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Sommerfeld’s theory does not explain all...

—
Metal's conduction electrons form highly degenerate Fermi gas

Free electron model: works only for metals
- heat capacity, thermal and electrical conductivity, magnetic susceptibility, etc

Drawbacks:

predicted electron mean path is too long

increases with temperature

positive values for the Hall coefficient, magnetotransport

difference between a good conductor (101 Ohm-cm) and a good insulator
(1022 Ohm-cm) — 1032111
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Electron Occupancy of Allowed Energy Bands

oceupancy of allowed energy bar
nt

iconductors shown is
iers excited thermally. The other semiconductor is clectron-defi-

Adapted from Kittel
* No electrons can move in an electric field (energy band is completely filled or
empty) — insulator ;

* One or more bands are partly filled — conductor

Basic Assumptions: - crystal structure is periodic
- periodicity leads to formation of energy bands (allowed energy levels)

- energy bands are separated by energy gaps or band gaps (region in energy
for which no wavelike electron orbital exist)




5.1 Nearly Free Electron Model

In free electron model: all energy values from 0 to infinity are allowed

- h? K2 = n? 2 2 2
% S = (7 K)
Wavefunctions are in the form: ¢/ (F) = exp(k [F),
- 2n . 4An
where the components of the wavevector k are: kX = O;iT ;iT;

Nearly free electron model: weak perturbation of electrons by periodic
potential of ions

b Plot of energy versus
The encrey gap £

Nearly Free Electrons

Consider the effects due to a periodic crystal structure

- 1 nn
Under condition k=+=G =+— the
electron wave will undergo Bragg
reflection

Energy gaps develop at these k due to
these reflections

Atk = n rfa the wavefunctions are not
the traveling wave of free electrons

g g s
w/a 2e/a /s 0 wa 24 3w

5ed sone 200 2ome 1t some 0 sane 310 sone The region between - 7/aand7fa:

i 0 By s v vt (o s et Gty o first Brillouin zone of this 1D lattice

free cicctrons (soid lnes). Gaps develop at k = pr/a where p = 21, 22,
forth
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5.1.1 Brilloiun Zone in 1D: extended, reduced
and repeated
21wy
! : i 21v,1
Extended \ i
@ I HE .
Se/a s w0 w25/ 3w
e o ©
V \j -3v/a -2n/a -w/a o w/a 2/a 3v/a
i Fig. 10-5 Energy as a func-
: i tion of wave vector for a
1 H one-dimensional ~ crystal,
: ; shown in the (a) extended,
1'/ : (b) reduced, and (c) repeat-
: ; ed zone scheme.
Reduced ! 1
o NlA ) R
o w» —————BZ boundaries




Reduction to the first Brillouin zone
|

This general demand of periodicity implies that the possible electron states are
not restricted to a single parabola in k-space, but can be found on any
parabola shifted by any G-vector:

= — L hr. 2

s(k):s(k+G):f‘k+G‘
2m

2n

For 1D case: G - G =~
a

Brilloiun Zone in 3D
|

Brilloiun Zone in 3D _: Wigner-Seitz cell of the reciprocal lattice

Recall: reciprocal lattice vector G =27znp +2mn,b, +2nb,,
B,= %8 . B, = 8 %8,

[ X S ax X
whereb ,b,, b, arebasicvectorssuch thab, = —= L —
b o a [, %8, a (&, x8,

& B
DY

Some properties of reciprocal lattice:

The direct lattice is the reciprocal of its own reciprocal lattice

The unit cell of the reciprocal lattice need not be a paralellopiped, e.g.,
Wigner-Seitz cell

first Brilloin Zone (BZ)
of the fcc lattice

5.1.2 Origin of the Energy Gap

The probability density of the particle is
Wy = [YP

v N o
\ \ [ Tl / For pure traveling wave:

p=exptikgexp(iod =1

Crystal Potential - U o

For plane waves the charge
density is not constant:

for the wave (+):

P =)D cos X

for thewavey(-):
PO Y FOsnt

9
- e =




Magnitude of the Energy Gap

The potential energy due to the crystal can be approximated as:
27K

U(x) =U cos—
a
This potential has the periodicity of the lattice, U(x) = U (x + a)
The wavefunctions at the Brillouin zone boundary k= 7fa (normalized over unit

length of line, a) are
V2cos™ andy2sin %
a a

The difference between the two standing wave states is

The gap is equal to the Fourier component of the crystal potentia |
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5.2 Translational Symmetry — Bloch’s Theorem

Bloch's theorem: the wave functions of the electrons in a crystal must be of a
special form (the Bloch form)

W, (F) = explk T)u, (F)
U (F) =u (F+T)
u,(r) — the periodicity of the lattice (depends on the wave vector!)

Note: the Bloch function can be decomposed into a sum of traveling waves
In 1D: Consider a crystal of length L = N a (N primitive u. c. of length a on a ring)

Theperiodicboundaryconditiondemanghat

Addition of thetranslatonalsymmetrygives:

Thereforey/(x) =u, (x) exp(jz—’sx)
Na Kittel, pp.179-180 11

Bloch’s Theorem
|

For non-interacting electrons moving in a periodic potential, U (r)
U(F+R) =U(F)
Bloch wave functions are periodic functions u (r) modulated by a plane wave of
a longer period
Periodic function u (r)

AAANAAAAAAAA
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Translation Operators
|

Let Tﬁ translate wave function by R: TR:e n

Theorem: if one has a collection of Hermitian operators that commute with one
another, they can be diagonalized simultaneously

Any eigenvector of the Hamiltonian can be taken as an eigenfunction of all the
translational operators as well:

Use theorem: R
Tdw)=e " |@)=C, )
YE+R =C(r)
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Translation Operators
—

Operating with eigenfunction of momentum:
({1 =c.{f0)

= either Co=e® o (klg)=0 k: Bloch wavevector

7K : Crystalmomentun
n: Bandindex

For a given value of Bloch wavevector, there is still the possibility of many
energy eigenvalues (can be labeled by the band index n)

The eigenfunctions made possible by periodicity is: F“wnk> = Enk‘z//nk>
Tlwg) =)

W (T+R=Y () or

u, (N ="y ()
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Allowed values of k
|

If crystal is periodic with (macroscopic) dimensions M,&,M,&,,M,a, then
requiring explik (] to be periodic constrains k to

. 3 . . . N
K =;%n 0<m <M,, whereb,..5, aresuch that; 3, = 27,

Periodic boundary condition place a condition on how small k can be
Demanding that C =" pe unique places conditions on how big k can be

Number of points in crystal equals number of unique Bloch wave vectors
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Energy Bands and Group Velocities

Velocity of electrons in the nth band with wave number k is:

- 1
Vik ‘;DEEni

Note: this is similar to the solution of wave equations for a group velocity:y = 0764,

ok
Wave packet: W(F k1) ZIW(k'-k) @Sy e k=
:elkf—lEkll)‘«J‘w(lz..)dlz.Delkf—lEklm
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5.3 Kronig-Penney Model
—
2 2,
The wave equation is _Fdy +U (XY =€y
2m dx?
In the region O<x<a (U = 0), the eigenfunction is a linear combination of plane
waves traveling to the right and to the left with energy ¢ o
W =A™ +Be™
In the region —b < x < 0 within the barrier the solution is
@ =Ce¥+De?,
2M2
whereU, -£= AQ i
2m l“‘
Figure 4 Square-well periodic potential as in-
troduced by Kronig and Penney ~a+bh b 0 aa+h —
E— ]

Kronig-Penney Model

—
Solution must be in the Bloch form:

w(a<x<a+b)=y(-b< x<0)ek@®

The constants A, B, C, D are chosen so that wavefunction and its derivative are
continuous at x=0and x = a

Atx=0 A+B=C+D
iK(A-B)=Q(C-D)

Atx=a A +Be™ = (Ce™® + De¥)e ™
iK(A€"® - Be™*?) = Q(Ce™® - De¥)e ™™

Solution: [(Q% - K?)2QK]sinhQbsin Ka + coshQbcosKa = cosk(a+b)
In thelimit Q >>K andQb<<1

isin Ka+ cosKa = coska
Ka 18




Functions and Energy for the K-P potential
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First Brillouin Zone for fcc lattice
|

Inunits of 27r/a, T = (000). X = (0 10). L= (1/21/2 1/2). W = (1/21 0).
K=(3/43/40),and U = (1/411/4).

First Brillouin Zone for bcc lattice
|

In units Df.ﬁ IL=(000),H=(010),N=(1/21/20),and P=(1/21/21/2).

a
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First Brillouin Zone for hcp lattice

Tn units 0f41r/aﬁ‘ 411',/(1'\5~ and 217/0. along the three primitive vectors f)h Bg. and B;;
['=(000).4=(001/2).M=(1/200).K=(1/31/30).H=(1/31/31/2), and
L=(1/201/2).
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Example: Nearly Free Electron in 1D
[

Electrons of mass m are confined to one dimension. A weak periodic potential
is applied:
27K 4nx

V(X) =V, +V, cos— +V, cos—
a a

(a) Under what conditions will the nearly free-electron approximation work?
(b) Sketch the three lowest energy bands in the first Brillouin zone. Number the
energy bands (starting from one at the lowest band)

(c) Calculate (to first order) the energy gap at k = 77/a (between the first and
second band) and k = 0 (between the second and third band)

Lecture 5 23
-
|
Lecture 5 24
- e =




Nt Brillioun zone: geometrical view

Nth Brillioun zone: geometrical view

PRl
X2

Procedure:

« perpendicular bisectors are drawn
between the origin and all nearby
reciprocal lattice points = zone
boundaries

«the 1%, 2", and 3" BZ are shaded
« | indifferent color (same volume)

« electron response to the external electric field same as for free electron
till it approaches a zone boundary plane

« an electron once in the nt BZ remains in the nt" BZ
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Example in two dimensions
T

Suppose 2D lattice has two conduction el. per lattice sites

1 The # of k-states in BZ = the # of lattice points
.2
For a weak potential, shape of the energy surface ~
sphere
-
27 /fa

akk = antfa®

= kp =2n/\/ma=1.1287/a
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Example in two dimensions

« Fermi surface @ ° * @ N -  portion of the Fermi
completely surface in 2" BZ is
enclosing the 1t BZ ° % M * | mapped back into

. the 1%t zone
« shape of surface is b . 4 3 ‘o
modified near the
zone boundary A 3llla 9
« portion of the Fermi | « * * . Harrison
surface in 3rd BZ is construction:
made continuous by | ° = A . n' BZ mapped
translation through S R\ into 15 BZ
reciprocal lattice
vectors [
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Nearly Free Electron Fermi Surface Gallery
|

Brillouin 1 electron/cell 2 electrons/cell 3 electrons/cell
zone

First

Second

Third

http://iwww.phys.ufl.edu/fermisurface/periodic_table.html 28
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