵz  
−s( )Σu

− :  1  1     −1 −1 −1    1  :Γ µA( )  
          

Πg : 2  2cos ε( )     0  2  2cos ε( )     0  : Ĵx , Ĵy( )  

Πu : 2  2cos ε( )     0  −2  −2cos ε( )     0  : Tx ,Ty( )  
Δg : 2  2cos 2ε( )     0  2  2cos 2ε( )     0   
Δu : 2  2cos 2ε( )     0  −2  −2cos 2ε( )     0   

                            
 
Accordingly, the EM elements are defined such that a given operator Oε  has i) the same 
effect on the nuclear and electronic space-fixed coordinates and the θ  and φ  Euler angles 
as O  in the MS group, and ii) transform the Euler angle χ  as follows 
 

 

Eε χ = χ − ε
p( )ε χ = 2π − χ − ε

Eε
∗χ = π − χ − ε

p( )π +ε
∗ χ = χ − ε,

 (12.23) 

 
as can be verified from the equivalent rotations Rrot  listed in Table 12-3 and Table 12-4 
and Table 9-3. The transformations of the vibronic angles ′α i = α i − χ( )  and 
′χe = χe − χ( )  follow from the effects of the point group elements with 

 

 

Eεα i
′ = C∞

εα i
′ = α i

′ + ε

p( )ε α i
′ = C2

ε 2α i
′ = −α i

′ + ε

Eε
∗α i
′ = σ v

ε 2α i
′ = −α i

′ + ε

p( )π +ε
∗ α i

′ = S∞
π +εα i

′ = π +α i
′ + ε,

 (12.24) 
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as can be readily deduced from Figure 12-2 ( ′χe  behaves the same way as α i
′ ). If we 

define the vibrational wave functions for the two-dimensional bending mode of HCN or 
CO2  with v2 ,l  we have (using the relevant part of equation (12.21)) 
 

 

Eε v2 ,l = eilε v2 ,l

p( )ε v2 ,l = eilε v2 ,−l

Eε
∗ v2 ,l = eilε v2 ,−l

p( )π +ε
∗ v2 ,l = −1( )l eilε v2 ,l .

 (12.25) 

 
It follows that a pair v2 ,l , v2 ,−l( )  transform into one another and the associated 
irreducible species for CO2  are as given in Table 12-5. The one-dimensional stretching 
modes are totally symmetric for the reason stated when studying the MS groups. 
The classification of the rotational wave functions is done in exactly the same way as was 
shown in Chapter 9 for non-linear molecules. That is, one simply has to use the 
equivalent rotations listed in the EM groups and use equations (9.66). We then have  
 

 

Eε J,k,m = Rz
−ε J,k,m = e− ikε J,k,m

p( )ε J,k,m = Rε 2
π J,k,m = −1( )J e− ikε J,−k,m

Eε
∗ J,k,m = R π +ε( ) 2

π J,k,m = −1( )J + k e− ikε J,−k,m
p( )π +ε

∗ J,k,m = Rz
−ε J,k,m = e− ikε J,k,m .

 (12.26) 

 
Similarly as for the bending mode, the pair J,k,m , J,−k,m( )  transform into one 
another and the associated irreducible species for CO2  are as given in Table 12-6. 

Table 12-5 – The irreducible species of associated to the two-dimensional bending mode 
of CO2 . The results for HCN in C∞v EM( )  are obtained by omitting the ‘g’ and ‘u’ 
subscripts.   

l  Γ v2 ,l( )  

0  Σg
+  

±1  Πu  
±2  Δg  

±3  Φu  
      
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Table 12-6 – The irreducible species of associated to the rotational wave functions of 
CO2 . The results for HCN in C∞v EM( )  are obtained by omitting the ‘g’ subscripts. 

k  Γ J,k,m( )  

0  
Jeven , Σg

+

Jodd , Σg
−

⎧
⎨
⎪

⎩⎪
 

±1  Πg  

±2  Δg  

±3  Φg  

      
 


