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Lecture 5
Nearly Free Electron Model
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1. Marder, Chapters 7-8

2. Kittel, Chapter 7
3. Ashcroft and Mermin, Chapter 9

4. Kaxiras, Chapter 3
5. Ibach, Chapter 7
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Sommerfeld’s theory does not explain all… 

Metal’s conduction electrons form highly degenerate Fermi gas

Free electron model: works only for metals
- heat capacity, thermal and electrical conductivity, magnetic susceptibility, etc

Drawbacks: 

predicted electron mean path is too long
increases with temperature

positive values for the Hall coefficient, magnetotransport

difference between a good conductor (10-10 Ohm-cm) and a good insulator 
(10-22 Ohm-cm) – 1032 !!!

Lecture 5 3

Electron Occupancy of Allowed Energy Bands

• No electrons can move in an electric field (energy band is completely filled or 
empty) – insulator ;

• One or more bands are partly filled – conductor

Basic Assumptions:  - crystal structure is periodic
- periodicity leads to formation of energy bands (allowed energy levels)
- energy bands are separated by energy gaps or band gaps (region in energy 

for which no wavelike electron orbital exist)

Adapted from Kittel
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5.1 Nearly Free Electron Model

In free electron model: all energy values from 0 to infinity are allowed
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Nearly free electron model: weak perturbation of electrons by periodic 
potential of ions
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Nearly Free Electrons

Consider the effects due to a periodic crystal structure

Under condition                               , the 

electron  wave will undergo Bragg 
reflection

Energy gaps develop at these k due to 
these reflections

At k = n π/a the wavefunctions are not
the traveling wave of free electrons
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The region between - π/a and π/a :

first Brillouin zone of this 1D lattice
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5.1.1 Brilloiun Zone in 1D: extended, reduced 
and repeated

Extended

Reduced

Repeated

BZ boundaries
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Reduction to the first Brillouin zone

This general demand of periodicity implies that the possible electron states are 
not restricted to a single parabola in k-space, but can be found on any 
parabola shifted by any G-vector:

For 1D case: 
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Brilloiun Zone in 3D : Wigner-Seitz cell of the reciprocal lattice

;   ;  ;such that    vectorsbasic are ,, where
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Brilloiun Zone in 3D

Recall: reciprocal lattice vector 

Some properties of reciprocal lattice:

The direct lattice is the reciprocal of its own reciprocal lattice 

The unit cell of the reciprocal lattice need not be a paralellopiped, e.g., 
Wigner-Seitz cell 

first Brilloin Zone (BZ) 
of the fcc lattice
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5.1.2 Origin of the Energy Gap
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For plane waves the charge 
density is not constant:

Crystal Potential - U The probability density of the particle is 

ψ*ψ = | ψ|2

For pure traveling wave:
1)exp()exp( =−= ikxikxρ
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Magnitude of the Energy Gap

The potential energy due to the crystal can be approximated as:

This potential has the periodicity of the lattice, U(x) = U (x + a)

The wavefunctions at the Brillouin zone boundary k =  π/a (normalized over unit 
length of line, a) are 

The difference between the two standing wave states is

The gap is equal to the Fourier component of the crystal potentia l
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5.2 Translational Symmetry – Bloch’s Theorem

Bloch’s theorem: the wave functions of the electrons in a crystal must be of a 
special form (the Bloch form)

uk(r) – the periodicity of the lattice (depends on the wave vector!)
Note: the Bloch function can be decomposed into a sum of traveling waves 
In 1D: Consider a crystal of length L = N a (N primitive u. c. of length a on a ring)
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Bloch’s Theorem

Bloch wave functions are periodic functions u (r) modulated by a plane wave of 
a longer period

Periodic function u (r)

For non-interacting electrons moving in a periodic potential, U (r)

)()( rURrU
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Translation Operators

Let         translate wave function by :R
T rˆ R
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Theorem : if one has a collection of Hermitian operators that commute with one 
another, they can be diagonalized simultaneously

Any eigenvector of the Hamiltonian can be taken as an eigenfunction of all the 
translational operators as well:

Use theorem:
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Translation Operators

Operating with eigenfunction of momentum:
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For a given value of Bloch wavevector, there is still the possibility of many 
energy eigenvalues (can be labeled by the band index n)

The eigenfunctions made possible by periodicity is:
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Allowed values of k

If crystal is periodic with (macroscopic) dimensions            then 
requiring                 to be periodic constrains      to  
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Periodic boundary condition place a condition on how small k can be

Demanding that                    be unique places conditions on how big k can beRki
R

eC
rr

r =

Number of points in crystal equals number of unique Bloch wave vectors
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Energy Bands and Group Velocities

Velocity of electrons in the nth band with wave number k is:
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Note: this is similar to the solution of wave equations for a group velocity:

Wave packet: 
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5.3 Kronig-Penney Model

The wave equation is

In the region 0<x<a (U = 0), the eigenfunction is a linear combination of plane 
waves traveling to the right and to the left with energy

In the region –b < x < 0 within the barrier the solution is 
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Kronig-Penney Model

Solution must be in the Bloch form:

The constants A, B, C, D are chosen so that wavefunction and its derivative are 
continuous at x = 0 and x  = a

At x = 0 A + B  = C + D

i K (A-B) = Q (C - D)

At x = a

Solution:
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Functions and Energy for the K-P potential
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First Brillouin Zone for fcc lattice
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First Brillouin Zone for bcc lattice

a

π4
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First Brillouin Zone for hcp lattice
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Example: Nearly Free Electron in 1D

Electrons of mass m are confined to one dimension. A weak periodic potential 
is applied:

(a) Under what conditions will the nearly free-electron approximation work?

(b) Sketch the three lowest energy bands in the first Brillouin zone. Number the 
energy bands (starting from one at the lowest band)

(c) Calculate (to first order) the energy gap at k = π /a (between the first and 
second band) and k = 0 (between the second and third band) 

a

x
V

a

x
VVxV o

ππ 4
cos

2
cos)( 21 ++=

Lecture 5 24



9

Lecture 5 25

Nth Brillioun zone: geometrical view

Nth Brillioun zone: geometrical view

Procedure:

• perpendicular bisectors are drawn 
between the origin and all nearby 
reciprocal lattice points ⇒ zone 
boundaries

• the 1st, 2nd, and 3rd BZ are shaded 
in different color (same volume)

• electron response to the external electric field same as for free electron 
till it approaches a zone boundary plane

• an electron once in the nth BZ remains in the nth BZ
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Example in two dimensions

Suppose 2D lattice has two conduction el. per lattice sites

The # of k-states in BZ = the # of lattice points

For a weak potential, shape of the energy surface ~ 
sphere
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Example in two dimensions

• Fermi surface 
completely 
enclosing the 1st BZ

• shape of surface is 
modified near the 
zone boundary

• portion of the Fermi 
surface in 2nd BZ is 
mapped back into 
the 1st zone

• portion of the Fermi 
surface in 3rd BZ is 
made continuous by 
translation through 
reciprocal lattice 
vectors

Harrison 
construction:

nth BZ mapped 
into 1st BZ
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Nearly Free Electron Fermi Surface Gallery

http://www.phys.ufl.edu/fermisurface/periodic_table.html


