Lecture 7

Work Function; Electron Emission

Outline:

- 1. Work Function
- 2. Electron Emission
 - A. Thermionic Emission
 - B. Field Emission
 - C. Secondary Electron Emission
- 3. Measurements of Work Function

References:

- 1) Zangwill, p.57-63
- 2) Woodruff & Delchar, pp. 410-422, 461-484
- 3) Luth, pp.336, 437-443, 464-471
- 4) A. Modinos, "Field, Thermionic and Secondary Electron Spectroscopy", Plenum, NY 1984.

7.1 Work Function: Uniform Surfaces

- The "true work function" $e\phi$ of a uniform surface of an electronic <u>conductor</u> is defined as the difference between the electrochemical potential $\overline{\mu}$ of the electrons just inside the conductor, and the electrostatic potential energy $(-e\Phi_a)$ of an electron in the vacuum just outside
- $\overline{\mu}$ is work required to bring an electron isothermally from infinity to solid $\overrightarrow{\mu}$ $e\phi$ $\overline{\mu}$ $e\phi$ $\overline{\mu} = \left(\frac{\partial G}{\partial n_e}\right)_{T,P}$ (5.1) $e\phi = -e\Phi_o - \overline{\mu}$ (5.2) $\phi = -\Phi_o - \frac{\overline{\mu}}{e}$ (5.3)
- Note: $\overline{\mu}$ is function of internal AND surface/external (e.g., shifting charges, dipoles) conditions;
- We can define quantity μ which is function of internal state of the solid

Chemical potential of electrons: $\mu = \overline{\mu} + e\Phi_I$ Average electrostatic potential inside Lecture 7

Work Function

- The Fermi energy $[E_F]$, the highest filled orbital in a conductor at T=0K, is measured with respect to $(-e\Phi_I)$ and is equivalent to μ .
- We can write:

$$e\phi = -e\Phi_o + e\Phi_I - \mu \quad (5.4)$$

$$\phi = \Delta \Phi - \frac{\mu}{e} \tag{5.5}$$

- $\Delta \Phi$ depends on surface structure and adsorbed layers. The variation in ϕ for a solid is contained in $\Delta \Phi$.
- What do we mean by potential just outside the surface???

Potential just outside the surface

The potential experienced by an electron just outside a conductor is:

$$V(r) = -\frac{k_e e}{4r} = -\frac{e}{16\pi\varepsilon_o} = 8.99 \times 10^9 \frac{Nm^2}{C} \quad (5.6)$$

For a uniform surface this corresponds to Φ_{o} in (5.1):

 $V(r) \rightarrow 0 \text{ as } r \rightarrow \infty \text{ [in mV range for } r \ge 10^3 \text{ Å]}$

In many applications, an accelerating field, F, is applied:

Selected Values of Electron Workfunctions*

Element	φ(eV)	Element	φ(eV)	Element	φ(eV)
Ag	4.26	Cu	4.65	Si	4.85
Ag (100)	4.64	Cu(100)	4.59	Ru	4.71
Ag (110)	4.52	Cu(110)	4.48	Та	4.25
Ag (111)	4.74	Cu(111)	4.98	Ta (100)	4.15
Ва	2.52	lr (110)	5.42	Ta (110)	4.80
С	5.0	lr(111)	5.76	Ta (111)	4.00
Се	2.9	К	2.30	Ti	4.53
Cr	4.5	LaB ₆	2.66	W	4.55
Cs	2.14	Мо	4.60	Zr	4.05

Units: eV electron Volts;

*Reference: CRC handbook on Chemistry and Physics version 2008, p. 12-114. Lecture 7 5

Work Function: Polycrystalline Surfaces

Consider polycrystalline surface with "patches" of different workfunction, and different value of surface potential

i, Φ_{oi}	j,	k	I
m	m	0	р

At small distance r_o above ith patch electrostatic potential is Φ_{oi} At distances large w/r/t/ patch dimension:

$$\Phi_o = \sum_i f_i \Phi_{oi}, f_i = \text{fractional area of } ith \text{ patch}$$

So <u>mean</u> work function is given by:

$$e\overline{\phi} = \sum_{i} f_{i}e\phi_{i} \quad (5.10)$$

- at **low** applied field, electron emission controlled by: $e\overline{\phi}$ - at **high** field (applied field >> patch field) electron emission related to individual patches: $e\phi_i$

On real surfaces, patch dimension < 100Å, if $\Delta \phi \sim 2 \text{ eV}$ then patch field $F \sim 2V/(10^{-6} \text{ cm}) \sim 2 \times 10^{6} \text{ Volts/cm}$. work required to bring an electron from infinity to solid

Workfunction

Factors that influence work function differences on clean surfaces:

- Adsorbed layers
- Surface dipoles (cf. Zangwill, p 57)
- Smooth surface: electron density "spillover"

Fig. 4.2. Electron density profile at a jellium surface for two choices

the background density, r. (Lang & Kohn, 1970).

- Electron density outside rough surface
- For tungsten

<i>e </i>	W plane
5.70	(110)
4.93	(211)
4.39	(111)
4.30	(116)

Fig. 7.2 Charge distribution at a metal surface (schematic): (a) an atomically smooth surface; (b) an atomically stepped surface.

Lecture 7

Work function change upon adsorption

 Charge transfer at interface: electropositive (K, Na, ...) or electronegative (CI, O, F, ...)

Model dipole layer as parallel plate capacitor:

 $\Delta \phi = \frac{n\mu}{\varepsilon_o} \quad \mu \text{ - dipole moment [C m]; n - surface charge density [m^{-2}]; \varepsilon_o = 8.85 \times 10^{-12} [C / Vm]$

Suppose $\Delta \phi$ = 1.5V for 1×10¹⁵/cm² O atoms on W (100). What is μ ? For molecules with a permanent dipole moment:

8

7.2.1 Electron Sources: Thermionic Emission

Thermionic emission occurs when sufficient heat is supplied to the emitter so that e's can overcome the work function, the energy barrier of the filament, E_w , and escape from it

7.2.1 Electron Emission: Thermionic Emission

- Richardson plot: In(j/T²) vs 1/T ⇒
 - \Rightarrow straight line

• Schottky Plot

$$e\phi \rightarrow e\Phi_o - bF^{1/2}$$
 (cf.eq.5.9)
ln j vs $F^{1/2} \Rightarrow$ straight line

FIGURE 2.3

Schottky plots for four faces of tungsten. C = 8, 9, 7.9, 8.0 for the (100), (111), (116), and (112) planes, respectively. (From Smith, 1954).

7.2.2 Field Electron Emission

- Electron tunneling through low, thin barrier
 - Field emission, when F>3×10⁷ V/cm ~ 0.3 V/Å
- General relation for electron emission in high field:

$$j = e \int_{0}^{\infty} P(E_Z, F) v(E_Z) dE_Z$$

V-E₇)

• P is given by WKB approximation

$$P = const \times \exp\left(-\frac{2^{2/3}m^{1/2}}{\hbar}\int_{0}^{l}(V - E_{Z})^{1/2}dz\right)$$

- If approximate barrier by triangle: $\int \sim \frac{1}{2} \phi^{1/2} \frac{\phi}{F} \sim \frac{1}{2} \frac{\phi^{3/2}}{F}$ $P = const \times \exp\left(-\frac{2^{2/3} m^{1/2}}{\hbar} \frac{\phi^{3/2}}{F}\right)$
- Fowler Nordheim eqn, including potential barrier:

$$\int j = 1.54 \times 10^{-6} \frac{F^2}{\phi} t^2(y) \exp\left\{-6.83 \times 10^7 \frac{\phi^{3/2} f(y)}{F}\right\}; \text{ where } y = \frac{e^{3/2} F^{1/2}}{\phi}$$

How do we get high fields: Field Emission Microscope!

Fig. 6.5 Schematic drawing of one form of the field emission microscope. E, glass envelope; S, phosphorescent screen; B, tin oxide backing; A, anode connector; T, emitter tip.

W single crystal wire as tip. Typical pattern on phosphor screen

Get high field by placing sharp tip at

center of spherical tube.

Mag: R/r ~ 5cm/10⁻⁵cm ~ 500,000

 $F = cV; c \sim 5/r F \sim 5 \times 10^7 V/cm$

For V = 2,500 Volts.

Fig. 6.7 Field emission image from a clean W field emitter showing the symmetry typical of such patterns.

Lecture 7

Field Emission Properties

Fowler-Nordheim plots of field emission from the (116), (111), (211), and (110) planes of tungster (From Müller, 1955.)

(a) Theoretical total energy distributions [Eq. (1.88)] at various values of p. (b) Experimental total energy distributions from the (112) plane of tungsten at various values of p, where $d_0 = 0.146 \text{ eV}$ and $F = 3.48 \times 10^7 \text{ V/cm}$.

7.2.3 Secondary Electron Emission

Electrons emitted from surfaces after electron bombardment In general complicated phenomenon involving several interrelated processes

Generally classify secondaries into three categories:

- (I) Elastic ;
- (II) Inelastic;
- (III) "true" secondaries (KE < 50 eV)

Total coefficient for secondary emission,

 $\sigma = j_2 / j_i = r + \eta + \delta$ σ, δ Energy, E_n

For metals, max values: $r \sim 0.2$ ($E_p \sim eV$); ~ 0.02 (large E_p) $\eta \sim 0.3$ to 0.4; $\delta \sim 0.5$ to 1.8 ($E_p \sim few$ hundred eV) For insulators, σ can be MUCH higher (~ 20!!!!)

Fig.V.2. Qualitative large-scale overview of the energy distribution of electrons emitted from a surface which is irradiated by an electron beam of primary energy E_0 .

Secondary Electron Emission

• Establishment of stable potential for insulators and dielectric materials

In practice, steady state potential reached by dielectic is due mainly to incomplete extraction of secondary electrons

• For metals and semiconductors: Correlation between δ and density, ρ

7.3 Measurements of Workfunction

Absolute value of ϕ

- A. Photoemission $\phi = h \nu W$
- W = full width of energy distribution
- B. Thermionic Emission (Richardson's Equation)
- C. Field Emission Retarding Potential (FERP)

Workfunction difference

- A. Shelton Method
- B. Vibrating Capacitor Kelvin Probe http://www.kelvinprobe.info/