
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sommerfeld's theory does not explain all...
Metal's conduction electrons form highly degenerate Fermi gas
Free electron model: works only for metals
- heat capacity, thermal and electrical conductivity, magnetic susceptibility, etc
Drawbacks: predicted electron mean path is too long increases with temperature positive values for the Hall coefficient, magnetotransport
difference between a good conductor $\left(10^{-10}\right.$ Ohm-cm) and a good insulator (10-22 Ohm-cm) - 1032!!!

\qquad
\qquad
\qquad
predicted electron mean path is too long \qquad
positive values for the Hall coefficient, magnetotransport
difference between a good conductor ($10^{-10} \mathrm{Ohm}-\mathrm{cm}$) and a good insulato
\qquad
\qquad

Electron Occupancy of Allowed Energy Bands

\qquad
\qquad
\qquad
\qquad

- No electrons can move in an electric field (energy band is completely filled or empty) - insulator ;
- One or more bands are partly filled - conductor

Basic Assumptions: - crystal structure is periodic

- periodicity leads to formation of energy bands (allowed energy levels)
energy bands are separated by energy gaps or band gaps (region in energy energy bands are separated by energy gap
for which no wavelike electron orbital exist)

5.1 Nearly Free Electron Model

In free electron model: all energy values from 0 to infinity are allowed

$$
\varepsilon_{\vec{k}}=\frac{\hbar^{2}}{2 m} \vec{k}^{2}=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)
$$

\qquad
Wavefunctions are in the form: $\psi_{\vec{k}}(\vec{r})=\exp (i \vec{k} \cdot \vec{r})$,
where the components of the wavevector \vec{k} are: $k_{x}=0 ; \pm \frac{2 \pi}{L} ; \pm \frac{4 \pi}{L} ; \ldots$
Nearly free electron model: weak perturbation of electrons by periodic potential of ions

Fizure 2 (as) Plot of energy \in vernus wayerecter k fora afree electron. (b) Plot of energy vessus
 tecrual values of n

Nearly Free Electrons

Consider the effects due to a periodic crystal structure

Brilloiun Zone in 3D

Brilloiun Zone in 3D: Wigner-Seitz cell of the reciprocal lattice
Recall: reciprocal lattice vector $\vec{G}=2 \pi n_{1} \vec{b}_{1}+2 \pi n_{2} \vec{b}_{2}+2 \pi n_{3} \vec{b}_{3}$,
where $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ are basic vectors such that $\vec{b}_{1}=\frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}} ; \vec{b}_{2}=\frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}} ; \vec{b}_{3}=\frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}} ;$ \qquad
Some properties of reciprocal lattice:
The direct lattice is the reciprocal of its own reciprocal lattice
The unit cell of the reciprocal lattice need not be a paralellopiped, e.g., Wigner-Seitz cell

5.1.2 Origin of the Energy Gap

Magnitude of the Energy Gap
The potential energy due to the crystal can be approximated as: $U(x)=U \cos \frac{2 \pi x}{a}$ This potential has the periodicity of the lattice, $U(x)=U(x+a)$ The wavefunctions at the Brillouin zone boundary $k=\pi / a$ (normalized over unit length of line, a) are $\sqrt{2} \cos \frac{\pi x}{a} \text { and } \sqrt{2} \sin \frac{\pi x}{a}$
The difference between the two standing wave states is
Lecture 5 10

\qquad
\qquad
\qquad
\qquad
\qquad

5.2 Translational Symmetry - Bloch's Theorem

Bloch's theorem: the wave functions of the electrons in a crystal must be of a special form (the Bloch form)

$$
\begin{gathered}
\psi_{\bar{k}}(\vec{r})=\exp (i \vec{k} \cdot \vec{r}) u_{k}(\vec{r}) \\
u_{k}(\vec{r})=u_{k}(\vec{r}+\vec{T})
\end{gathered}
$$

$u_{k}(r)$ - the periodicity of the lattice (depends on the wave vector!)
Note: the Bloch function can be decomposed into a sum of traveling waves In 1D: Consider a crystal of length $L=N a$ (N primitive u. c. of length a on a ring)

The periodic boundary condition demans that

Addition of the translational symmetry gives :

Bloch's Theorem

For non-interacting electrons moving in a periodic potential, $U(r)$

$$
U(\vec{r}+\vec{R})=U(\vec{r})
$$

Bloch wave functions are periodic functions $u(r)$ modulated by a plane wave of a longer period \qquad
Periodic function $u(r)$

Translation Operators

Let $\hat{T}_{\vec{R}}$ translate wave function by $\vec{R}: \quad \hat{T}_{\vec{R}}=e^{-i \frac{\hat{P} \cdot}{\hbar}}$

Theorem: if one has a collection of Hermitian operators that commute with one another, they can be diagonalized simultaneously

Any eigenvector of the Hamiltonian can be taken as an eigenfunction of all the translational operators as well:

Use theorem:

$$
\hat{T}_{\vec{R}}|\psi\rangle=e^{-i \frac{\hat{P} \bar{R}}{\hbar}}|\psi\rangle=C_{\vec{R}}|\psi\rangle
$$

$$
\psi(\vec{r}+\vec{R})=C_{\vec{R}} \psi(\vec{r})
$$

Translation Operators

Operating with eigenfunction of momentum:

\[\)| $e^{i \vec{i} \bar{K}}\langle\vec{k} \mid \psi\rangle=C_{\vec{k}}\langle\vec{k} \mid \psi\rangle$ |
| :--- | :--- | :--- |

\]

\Rightarrow| either $C_{\vec{R}}=e^{i \vec{k} \bar{R}}$ | or $\langle\vec{k} \mid \psi\rangle=0$ | $\vec{k}:$ Bloch wave vector
 $\hbar \vec{k}:$ Crystal momentum
 $n:$ Band index |
| :--- | :--- | :--- |

\qquad

For a given value of Bloch wavevector, there is still the possibility of many
\qquad energy eigenvalues (can be labeled by the band index n)
The eigenfunctions made possible by periodicity is: $\hat{H}\left|\psi_{n \vec{k}}\right\rangle=E_{n \bar{k}}\left|\psi_{n \bar{k}}\right\rangle$ \qquad
$\psi_{n \bar{k}}(\vec{r}+\vec{R})=e^{i \vec{k} \vec{R}} \psi_{n \vec{k}}(\vec{r}) \quad$ or $\hat{T}_{\vec{k}}\left|\psi_{n \vec{k}}\right\rangle=e^{i \vec{k} \bar{k}}\left|\psi_{n \bar{k}}\right\rangle$
$u_{n \bar{k}}(\vec{r})=e^{-\vec{k} \vec{k}} \psi_{n \vec{k}}(\vec{r})$

Allowed values of \mathbf{k}

$$
\begin{aligned}
& \text { If crystal is periodic with (macroscopic) dimensions } M_{1} \vec{a}_{1}, M_{2} \vec{a}_{2}, M_{3} \vec{a}_{3} \text { then } \\
& \text { requiring exp }[i \vec{k} \cdot \vec{r}] \text { to be periodic constrains } \vec{k} \text { to } \\
& \qquad \vec{k}=\sum_{l=1}^{3} \frac{m_{l}}{M_{l}} \vec{b}_{l}, 0 \leq m_{l} \leq M_{l} \text {, where } \vec{b}_{1} . . \vec{b}_{3} \text { are such that } \vec{b}_{l} \cdot \vec{a}_{l}=2 \pi \delta_{l l}
\end{aligned}
$$

Periodic boundary condition place a condition on how small k can be

Demanding that $C_{\vec{R}}=e^{i \vec{k} \bar{R}}$ be unique places conditions on how big k can be

Number of points in crystal equals number of unique Bloch wave vectors

Energy Bands and Group Velocities

Velocity of electrons in the nth band with wave number k is: \qquad

$$
\vec{v}_{n \bar{k}}=\frac{1}{\hbar} \nabla_{\vec{k}} E_{n \vec{k}}
$$

Note: this is similar to the solution of wave equations for a group velocity: $v=\frac{\partial \omega}{\partial k}$
Wave packet: $\quad W(\vec{r}, \vec{k}, t)=\int w(\vec{k}-\vec{k}) \cdot e^{k \vec{k}-\mathcal{F}_{i}, t h} \psi_{e^{e^{\prime}}}-\vec{k} d \vec{k} \cdot \vec{k}$ $\approx e^{\vec{k} \bar{k}-E_{i} t h} \int w\left(\overrightarrow{k^{\prime \prime}}\right) d \bar{k} \times e^{i \vec{k} \vec{k}-E_{i} t / h}$

5.3 Kronig-Penney Model

The wave equation is $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+U(x) \psi=\varepsilon \psi$
In the region $0<x<a(U=0)$, the eigenfunction is a linear combination of plane waves traveling to the right and to the left with energy $\varepsilon=\frac{\hbar^{K} K^{2}}{2 m}$

$$
\psi=A e^{i K x}+B e^{-i K x}
$$

In the region $-\mathrm{b}<\mathrm{x}<0$ within the barrier the solution is

Kronig-Penney Model

$$
\begin{aligned}
& \text { Solution must be in the Bloch form: } \\
& \psi(a<x<a+b)=\psi(-b<x<0) e^{i k(a+b)} \\
& \text { The constants } A, B, C, D \text { are chosen so that wavefunction and its derivative are } \\
& \text { continuous at } x=0 \text { and } x=a \\
& \text { At } x=0 \quad A+B=C+D \\
& \text { i } K(A-B)=Q(C-D) \\
& \text { At } x=a \quad A e^{i K a}+B e^{-i K a}=\left(C e^{-Q b}+D e^{\varrho b}\right) e^{i k(a+b)} \\
& i K\left(A e^{i K a}-B e^{-i K a}\right)=Q\left(C e^{-Q b}-D e^{\varrho b}\right) e^{i(a+b)} \\
& \text { Solution: } \quad\left[\left(Q^{2}-K^{2}\right) 2 Q K\right] \sinh Q b \sin K a+\cosh Q b \cos K a=\cos k(a+b) \\
& \text { In the limit } \mathrm{Q} \gg \mathrm{~K} \text { and } \mathrm{Qb} \ll 1 \\
& \frac{P}{K a} \sin K a+\cos K a=\cos k a
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

First Brillouin Zone for fcc lattice

In units of $\left.2 \pi / a, \Gamma=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right), X=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right), L=\left(\begin{array}{ll}1 / 2 & 1 / 2\end{array}\right] / 2\right), W=\left(\begin{array}{lll}1 / 2 & 1 & 0\end{array}\right)$,
$K=(3 / 43 / 40)$, and $U=(1 / 411 / 4)$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

First Brillouin Zone for hcp lattice

In units of $4 \pi / a \sqrt{3}, 4 \pi / a \sqrt{3}$, and $2 \pi / c$, along the three primitive vectors \vec{b}_{1}, \vec{b}_{2}, and \vec{b}_{3}; $\Gamma=(000), A=(001 / 2), M=(1 / 200), K=(1 / 31 / 30), H=(1 / 31 / 31 / 2)$, and $L=(1 / 201 / 2)$.

Example: Nearly Free Electron in 1D

Electrons of mass m are confined to one dimension. A weak periodic potential is applied:

$$
V(x)=V_{o}+V_{1} \cos \frac{2 \pi x}{a}+V_{2} \cos \frac{4 \pi x}{a}
$$

(a) Under what conditions will the nearly free-electron approximation work? (b) Sketch the three lowest energy bands in the first Brillouin zone. Number the energy bands (starting from one at the lowest band)
(c) Calculate (to first order) the energy gap at $k=\pi / a$ (between the first and second band) and $k=0$ (between the second and third band)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

