
195 

Chapter 11. Non-rigid Molecules 
Notes: 
• Most of the material presented in this chapter is taken from Bunker and Jensen 

(1998), Chap. 15, and Bunker and Jensen (2005), Chap. 13.  

11.1 The Hamiltonian 
As was stated before, a rigid molecule is not one for which all the nuclei it contains are 
rigidly bound to each other, or for which the distance between the atoms cannot change. 
We know in fact that rigid molecules can rotate and vibrate. On the other hand, non-rigid 
molecules are different in that they can tunnel through a potential barrier from one 
configuration to another. We discussed this in Section 6.2 while considering the so-called 
feasible and unfeasible operators for a given molecule (see Figure 6-5 for the potential 
curve of methyl fluoride). 
Although the nuclei of rigid molecules generally do not stray too far from the equilibrium 
configuration, it is possible that one or several internal coordinates of a non-rigid 
molecule exhibit large excursions from their position of equilibrium; this is necessary to 
account for the possible tunneling of the molecule. It is, therefore, apparent that we must 
modify our analysis to correctly account for this type of motions. Most importantly the 
Hamiltonian must differentiate between normal, small-amplitude, vibrational coordinates 
(i.e., the normal coordinates) and the so-called contortional coordinates that are 
responsible for the tunneling (e.g., inversion of the molecule or internal rotations). While 
for rigid molecules we obtained a rotation-vibration Hamiltonian H

rv
 that was a function 

of the Euler angles !,",#( )  and the normal coordinates 
 
Q
1
,… ,Q

3N !6( ) , an in-depth 
study of non-rigid molecule necessitate the introduction of the so-called rotation-
contortion-vibration Hamiltonian H

rcv
 that is a function of the modified set of 

coordinates 
 
!,",#,$

1
,… ,$

r
,Q

1
,… ,Q

3N %6% r( ) , where !
i
, i = 1 to r , are the contortional 

coordinates. We will not attempt to do this, as it would take us to a level of specialization 
that is well beyond the level of this course. 
However, although the study of the contortional Hamiltonian is necessary to precisely 
determine the energy levels and transition frequencies, it is possible to understand the 
tunneling of non-rigid molecules by establishing the correspondence of the parent rigid 
molecule’s MS group to that of the less restrictive tunneling molecule. This is what we 
endeavor to do in this chapter. 

11.2 Correlation and Reverse Correlation Tables   
 Let us take the example of a molecule for which the MS group is D

3h
M( ) , the 

corresponding character table is given in Table 11-1. Let us also assume that a given 
matrix representation, ! , for that group was reduce to a block-diagonal arrangement of 
irreducible representations with a character of, say, 
 
 ! D

3h
M( )"# $% = &A

1
' &&A

2
' &E .  (11.1) 
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Table 11-1 – The character table for D
3h
M( ) , using the system of axes of Figure 11-1. 

D
3h
M( ) : 

E

1
 

123( )

2
 23( )

3

 E
!

1
 123( )

!

2

 
23( )

!

3

  

D
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:  E  2C

3
 2C

3
 !

h
 2S

3
 3!

v
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0  R
z

2! 3  R
0

!  R
z

!  R
z

5! 3  R
! 2

!   

A
1
! : 1 1 1 1 1 1 :!

zz
, !

xx
+!

yy  

!!A
1
: 1 1 1 !1 !1 !1 :! µ

A( )  

A
2
! : 1 1 !1 1 1 !1 : Ĵ

z
 

!!A
2
: 1 1 !1 !1 !1 1 :T

z
 

!E :  2 !1 0 2 !1 0 : T
x
,T

y( ), !
xx
"!

yy
,!

xy( )  

!!E :  2 !1 0 !2  1 0 : Ĵ
x
, Ĵ

y( ), !
xz
,!

yz( )  
 
The question we seek to answer is: what would the representation of equation (11.1) 
transform to if we restricted ourselves to a subgroup of D

3h
M( ) ? More precisely, 

imagine that for some considerations (that will become clear later on) we seek to express 
the representation !  using the C

3v
M( )  group, which is a subgroup of D

3h
M( ) . The 

character table of C
3v
M( )  is given in Table 11-2.   

To answer this question we must first realize that, although !  as given in equation (11.1) 
cannot be further reduced within D

3h
M( ) , this is not necessarily so in C

3v
M( ) . In fact, 

we should expect that a reduction of the representation is achievable. Fortunately, this is a 
problem that we have encountered before in Chapter 6 when discussing the reduction of a 
representation. In this case, the problem can be solved by addressing the more restricted 
question: given a group G  (e.g., D

3h
M( ) ), how will its irreducible representations, !

"
, 

correlate to those, !
i
, characterizing its subgroup H  (e.g., C

3v
M( ) )? 

Table 11-2 – The character table for C
3v
M( ) , using the system of axes of Figure 11-1. 

C
3v
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E
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2
 23( )
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v
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z
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,!
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We assume that G  is of order g  with elements 
 
G
1
,G

2
,… ,Gg{ } , while H  is of order 

h < g  with elements 
 
H
1
,H

2
,… ,H

h{ } , and that Gj = H j , for 
 
j = 1,2,… ,h . This last 

assumption implies that we know how (the elements of) G  transform under (the elements 
of) H . Our question is then simply answered by the application of equation (6.60) to find 
the number of times a

i

!( )  that an irreducible representation !
i
 of H  will appear in the 

reducible representation (within H ) !
"

 as follows 
 

 ai
!( )
=
1

h
"#! H j

$% &' "
#i H j
$% &'

(

j=1

h

) ,  (11.2) 

 
where !"# H

j
$% &'  and !"i H

j
$% &'  are the characters of !

"
 and !

i
, respectively, for the 

operator H j = Gj . We then find that 
 
 !" = a

i

"( )
!
i

i

# .  (11.3) 

 
For example, in the case where G = D

3h
M( )  and H = C

3v
M( )  we have (using Tables 

Table 11-1 and Table 11-2, and equation (11.2)) 
 

 

a
A1

A1
!( )
= a

A1

A2
!!( )
=
1

6
1 "1+ 2 " 1 "1( ) + 3 " 1 "1( ){ } = 1

a
A2

A1
!( )
= a

A2

A2
!!( )
=
1

6
1 "1+ 2 " 1 "1( ) + 3 " 1 " #1( )$% &'{ } = 0

a
E

A1
!( )
= a

E

A2
!!( )
=
1

6
1 "2 + 2 " 1 " #1( )$% &' + 3 " 1 "0( ){ } = 0

a
A1

!E( )
= a

A2

!E( )
=
1

6
2 "1+ 2 " #1( ) "1$% &' + 3 " 0 " ±1( )$% &'{ } = 0

a
E

!E( )
=
1

6
2 "2 + 2 " #1( ) " #1( )$% &' + 3 " 0 "0( ){ } = 1,

 (11.4) 

 
and so on. We therefore find from equations (11.1) and (11.4) that 
 
 ! C

3v
M( )"# $% = 2A1& E.  (11.5) 

 
We can easily verify that !  has the same character for the elements that are common to 
both groups. 
In general correspondences such as those expressed in equation (11.4) are listed in so-
called correlation tables. The correlation table for D

3h
M( )  to C

3v
M( )  is given in Table 

11-3. 
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Table 11-3 – The correlation table for D
3h
M( )  to C

3v
M( ) . 

D
3h
M( )  C

3v
M( )  

A
1
!  A

1
 

A
1
!!  A

2
 

A
2
!  A

2
 

A
2
!!  A

1
 

!E  E  
!!E  E  

 
Alternatively, we can also ask the related question: given a completely reduced 
representation, !" , in the subgroup H , what is the corresponding representation 
generated in the group G ? This is the problem of determining the reverse correlation 
from a subgroup to a parent group that was originally addressed (as well as the previous 
problem of direct correlation) by Watson (1965)1, who showed that the answer is simply 
 
 !" G[ ] = a

i

#( )
"#

i

$ ,  (11.6) 

 
where a

i

!( )   is as given in equation (11.2). It is therefore straightforward to write down 
reverse correlation tables. For example, the reverse correlation table for C

3v
M( )  to 

D
3h
M( )  is given in Table 11-4.  

Equation (11.6) is easily understood with our example even without a formal derivation. 
For example, a comparison of the corresponding character tables (i.e., Table 11-1 and 
Table 11-2) will show that the character of A

1
 in C

3v
M( )  can only be achieved through 

either A
1
!  or A

2
!!  in D

3h
M( ) . It should also be noted that the character of elements 

common between the two groups must always be the same. It therefore follows that the 
irreducible representation induced in the parent group will be weighted to ensure this. For 
example, if the totally symmetric representation A

1
 is realized n  times in C

3v
M( ) , then a 

possible induced irreducible representation in D
3h
M( )  will be mA

1
! " n # m( )A

2
!! , where 

m  will take a value between 0 and n  depending on the problem at hand.  

Table 11-4 – The reverse correlation table for C
3v
M( )  to D

3h
M( ) . 

C
3v
M( )  D

3h
M( )  

A
1
 A

1
! " A

2
!!  

A
2
 A

1
!! " A

2
!  

E  !E " !!E  
                                                
1 Watson, James K. G. 1965, Canadian Journal of Physics, vol. 43, 1996-2007.  
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Figure 11-1 – The two equivalent configurations of ammonia (NH
3
). This molecule can 

change from one configuration to the other through tunneling of the nitrogen nucleus.   

11.3 An Example: The Inversion of Ammonia 
The two possible equivalent configurations of the ammonia molecule are shown in Figure 
11-1. If only a rigid version of the molecule is considered, then only one configuration is 
needed and the associated MS group is C

3v
M( )  (see Table 11-2). The symmetry states of 

this molecule are essentially the same as for the methyl fluoride molecule (CH
3
F ) 

worked out in Problem 1 of the Third Problem List, with the difference that the nitrogen 
nucleus has a spin of 1 (the corresponding spins of carbon and fluoride are 0 and 1/2, 
respectively). We therefore have that the internal wave function !

int
 can only have the 

following symmetries 
 
 !

+
= A

2
and !

"
= A

1
,  (11.7) 

 
and that the statistical weights, due to the nuclear spins, associated to the realized 
symmetry species are 
 
 !

ns
= 12A

1
" 6E.  (11.8) 

 
Accordingly, the spin statistical weights for the rovibronic wave functions are given in 
Table 11-5.  
Table 11-5 - Spin statistical weights for the rovibronic wave functions of ammonia 
without inversion. 

 NH
3
   

!
rve

 !
ns,t

 !
int

 g
ns

 
A
1
 12A

1
 A

1
 12  

A
2
 12A

1
 A

2
 12  

E  6E  
A
1

A
2

!
"
#

$
%
&

 12  
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Table 11-6 - The realized rotational irreducible representations for NH
3
 in the vibronic 

ground state when treated as a rigid molecule in the vibronic ground state. The 2J +1( )  
degeneracy in m  is ignored, and n  is an integer. 

K  !  

0
J  even

J  odd

!
"
#

 
A
1

A
2

 

3n ±1  E  
3n  A

1
! A

2  

Furthermore, because ! µ
A( ) = A2  for this MS group it follows that the only transitions 

allowed for !
int

 are of the type 
 
 A

1
! A

2
.  (11.9) 

 
This in turn implies that in the totally symmetric vibronic ground state (i.e., !

rve
= !

rot
) 

the only allowed rotational transitions are of the types 
 

 
A

1
! A

2
, when "

ns
= A

1

E ! E, when "
ns
= E

 (11.10) 

 
as electric dipole transitions conserve the nuclear spin state. Furthermore, since the 
realized pure rotational irreducible representations are as given in Table 11-6, the 
rotational energy levels and allowed electric dipole transitions for J ! 3  are shown in 
Figure 11-2. All of these transitions have the same statistical weight of 12. The selection 
rules for pure rotational transitions of symmetric tops (i.e., !J = ±1, !K = 0 ) and the 
corresponding Hamiltonian (equation (4.99)) were also used to make this figure.  
If, however, we do allow tunneling of ammonia through inversion, then the two 
configurations of Figure 11-1 are connected, more permutation and permutation-
inversion are feasible, and the MS group becomes D

3h
M( ) . Using the corresponding 

character table (i.e., Table 11-1) we have the only realizable internal wave functions are 
 

 !
+
= A

2
" and !

#
= A

2
"" .  (11.11) 

 
The statistical weights for this molecule are the same as for H

3

+  given at the end of 
Chapter 8 (i.e., equation (8.29)) with the exception that the three states of the nitrogen 
nucleus have to be accounted for. We then have 
 
 !

ns
= 12 "A

1
# 6 "E .  (11.12) 

 
The corresponding spin statistical weights for the rovibronic wave functions are as given 
in Table 11-7.  
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Figure 11-2 – The pure rotational energy levels and allowed electric dipole transitions 
for J ! 3  when the ammonia molecule is treated as being of the rigid kind. All of these 
transitions have the same statistical weight of 12.  
It is to be noted that because the product 
 
 

 

!E
"rve

! # !E
"rve

! = A
1
! $ A

2
! $ !E  (11.13) 

 
produces only one of the allowed internal wave function species (i.e., A

2
! ), then each 

!
ns
= "E  contributes a statistical weight of only one even if it contains two nuclear spin 

functions. The same is true for !!E " !E . 

Table 11-7 – Spin statistical weights for the rovibronic wave functions of NH
3
 when 

inversion is taken into account. These follow from equation (11.12) and ! µ
A( ) = A1"" . 

!
rve

 !
ns

 !
int

 g
ns

 
!A
1

 __  __  0 
!!A
1

 __  __  0 
!A
2
 12 !A

1
 !A

2
 12 

!!A
2

 12 !A
1
 !!A

2
 12 

!E  6 !E  !A
2
 6 

!!E  6 !E  !!A
2

 6 
 
Considering once again the fact that electric dipole transitions conserve nuclear spin 
states we find that allowed transitions must obey 
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 A
2
! " A

2
!! , when #

ns
= A

1
!

!E " !!E , when #
ns
= !E .

 (11.14) 

 
The modifications that must be brought to the rotational energy levels and the allowed 
electric dipole transitions shown in Figure 11-2 are easily determined by using the 
reverse correlation table for going from C

3v 
M( )  to D

3h
M( )  (i.e., Table 11-4). Indeed, 

combining this reverse correlation table and Table 11-7 for the statistical weights of the 
rotational wave functions (we again set ourselves in the vibronic ground state) we find 
the correlations and statistical weights listed in Table 11-8. We therefore see that the 
A

1
 and A

2
 rotational species of C

3v 
M( )  do not actually split into A

1
! " A

2
!!  and A

2
! " A

1
!!  

of D
3h
M( ) , respectively, since A

1
!  and A

1
!!  are not realized (i.e., they have statistical 

weight of zero). On the other hand, the E   species of C
3v 

M( )  splits into !E " !!E  of 
D
3h
M( )  with equal weights.  

 

Figure 11-3 - The rotation-inversion energy levels and allowed electric dipole rotation-
inversion transitions for J ! 3  and v

inv
= 0 or 1 of the tunneling ammonia molecule. 

Missing levels with statistical weights of zero are shown with broken lines and their 
associated symmetry species in between parentheses. Allowed pure rotational electric 
dipole transitions are indicated by arrows. 
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Table 11-8 – The reverse correlation table for ammonia when going from C
3v
M( )  to 

D
3h
M( )  with the associated statistical weights in parentheses. 

C
3v
M( )  D

3h
M( )  

A
1
12( )  A

1
! 0( )" A

2
!! 12( )  

A
2
12( )  A

1
!! 0( )" A

2
! 12( )  

E 12( )  !E 6( )" !!E 6( )  
 
These results are presented in Figure 11-3 by displaying the pure rotation-inversion 
energy levels and allowed electric dipole transitions for J ! 3  of the tunneling ammonia 
molecule. The inversion splitting of the C

3v 
M( )  levels into the D

3h
M( )  levels are 

labeled with the v
inv

 (= 0 or 1 ) quantum number. The allowed transitions are indicated 
by arrows, and follow the aforementioned selection rules for symmetric tops and 
equations (11.14).  
It is important to realize that although group theory allows us to easily investigate the 
effects of tunneling for this molecule using reverse correlation tables, it does not quantify 
the splitting of the energy levels or their ordering, nor does it gives details as to the 
introduction of the inversion quantum number v

inv
, for example. For this, the rotation-

contortion-vibration Hamiltonian H
rcv

 must be carefully studied.   
 
 
 
 
 
 
 
 
 
 
 
 
 


