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Chapter 1. Quantum Mechanics 
Notes: 
• Most of the material presented in this chapter is taken from Cohen-Tannoudji, Diu, 

and Laloë, Chap. 3, and from Bunker and Jensen (2005), Chap. 2. 

1.1 The Postulates of Quantum Mechanics  

1.1.1 First Postulate 

At a given time t , the physical state of a system is described by a ket ! t( )  (using 
Dirac’s notation). From this ket a wave function dependent on position and time can be 
defined by the projection onto a basis defined by the bra r . That is the wave function is 
given by 
 
 ! r,t( ) " r ! t( ) .  (1.1) 
 
The symbol  is usually called a bracket. 
 
Equation (1.1) is the result of the following two definitions. First, the bracket is by 
definition a scalar product 
 
 ! " # d 3x! * x( )" x( )$ .  (1.2) 
 
Second, to the ket r  is associated a Dirac distribution 
 
 r !" x # r( ),  (1.3) 
 
such that  
 

 
r ! t( ) = d 3x" * x # r( )! x,t( )$

= d 3x" x # r( )! x,t( )$ =! r,t( ).
 (1.4) 

 
Note that the “orthogonality” of the r  kets is apparent from 
 

 
!r r = d 3x" x # !r( )" x # r( )$

= " !r # r( ) d 3x" x # !r( )$ = " !r # r( ).
 (1.5) 
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1.1.2 Second Postulate 

For every measurable physical quantity  A  corresponds an operator Â , and this 
operator is an observable. 
 
It is often the case that a representation of kets and operators is done through vectors and 
matrices, respectively. The action of the operator on the ket produces a new ket  
 
 ! = Â " ,  (1.6) 
 
and this action is the mathematical equivalent of the multiplication of a vector and a 
matrix. 

1.1.3  Third Postulate 
The outcome of the measurement of a physical quantity  A  must be an eigenvalue of the 
corresponding observable Â . 
 
Since observables are related to physical quantities, then the matrix associated with them 
must be Hermitian. This is because the eigenvalues of Hermitian matrices are real 
quantities (in a mathematical sense). Recall that a matrix is Hermitian when 
 
 Âij = Âji

* ,  (1.7) 
 
where *  stands for complex conjugation. Alternatively, a Hermitian operator is one that is 
self-adjoint. That is, 
 
 Â† = Â.  (1.8) 
  
When the matrix is of finite dimension, then the eigenvalues are quantized (a “matrix” of 
infinite dimension would correspond to a continuum; for example, a matrix acting on r  
would have to be of infinite dimension as r  encompasses the continuum made of all 
possible positions). 

1.1.4 Fourth Postulate 

The ket, say ! t( ) , specifying the state of a system is assumed normalized to unity. That 
is, 
 
 ! t( ) ! t( ) = 1.  (1.9) 
 
Alternatively, the associated wave function is also normalized, since 
 
 ! t( ) ! t( ) = d 3x! * x,t( )! x,t( )" = d 3x ! x,t( ) 2" = 1. (1.10) 
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This ket can also be expanded using any suitable (complete) basis of kets. For example, 
using the r  basis we have 
 
 ! t( ) = d 3r c r,t( ) r" ,  (1.11) 
 
where c r,t( )  is the coefficient (it is actually the wave function itself, see equations (1.1) 
and (1.4)) resulting from the projection of ! t( )  on r . Equation (1.11) can therefore 
be written as 
 
 ! t( ) = d 3r r ! t( )"# $% r& .  (1.12) 
 
Rearranging this last equation we have 
 
 ! t( ) = d 3r r r"#$ %

& ! t( ) ,  (1.13) 

 
which implies that  
 
 d 3r r r! = 1̂,  (1.14) 
 
where 1̂  is the unit operator (or matrix). Similarly any other normalized ket !  that can 

be expanded with a (complete) discrete and orthonormal basis ui  (i.e., ui u j = ! ij ) 
with 
 

 
! = ui !"# $% ui

i
&

= ci ui
i
& ,

 (1.15) 

 
is also normalized to unity, and we have the following relation for the basis 
 
 ui ui

i
! = 1̂.  (1.16) 

 
Equation (1.16) (as well as equation (1.14)) is a completeness relation that must be 
satisfied for the corresponding basis to be complete. In consideration of these facts and 
definitions, we can state the fourth postulate of quantum mechanics as follows: 
 
In measuring the physical quantity  A  on a system in the state ! , the probability of 
obtaining the (possibly degenerate) eigenvalue “a ” of the corresponding observable Â  
is 
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P a( ) = un

i !
2

i=1

gn

" ,  (1.17) 

 
for discrete states, with gn  the degree of degeneracy of “a ”, and un

i{ }  the set of 
degenerate eigenvectors. For continuum states the corresponding probability is given by 
 
  dP a( ) = va !

2
da,  (1.18) 

 
where va  is the eigenvector associated with the eigenvalue “a ”. 
 
We can apply this postulate to the case of a discrete degenerate state by starting with a 
generalization of equation (1.15) 
 

 ! = cn
i un

i

i=1

gn

"
n
" .  (1.19) 

 
Projecting this state on the set of states um

j  of degeneracy gm  (i.e.,  j = 1,2,…,gm ), and 
taking the square of the norm we get 
 

 

um
j !

2

j=1

gm

" = cn
i um

j un
i

i=1

gn

"
n
"

2

j=1

gm

"

= cn
i# ij#mn

i=1

gn

"
n
"

2

j=1

gm

"

= cm
j 2

j=1

gm

" .

 (1.20) 

  
We, therefore, see that the probability of finding the system in a state (or group of states) 
possessing a given eigenvalue is proportional to the square of the coefficient cm

j  that 
appears in the expansion defining the state in term of the basis under consideration (as is 
evident from equation (1.19)).  

Alternatively, we define the projector P̂n   
 

 P̂n ! un
i un

i

i=1

gn

"  (1.21) 
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as the operator that projects a given state, say ! , on the subspace containing the set of 

eigenvectors un
i{ }  that share the same eigenvalue. For example, using equation (1.21) 

on !  we find 
 

 P̂n ! = un
i un

i !
i=1

gn

" = cn
i un

i

i=1

gn

" ,  (1.22) 

  
and it is clear from a comparison with equation (1.19) that the only part of !  that is left 

is that corresponding to the subspace containing the eigenvectors un
i{ } . For a 

continuum of states, the projector is on the subspace va{ }  corresponding to the domain 
of eigenvalues specified by a1 ! a ! a2  is 
 
 P̂!a = va va daa1

a2" .  (1.23) 

 

1.1.5 Fifth Postulate 

If the measurement of the physical quantity  A  on a system in the state !  gave the 
value “ a ” as a result, then state of the system immediately following the measurement is 
given by the new state !"  such that (for discrete states) 
 

 !" =
P̂n "

" P̂n "
.  (1.24) 

 
This postulate simply ensures that the new ket (or wave function) describing the system 
after a measurement is suitably normalized to unity. Indeed, we can verify from equations 
(1.19) and (1.21) that 
 

 !" =
un
i un

i "
i=1

gn

#

" un
i un

i "
i=1

gn

#
=

cn
i un

i

i

gn

#

cn
i 2

i=1

gn

#
,  (1.25) 

 
and therefore 
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!" !" =
un
j cn

j( )*
j=1

gn

# $ cn
i un

i

i

gn

#

cn
i 2

i=1

gn

#
=

cn
j( )* cni% ij

i=1

gn

#
j=1

gn

#

cn
i 2

i=1

gn

#

=
cn
i 2

i=1

gn

#

cn
i 2

i=1

gn

#
= 1.

 (1.26) 

 

1.1.6 Sixth Postulate 
Although it is possible to give a “derivation” of Schrödinger’s equation, it is sufficient for 
our purposes to introduce it as the sixth, and last, postulate of quantum mechanics: 
 
The time evolution of the state vector ! t( )  of a system is dictated by the Schrödinger 
equation 
 

 
 
i!
d
dt

! t( ) = Ĥ t( ) ! t( ) ,  (1.27) 

 
where Ĥ t( )  is the Hamiltonian of the system, i.e., the observable associated with the 
energy of the system. 
 
In most cases, we will be dealing with a time-independent Hamiltonian that has so-called 
stationary states whose norms do not change as a function of time. More precisely, 
consider the following ket 
 
  ! t( ) = e" iEt ! # ,  (1.28) 
 
where E  is the energy associated with the state. It is clear that  
 
 ! t( ) ! t( ) = " " ,  (1.29) 
 
and if we insert equation (1.28) into Schrödinger equation (i.e., (1.27)), then find that 
 
 Ĥ ! = E !  (1.30) 

 
Therefore, the energy E  is the eigenvalue of the Hamiltonian Ĥ  for the stationary state 
! . Equation (1.30) is often referred to as the time-independent Schrödinger equation. 
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It is important to note that since the observables R̂ and P̂  associated with the position 
and the momentum, respectively, do not commute (i.e., R̂ ! P̂ " P̂ ! R̂ ) and that they 
usually appear in expressions for the Hamiltonian, rules of symmetry must be used when 
dealing with their products. For example, the following transformation would be applied 
for the simple product R̂ ! P̂  
 

 R̂ ! P̂" 1
2
R̂ ! P̂ + P̂ ! R̂( ).  (1.31) 

  

1.2 Important Operators and Commutation Relations 
Two measurable physical quantities that are included in the expression for the classical 
Hamiltonian are the position r  and the momentum p  vectors. Correspondingly, it is 
necessary to introduce the aforementioned operators R̂ and P̂  when setting up the 
quantum mechanical Hamiltonian. These two operators can be broken down into the 
usual three components 
 

 
R̂ = X̂ex + Ŷey + Ẑez
P̂ = P̂xex + P̂yey + P̂zez .

 (1.32) 

 
The complete basis r{ }  contains the eigenvectors for R̂ . More precisely, we can write 
 
 r = x y z ,  (1.33) 
 
and 
 
 X̂ x = x x  (1.34) 
 
or 
 
 X̂ r = x r .  (1.35) 
 
Similar relations hold for Ŷ  and Ẑ . We can also define a complete basis p{ }  of 
eigenvectors for the momentum operator such that 
 

 

p = px py pz

P̂x px = px px
P̂x p = px p ,

 (1.36) 
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and so on. The question is: what is the representation for P̂  when acting on the r{ }  (or 

that of R̂  for p{ } )? To answer this question we first note that the momentum basis 
satisfies relations that are similar to that satisfied by the position basis. That is, 
 

 

p0 !" p # p0( )
p $p = " p # $p( )

d 3p p p% = 1̂

p & =& p( ).

 (1.37) 

  
We now combine the second of these relations (i.e., the one concerning the orthogonality 
of the momentum kets) and equation (1.14) for the completeness of the r{ }  basis 
 

 

p !p = d 3r p r r !p"
= d 3r v* r;p( )v r; !p( )"
= # p $ !p( ),

 (1.38) 

 
where v r;p( ) ! r p  and is to be determined. Alternatively, we can combine equation 
(1.5) and the third of equations (1.37) and get  
 

 

r !r = d 3p r p p !r"
= d 3p v r;p( )v* !r ;p( )"
= # r $ !r( ).

 (1.39) 

 
We can consider equations (1.38) and (1.39) as the relations that define v r;p( ) . One 
form that satisfy these conditions is 
 

 
 
v r;p( ) = 1

2!!( )3 2
eip"r ! ,  (1.40) 

 
where  !  is some constant having the dimension of angular momentum, and we identify it 
with Planck’s constant (divided by 2! ).  
[Note: The fact that equation (1.40) satisfies both equations (1.38) and (1.39), can be 
verified by considering the Fourier transform pair between a function f r( )  and its 
transform f p( )  
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f r( ) = 1
2!!( )3 2

d 3p f p( )eip"r !#

f p( ) = 1
2!!( )3 2

d 3r f r( )e$ ip"r !# .
 (1.41) 

 
Equations (1.41) imply the following duality between the Fourier transform and its 
inverse 
 

 
f r( ) ! f p( )

f "r( ) ! f p( ).
 (1.42) 

 
For example, if we set f r( ) = ! r " #r( ) , then it is easy to show that  
 

 
 
f p( ) = 1

2!!( )3 2
d 3r" r # $r( )e# ip%r !& =

1
2!!( )3 2

e# ip% $r ! .  (1.43) 

 
Therefore, from the second of equations (1.42) we have 
 

 
 
! p " #p( ) = 1

2$!( )3 2
d 3r 1

2$!( )3 2
eir % #p !&

'
(
(

)

*
+
+
e" ip%r !, ,  (1.44) 

 
which is the same as equation (1.38) when v r;p( )  is given by equation (1.40). Similarly, 
we can first set f p( ) = ! p + "p( )  to get  
 

 
 
f r( ) = 1

2!!( )3 2
d 3p" p + #p( )eip$r !% =

1
2!!( )3 2

e& i #p $r ! ,  (1.45) 

 
and from the first of equations (1.42) we have  
 

 
 
! "r + #r( ) = ! r " #r( ) = 1

2$!( )3 2
d 3r 1

2$!( )3 2
e" i #r %p !&

'
(
(

)

*
+
+
eip%r !, ,  (1.46) 

 
which is the same as equation (1.39).] 
Having established that  
 

 
 
r p =

1
2!!( )3 2

eip"r ! ,  (1.47) 
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consider equation (1.1) while using the completeness relation for p{ }  (i.e., the third of 
equations (1.37)) 
 

 

 

! r,t( ) = r ! t( ) = d 3p r p" p ! t( )

=
1

2#!( )3 2
d 3peip$r !" ! p, t( ).

 (1.48) 

 
It is therefore apparent from this last equation that the two different forms of the wave 
function are related through the Fourier transform 
 
 ! r,t( )"! p, t( ).  (1.49) 
 
Finally, consider the action of the momentum operator on the ket ! t( )  with 
 

 

 

r P̂! t( ) = d 3p r P̂ p p ! t( )"
= d 3pp r p ! p, t( )" =

1
2#!( )3 2

d 3peip$r !p! p, t( )"

= %i!& 1
2#!( )3 2

d 3peip$r !! p, t( )"
'

(
)
)

*

+
,
,

= %i!& r ! t( ) .

 (1.50) 

 
We therefore find the fundamental result that the action of the momentum operator in the 
position basis r{ }  is represented by 
 
  P̂!"i!#  (1.51) 
 
In quantum mechanics the order with which measurements are made can be important. 
For example, the act of measuring the momentum of a system can affect its position, and 
vice-versa. It is therefore interesting to calculate the difference between two sets of 
measurements. Consider the following 
 
 ! = R̂P̂ " P̂R̂( ) # ,  (1.52) 
 
the ket resulting from the difference between measuring the momentum before the 
position on a system !  and measuring the position before the momentum. To proceed 
further, we project both sides of equation (1.52) on r , and use equation (1.51) to get 
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r ! = r R̂P̂ " P̂R̂( )# = r r P̂# " r P̂ R̂ #( )
= "i! r$ r # " $ r R̂ #%

&
'
( = "i! r$ r # " $ r r #( )%& '(

= "i! r$ r # " 1̂ r # " r$ r #%& '( = i!1̂ r # .

 (1.53) 

 
We, therefore, find the following important result 
 
 

 
R̂, P̂!" #$ % R̂P̂ & P̂R̂ = i!1̂,  (1.54) 

 
or alternatively 
 

 
 
R̂j , P̂k!" #$ = i!% jk  (1.55) 

 
where R̂, P̂!" #$  is the commutator of R̂ and P̂ . It should also be obvious that  
 
 R̂j , R̂k!" #$ = P̂j , P̂k!" #$ = 0.  (1.56) 
 
Another fundamental operator is that of the angular momentum  
 
 L̂ = R̂ ! P̂,  (1.57) 
 
which has the following commutation properties (Einstein’s summation convention 
adopted) 
 

 

 

R̂j , L̂k!" #$ = %klm R̂j , R̂l P̂m!" #$ = %klm R̂l R̂j , P̂m!" #$ + R̂j , R̂l!" #$ P̂m{ }
= %klm R̂l i!& jm( ) = i!% jkl R̂l

P̂j , L̂k!" #$ = %klm P̂j , R̂l!" #$ P̂m = %klm 'i!& jl( ) P̂m = i!% jkl P̂l ,

 (1.58) 

 
and 
 

 

 

L̂ j , L̂k!" #$ = % jmn R̂mP̂n , L̂k!" #$ = % jmn R̂m P̂n , L̂k!" #$ + R̂m , L̂k!" #$ P̂n{ }
= i!% jmn %nkl R̂mP̂l + %mkl R̂l P̂n{ }
= i! & jk&ml ' & jl&mk( ) R̂mP̂l + &nk& jl ' &nl& jk( ) R̂l P̂n{ }
= i! R̂j P̂k ' R̂k P̂j( ),

 (1.59) 

 
where we used !njm!nkl = " jk"ml # " jl"mk . The last equation can also be written as 
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L̂ j , L̂k!" #$ = i!% jkl L̂l  (1.60) 

 
If we consider the square of the total angular momentum L̂2 = L̂ j L̂ j , then we have 
 

 

 

L̂2 , L̂k!" #$ = L̂ j L̂ j , L̂k!" #$ + L̂ j , L̂k!" #$ L̂ j

= i!% jkl L̂ j L̂l & L̂ j L̂l( ) = 0̂
 (1.61) 

 
and 
 

 

 

L̂2 , R̂j!" #$ = L̂k L̂k , R̂j!" #$ + L̂k , R̂j!" #$ L̂k = %i!& jkl L̂k R̂l + R̂l L̂k( )
= %i!& jkl 2R̂l L̂k % i!&lkm R̂m( ) = 2 i!& jkl R̂k L̂l + !

2R̂j( )
L̂2 , P̂j!" #$ = 2 i!& jkl P̂k L̂l + !

2P̂j( ).
 (1.62) 

 
That is to say, any component of the angular momentum operator commutes with the 
square of the total angular momentum. On the other hand, the components of the position 
and momentum operators do not commute with the components, or the square, of the 
angular momentum. However, a little more work will show that  
 

 

 

L̂2 , R̂i R̂j!" #$ = 2!
2 R̂2% ij & 3R̂i R̂j( )

L̂2 , P̂iP̂j!" #$ = 2!
2 P̂2% ij & 3P̂iP̂j( ),

 (1.63) 

 
and most notably (using also equations (1.58)) 
 
 L̂k , R̂

2!" #$ = L̂k , P̂
2!" #$ = L̂2 , R̂2!" #$ = L̂2 , P̂2!" #$ = 0. (1.64) 

 
It is important to note that other operators (e.g., F̂, Î , Ĵ, N̂ ,  and Ŝ ) to be introduced later 
are also used to represent other angular momenta and spins. 

1.3 Heisenberg Inequality 
Whenever two observables Q̂ and P̂  satisfy the same commutation relation as the 
position and momentum operators, i.e.,  
 
 

 
Q̂, P̂!" #$ = i!,  (1.65) 

 
then we say that they are conjugate operators. Let’s assume that for both operators 
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Q = ! Q̂ ! = 0

P = ! P̂ ! = 0.
 (1.66) 

 
This is not a restriction, since we could always define new operators by subtracting Q  
and P  from Q̂ and P̂ , respectively, in the event that they weren’t null. Now consider the 
following quantity 
 
 I = ! Q̂2 ! ! P̂2 ! .  (1.67) 

 
If we define new states such that 
 

 
1 ! Q̂ "

2 ! P̂ " ,
 (1.68) 

 
then using the Schwarz Inequality we can write 
 
 I = 11 2 2 ! 1 2 2 1 ,  (1.69) 
 
since 1 2  is a scalar product. We can rewrite the last part of this inequality as follows   
 

 

1 2 2 1 =
1
4

1 2 + 2 1( )2 ! 1 2 ! 2 1( )2"
#

$
%

=
1
4

& Q̂P̂ & + & P̂Q̂ &( )2 ! & Q̂P̂ & ! & P̂Q̂ &( )2"
#'

$
%(

=
1
4

& Q̂P̂ + P̂Q̂ &( )2 ! & Q̂P̂ ! P̂Q̂ &( )2"
#'

$
%(

=
1
4

& Q̂, P̂{ }&( )2 ! & Q̂, P̂"# $% &( )2"
#'

$
%(
.

 (1.70) 

 
The quantity Q̂, P̂{ } ! Q̂P̂ + P̂Q̂  is commonly called the anti-commutator, for obvious 
reasons. We should note that  
 

 ! Q̂, P̂{ }!( )2 = ! Q̂, P̂{ }! 2

" 0,  (1.71) 

 

since ! Q̂, P̂{ }! = ! Q̂, P̂{ }! *
 because Q̂ and P̂  are observables (i.e., Hermitian 

operators). Taking this result into account, we can now insert equation (1.65) into 
equation (1.70) and find  



14 

 

 
 
! Q̂2 ! ! P̂2 ! "

!2

4
 (1.72) 

 
This last equation is a generalization of the so-called Heisenberg inequality, which is 
usually written as follows 
 

 
 
!Q " !P #

!
2
,  (1.73) 

 
with 
 

 
!Q " # Q̂2 #

!P " # P̂2 # .
 (1.74) 

 

1.4 Diagonalizing the Hamiltonian Matrix 
Given a basis ! i{ } , the elements of the Hamiltonian are calculated with 
 
 Hij = ! i Ĥ ! j . (1.75) 

 
It is straightforward to verify this equation with column and row vectors for the basis, and 
a matrix for the Hamiltonian. Using the position basis and its completeness relation we 
can express equation (1.75) with the wave functions that correspond to the basis 
 

 
Hij = ! i Ĥ ! j = d 3r" ! i r r Ĥ ! j

= d 3r" ! i
* r( ) Ĥ! j r( ),

 (1.76) 

 
where in the last expression it is implied that the Hamiltonian is expressed using its 
representation in the position basis. For example, for a free particle of mass m  whose 
classical Hamiltonian is 
 

 H =
p2

2m
,  (1.77) 

 
the corresponding quantum mechanical Hamiltonian operator in the last expression of 
equation (1.76) is  
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Ĥ = !

!2

2m
"2 .  (1.78) 

 
Most times, we would like to find the basis of eigenvectors ! j{ }  (with the 

corresponding eigenvalues Ej{ } ) for the Hamiltonian, such that 
 
 Ĥ ! j = Ej ! j ,  (1.79) 
 
where no summation on the index j  is implied. It is apparent from equation (1.79) that 
the Hamiltonian matrix in this representation is diagonal, hence its attractiveness for our 
problem. However, it is often the case that we have a basis ! j

0{ }  that, although it is 

complete, is not that of the eigenvectors for Ĥ . However, we can write 
 
 ! j = Cjk ! k

0

k
" ,  (1.80) 

 
i.e., we can always expand an eigenvector of the Hamiltonian as a function of the ! j

0{ }  

basis. We can further write (again no summation on j ) 
 

 
! i

0 Ĥ ! j = Cjk ! i
0 Ĥ ! k

0

k
" = Cjk Ĥik

k
"

= Ej ! i
0 ! j = Ej Cjk# ik

k
" = EjCji .

 (1.81) 

  
 where Ĥij = ! i

0 Ĥ ! j
0 . Alternatively, this equation can be written as 

 
 

 
Ĥik ! Ej" ik( ) !Ckj

k
# = 0,  (1.82) 

 
with  !C  is the transpose C  (i.e.,  

!Ckj = Cjk ). A non-trivial solution to the system of 
equations specified by (1.82) will be obtained by setting the following determinant to 
zero 
 
 Ĥik ! E" ik = 0,  (1.83) 
 
when the eigenvalue E  equals Ej . In other words, this is just a typical eigenvalue 
problem where all eigenvalues can be evaluated with equation (1.83). Once the 
eigenvalues Ej  have been found, the elements Cjk  of the transformation matrix C  can be 
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calculated with equation (1.82). But the orthonormality condition for the basis ! j{ }  

implies that 
 

 
! j ! k = ! m

0 Cjm
* Ckn ! n

0

n
"

m
" = Cjm

* Ckn ! m
0 ! n

0

m,n
" = Cjm

* Ckn#mn
m,n
"

= Cjm
* Ckm

m
" = # jk .

 (1.84) 

 
This last equation implies that the transformation matrix is unitary, that is 
 
 C† = C!1.  (1.85) 
 
If we introduce the diagonal matrix !  whose elements are the eigenvalues Ej  (i.e., 
!ij = Ei" ij , no implied summation), then from equations (1.82) and (1.85) we can write 
(with H  the Hamiltonian matrix) 
 
  H !C = !C!,  (1.86) 
 
or alternatively 
 
  !C!1H !C = ".  (1.87) 
 
Example 
 
We consider the case of a two-level system with the corresponding two-dimensional 
Hamiltonian matrix 
 

 H =
E1
0 H12

H12
* E2

0

!

"
#

$

%
&,  (1.88) 

 
where E1

0  and E2
0  are the eigenvalues of the unperturbed kets ! 1

0  and ! 2
0 . 

Straightforward application of equation (1.83) for the determination of the eigenvalues of 
the Hamiltonian yields 
 
 E1

0 ! E( ) E20 ! E( ) ! H12
2 = E2 ! E1

0 + E2
0( )E ! H12

2 ! E1
0E2

0( ) = 0,  (1.89) 

 
with the following roots 
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E1,2 =

1
2

E1
0 + E2

0( ) ± E1
0 + E2

0( )2 + 4 H12
2 ! E1

0E2
0( )"

#$
%
&'

=
1
2

E1
0 + E2

0( ) ± E2
0 ! E1

0( )2 + 4 H12
2"

#$
%
&'
.

 (1.90) 

 
If we set for convenience that E1

0 ! E2
0 , then we can write (with E1 ! E2 ) 

 

 
E1 = E1

0 ! S
E2 = E2

0 + S,
 (1.91) 

 
where 
 

 S =
1
2

!2 + 4 H12
2 " !#

$%
&
'(
) 0,  (1.92) 

 
and ! = E2

0 " E1
0 . To find the corresponding eigenvectors, we insert these energy levels, 

one at a time, in equation (1.82), and then use equation (1.84). For example, in the case of 
E1  equation (1.82) yields 
 

 
 

E1
0 ! E1( ) !C11 + H12

!C21 = 0

H12
* !C11 + E2

0 ! E1( ) !C21 = 0,
 (1.93) 

 
or from the second of these equations 
 

 
 
C12 = !C21 = !

H12
*

S + "
C11,  (1.94) 

 
while equation (1.84) adds the constraint 
 

 

1 = C11
*C11 + C12

* C12

= C11
2 1+

H12
2

S + !( )2
"

#
$
$

%

&
'
'
= C11

2
!2 + 4 H12

2 + !"
#$

%
&'

2

+ 4 H12
2

!2 + 4 H12
2 + !"

#$
%
&'

2

"

#

$
$
$
$

%

&

'
'
'
'

= C11
2 2

!2 + 4 H12
2

!2 + 4 H12
2 + !

"

#

$
$

%

&

'
'
.

 (1.95) 

 
We are certainly at liberty to write H12 = H12 e

i! , and we find that 
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C+ ! C11 =
1
2
1+ "

"2 + 4 H12
2

#

$

%
%

&

'

(
(

1 2

C) ! )C12
* = ei* 1) C11

2 =
ei*

2
1) "

"2 + 4 H12
2

#

$

%
%

&

'

(
(

1 2

,

 (1.96) 

 
where the sign and phase of C12  are dictated by that of H12  through equation (1.94). A 
similar exercise for E2  can be shown to yield C22 = C11 = C+  and C21 = !C12

* = C! . The 
eigenvectors are thus given by 
 

 
! 1 = C+ ! 1

0 " C"
* ! 2

0

! 2 = C+ ! 2
0 + C" ! 1

0 .
 (1.97) 

 
It is straightforward to verify that equation (1.86) is satisfied with the transformation 
matrix defined with equations (1.96) and (1.97).  
Let’s now concentrate on cases where H12  is real and small, i.e.,  H12

* = H12 ! ! . We 
can then calculate the following approximations 
 

 

 

S =
1
2

!2 + 4H12
2 " !#

$
%
& !

1
2

! 1+ 2H12
2

!2

'
()

*
+,
" !

#

$
-

%

&
.

!
H12

2

!

C+ =
1
2
1+ !

!2 + 4H12
2

#

$
-
-

%

&
.
.

1 2

!
1
2
1+ 1" 2H12

2

!2

'
()

*
+,

#

$
-

%

&
.

1 2

! 1" H12
2

2!2

C" =
1
2
1" !

!2 + 4H12
2

#

$
-
-

%

&
.
.

1 2

!
1
2
1" 1" 2H12

2

!2

'
()

*
+,

#

$
-

%

&
.

1 2

!
H12

!
.

 (1.98) 

 
We see that the amount by which the states ! 1

0  and ! 2
0  mix to form the new 

eigenvectors is a function of both H12  and ! . The smaller their ratio (i.e., H12 ! ) the 
more the states and energies of the true Hamiltonian resemble that of the unperturbed 
two-level system. It is also apparent that the perturbation has for effect to increase the 
energy difference between the two levels. 
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1.5 The Classical Molecular Hamiltonian 
To set up the quantum mechanical Hamiltonian for a molecule, we first write down the 
classical Hamiltonian and then make the appropriate coordinates changes before 
expressing the corresponding relation with the proper quantum mechanical operators. 
For a molecule made of a total of l  particles, with N  nuclei and l ! N  electrons, the 
total energy is given by the sum of the kinetic and potential energies T  and V , 
respectively. These two quantities are given by (using Système International units) 
 

 

 

T = 1
2

mr
!Xr
2 + !Yr

2 + !Zr
2( )

r=1

l

!

V = 1
4"#0

CrCse
2

Rrsr<s=1

l

! ,
 (1.99) 

 
where, for the r th  particle, mr  is the mass, the position is specified by Xr ,Yr , and Zr  and 
measured from some arbitrary space-fixed coordinate system, Cre  is the charge, and Rrs   
 

 Rrs = Xr ! Xs( )2 + Yr ! Ys( )2 + Zr ! Zs( )2  (1.100) 
 
is the distance to particle s . Finally, !0  is the permittivity of vacuum. We know that the 
kinetic energy can be decomposed into two components: one (TCM ) due to the motion of 
the centre of mass of the system, and another (Trve ) arising from the motions of the nuclei 
and electrons relative to the centre of mass. To separate these two terms, we introduce 
Xr ,Yr , and Zr  the position components of the r th  particle relative to the centre of mass 
located at X0,Y0, and Z0  such that 
 

 
Xr = Xr + X0

Yr = Yr + Y0
Zr = Zr + Z0.

 (1.101) 

 
Obviously, Rrs  is unchanged in quantity by the introduction of these new variables, but 
only in form with 
 

 Rrs = Xr ! Xs( )2 + Yr !Ys( )2 + Zr ! Zs( )2 .  (1.102) 
 
On the other hand, if we write the sum of the kinetic energies from particles  r = 2,…,l  
as a function of  X0,Y0,Z0,X2 ,Y2 ,Z2 ,…,Xl ,Yl ,Zl  and the associated velocities, we find 
that 
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1
2

mr
!Xr
2 + !Yr

2 + !Zr
2( )

r=2

l

! = 1
2

mr
!Xr
2 + !Yr

2 + !Zr
2( )

r=2

l

!

+ mr
!Xr
!X0 + !Yr !Y0 + !Zr

!Z0( )
r=2

l

!

+ 1
2

mr
r=2

l

!"#$
%
&'
!X0
2 + !Y0

2 + !Z0
2( ).

 (1.103) 

 
However, equation (1.103) is not that for the total kinetic energy, since it does not contain 
the contribution for the first (i.e., r = 1 ) particle. But because of equations (1.101) we can 
write that 
 

 mrXr
r=1

l

! = mr Xr " X0( )
r=1

l

! = 0,  (1.104) 

 
and 
 

 X1 = !
1
m1

mrXr
r=2

l

" ,  (1.105) 

 
with similar equations for Y1  and Z1 . Using this last equation (and the ones for Y1  and Z1 ) 
we find 
 

 

 

1
2
m1
!X1
2 + !Y1

2 + !Z1
2( ) = 1

2m1

mrms
!Xr
!Xs + !Yr !Ys + !Zr

!Zs( )
r ,s=2

l

!

" mr
!Xr
!X0 + !Yr !Y0 + !Zr

!Z0( )
r=2

l

!

+
1
2
m1
!X0
2 + !Y0

2 + !Z0
2( ).

 (1.106) 

 
Adding equations (1.103) and (1.106) together, we find that the total kinetic energy is 
 

 

 

T = TCM + Trve

=
1
2
M !X0

2 + !Y0
2 + !Z0

2( )

+
1
2

mr
!Xr
2 + !Yr

2 + !Zr
2( )

r=2

l

! +
1
2m1

mrms
!Xr
!Xs + !Yr !Ys + !Zr

!Zs( )
r ,s=2

l

! ,

 (1.107) 

 

where M = mr
r=1

l

!  is the mass of the molecule, and  
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TCM =
1
2
M !X0

2 + !Y0
2 + !Z0

2( )

Trve =
1
2

mr
!Xr
2 + !Yr

2 + !Zr
2( )

r=2

l

! +
1
2m1

mrms
!Xr
!Xs + !Yr !Ys + !Zr

!Zs( )
r ,s=2

l

! .
 (1.108) 

 
The index “rve” stands for rovibronic (rotation-vibration-electronic), and is associated 
with the internal kinetic energy of the molecule, as opposed to the external or 
translational kinetic energy. We see from equations (1.108) that we have, as expected, a 
complete separation of the translational and internal components of the energy. As far as 
we are concerned, we will not worry about the translational kinetic energy associated 
with the centre of mass of the molecule, and only use the rovibronic part of the energy 
Erve  when dealing with problems in molecular spectroscopy. More specifically, we have 
 
 Etotal = TCM + Erve ,  (1.109) 
 
with  
 

 

 

Erve = Trve +V

=
1
2

mr
!Xr
2 + !Yr

2 + !Zr
2( )

r=2

l

! +
1
2m1

mrms
!Xr
!Xs + !Yr !Ys + !Zr

!Zs( )
r ,s=2

l

!

+
1
4"#0

CrCse
2

Rrsr<s=1

l

! .

 (1.110) 

 
The rovibronic energy is the quantity that we need to consider to determine the 
spectroscopy of a molecule. 

1.6 The Quantum Mechanical Rovibronic Hamiltonian  
To convert the classical rovibronic energy Erve  into the needed quantum mechanical 
version of the Hamiltonian, we must first express equation (1.110) as a function of the 
coordinates Xr ,Yr , and Zr  and momenta PXr ,PYr , and PZr . We could then replace these 
quantities with the corresponding quantum mechanical operators (see equations (1.32) 
and (1.51)) and obtain an expression for the quantum mechanical Hamiltonian. To 
accomplish our first aforementioned task, we make use of the Lagrangian definition for 
the momenta, i.e., 
 

 
 
PXr =

!Lrve
! !Xr

,…,  (1.111) 

 
where Lrve ! Trve "V  is the (rovibronic) Lagrangian. In this case, since the potential 
energy is not a function of the velocities, then equation (1.111) simplifies to 
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PXr =

!Trve
! !Xr

,  (1.112) 

 
and so on. Using the second of equations (1.108) we find 
 

 

 

PXr = mr
!Xr +

mr

m1

ms
!Xs

s=2

l

! = mr
!Xr 1+

mr

m1

"
#$

%
&'
+
mr

m1

ms
!Xs

s=2
s( r

l

! ,  (1.113) 

 
with similar equations for PYr  and PZr . Equation (1.113) can be put in the following 
matrix form 
 

 

 

PX2
!
PXl

!

"

#
#
#

$

%

&
&
&
=
1+ m2 m1 " m2 m1

! # !
ml m1 " 1+ ml m1

'

(

)
)
)

*

+

,
,
,

m2
$X2
!

ml
$Xl

!

"

#
##

$

%

&
&&
,  (1.114) 

 
which in principle can be inverted to get  mr

!Xr  as a function of PXr . Although a solution 
to this problem (i.e., for an arbitrary number of particles) is not obvious at first sight, it is 
easy to calculate that in the simple case, where r = 2 or 3 , that 
 

 

 

m2
!X2

m3
!X3

!
"#

$
%&
=
m1

M
1+ m3 m1 'm2 m1

'm3 m1 1+ m2 m1

(

)
*

+

,
-
PX2
PX3

!
"#

$
%&

=
1' m2 M 'm2 M
'm3 M 1' m3 M

(

)
*

+

,
-
PX2
PX3

!
"#

$
%&
,

 (1.115) 

  
with M = m1 + m2 + m3 . We also rewrite the last of equations (1.108), and use equation 
(1.115) to find 
 

 

2Trve = m2
!X2 ,m3

!X3( )
1
m1

+
1
m2

1
m1

1
m1

1
m1

+
1
m3

!

"

#
#
#
#

$

%

&
&
&
&

m2
!X2

m3
!X3

'
()

*
+,
+"

= PX2 ,PX3( )
1- m2

M
-
m3

M

-
m2

M
1- m3

M

!

"

#
#
#
#

$

%

&
&
&
&

1
m1

+
1
m2

1
m1

1
m1

1
m1

+
1
m3

!

"

#
#
#
#

$

%

&
&
&
&

1- m2

M
-
m2

M

-
m3

M
1- m3

M

!

"

#
#
#
#

$

%

&
&
&
&

PX2
PX3

'
()

*
+,

+",

 (1.116) 

 
and multiplying the matrices 
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2Trve = PX2 ,PX3( )
1! m2

M
!
m3

M

!
m2

M
1! m3

M

"

#

$
$
$
$

%

&

'
'
'
'

1
m2

0

0 1
m3

"

#

$
$
$
$

%

&

'
'
'
'

PX2
PX3

(
)*

+
,-
+!

= PX2 ,PX3( )
1
m2

!
1
M

!
1
M

!
1
M

1
m3

!
1
M

"

#

$
$
$
$

%

&

'
'
'
'

PX2
PX3

(
)*

+
,-
+!,

 (1.117) 

 
or 
 

 Trve =
1
2mr

PXr
2 + PYr

2 + PZr
2( )

r=2

3

! "
1
2M

PXr PXs + PYr PYs + PZr PZs( )
r ,s=2

3

! .  (1.118) 

 
Although we limited ourselves to only three particles in the preceding example, we will 
take it on faith that this result can be extended to an arbitrary number of particles (it can 
be), and write  
 

 
Erve =

1
2mr

PXr
2 + PYr

2 + PZr
2( )

r=2

l

! "
1
2M

PXr PXs + PYr PYs + PZr PZs( )
r ,s=2

l

!

+
1
4#$0

CrCse
2

Rrsr<s=1

l

! ,
 (1.119) 

 
for the rovibronic energy of a molecule. 
We are now in a position to write down the equation for the quantum mechanical 
rovibronic Hamiltonian. Using equations (1.51) and (1.119) we have 
 

 
 
Ĥ rve = !!2

1
2mr

"r
2 +
!2

2M
"r #"s

r ,s=2

l

$
r=2

l

$ +
1
4%&0

CrCse
2

Rrsr<s=1

l

$  (1.120) 

 
with 
 

 !r = eX
"
"Xr

+ eY
"
"Yr

+ eZ
"
"Zr

,  (1.121) 

 
as a representation in the usual coordinate space. 
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1.7 The Rovibronic Schrödinger Equation 
 To the rovibronic Hamiltonian of equation (1.120) will correspond eigenfunctions !rve  
such that 
 
  Ĥ rve!rve X2 ,Y2 ,Z2 ,…,Xl ,Yl ,Zl( ) = Erve!rve X2 ,Y2 ,Z2 ,…,Xl ,Yl ,Zl( ),  (1.122) 
 
where Erve  is now an eigenvalue of the Hamiltonian. It is possible to show (using 
equations (1.64) and (1.105)) that the rovibronic Hamiltonian commutes with the total 
orbital angular momentum and its square, and thus share the same set of eigenfunctions 
with these operators. More precisely, defining Ĵ 2  and ĴZ  for the operators of the square 
and the Z-component  of the total orbital angular momentum, respectively, we have 
 

 

 

Ĥ rve!rve = Erve!rve

Ĵ 2!rve = J J +1( )!2!rve , J = 0,1,2,…

ĴZ!rve = m!!rve , m = 0,1,2,…, J

 (1.123) 

 
where J  and m  are the so-called total orbital angular momentum and projection quantum 
numbers, respectively. 

1.7.1 The Fine Structure and Hyperfine Structure Hamiltonians 
The rovibronic Hamiltonian of equation (1.120) does not take into account some 
interactions due to the intrinsic magnetic moment (i.e., spin) of the electrons, and the 
intrinsic magnetic and electric moments of the nuclei. More precisely, if we only consider 
the individual electron spins ŝi , and the so-called electron spin-spin and spin-orbit 
couplings, then the electron fine structure Hamiltonian Ĥ es  must be introduced 
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+

,
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/0
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;
<
,

 (1.124) 

 
where !  labels the nuclei, and i and j  label the electrons. In equation (1.124), the first 
term (a spin-orbit interaction) corresponds to the coupling of the spin of each electron to 
the magnetic field it feels (in its reference frame) because of the presence of the electric 
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Coulomb fields due to the other electrons (in their respective reference frames). The 
second term is also a spin-orbit interaction but this time with the Coulomb field of the 
nuclei, and the last term corresponds the spin-spin couplings between the intrinsic 
magnetic moments of each pair of electrons. The internal molecular Hamiltonian then 
becomes Ĥ int = Ĥ rve + Ĥ es , and the total angular momentum must include both the orbital 
and electron spin momenta. It is usual to denote the orbital angular momentum with N̂  
(instead of Ĵ ), and the total angular momentum with Ĵ . We then write 
 
 Ĵ = N̂ + Ŝ,  (1.125) 
 
where Ŝ  is the total electron spin operator. The associated quantum numbers J  and m  
refer to the sum of the orbital and spin angular momenta, and are those with which the 
molecular eigenfunctions can be labeled. 
On the other hand, if the interactions of the intrinsic magnetic and electric moments of 
the nuclei are taken into account, then the total angular momentum is denoted by F̂  with 
 
 F̂ = Ĵ + Î = N̂ + Ŝ + Î,  (1.126) 
 
where Î  is the total nuclear spin angular momentum. The corresponding nuclear 
hyperfine structure Hamiltonian Ĥhfs  will include nuclei spin interactions similar in 
form to those of equation (1.124), as well as terms due to the nuclei electric quadrupole 
fields. The internal molecular Hamiltonian then becomes 
 
 Ĥ int = Ĥ rve + Ĥ es + Ĥhfs ,  (1.127) 
 
and the good quantum numbers with which the associated eigenfunctions can be labeled 
are those corresponding to F̂2  and F̂Z , i.e., F  and mF  ( mF = 0,1,2,…,F ). 


