Lecture 3
|

Basics of Crystal Binding, Vibrations, and Neutron Scattering
3.1 Classification of Solids : lonic; Covalent; Metallic; Molecular and Hydrogen
bonded

3.2 Analysis of Elastic Strains: The Strain and Stress Tensors; Stress-strain
relationship; Strain energy density; Applications of elasticity theory

3.3 Vibrations of crystals with monatomic basis

3.4 Two atoms per primitive basis

3.5 Quantization of elastic waves

3.6 Phonon momentum

3.7 Inelastic neutron scattering for phonons

References:
1) Kittel, Chapter 3-4; 2) Marder, Chapter 11-13; 3) Ashcroft, Chapters 22, 24; 4)
Burns, Chapters 12; 5) Ziman, Chapter 2; 6) Ibach, Chapter 6
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3.1 Classification of Solids
|

Cohesive energy — energy to dissociate the solid into separate atoms

Solids divide into 5 rough classes for purposes of studying cohesion
lonic

Covalent

Metallic
Molecular
Hydrogen bonded

YV V VY

Cohesive energy has nothing to do with the strength of solids. It allows one to
decide what the ground state structure ought to be.

Goal is to obtain conceptual and semi-quantitative estimates of cohesive energies

Examples and characteristics of 5 types of bonds
|

Bond type Examples Typical Distinct characteristics
energies,
eV/atom
lonic LiF, NaCl, 5-10 Nondirected bonding, giving structures
CsCl of high coordination; no electrical
conductivity at low temperature
Covalent Diamond, Si, 3-8 Spatially directed bonds, structures
Ge, graphite with low coordination; low conductivity
at low temperature for pure crystals
Metallic Li,Na, Cu, Ta |0.7-1.6 | Nondirected bond, structures of very

high coordination and density; high
electrical conductivity; ductility

Fluctuating or | Ne, Ar, Kr, Xe, |0.05-0.2 | Low melting and boiling points

permanent CHCl,
dipole
Hydrogen H,0, HF 0.25-0.6 | Increase in bonding energy over similar

molecules without hydrogen bonds
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3.1.1 lonic bonding: Force and Energy Diagram
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The interionic energy ~ can be defined as the
energy needed to rip a compound into its
components placed  far apart (Ey () = 0)
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Electrostatic or Madelung Energy

« Typically large lattice energies: 600-3000 kJ/mol
« High melting temperatures: 801°C for NaCl

For NaCl: E,,.= - 7.42 x 1019] = 4.63eV (2.315 per ion)
Compare to 3.3eV (elsewhere): big difference...!

« lonic radii of selected ions are listed in the table

Cation lonic radius (nm) | Anion lonic radius (nm)
Li+ 0.060 F 0.136
Na* 0.095 Cl- 0.181
K+ 0.133 Br 0.195
Rb* 0.148 I 0.216
Cs* 0.169
Lecture 3 6




Coordination and neutrality in ionic crystals

Geometrical arrangements (coordination) and neutrality is maintained

CsCl: NaCl:
8 CI- ions can pack around Cs* 6 CI- ions can pack around Na*
R(Cs*)/R(CH)= R(Na*)/R(ChH)=

=0.169/0.181 = 0.934 =0.095/0.181 = 0.525

Evaluation of the Madelung Constant
I

1. Consider a cube of 8 ions

2. Consider a line of alternating in sign ions, with distance R between
ions

3. Consider a lattice: lattice sum calculation can be used to estimate
Madelung constant , a

Structure o
ot NaCl 1.7475
a= - T CsCl 1.7626
ZnS 1.6381
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3.1.2 Covalent bonding

« Takes place between elements with small difference in electronegativity
-F,O,N,ClLH,C,Si..

* s, p, delectrons are commonly shared to attain noble-gas electron
configuration

« Multiple bonds can be formed by one atom; hybridization E

. O F%

v [Ma| Fe [ Co[ Ni[CuZn | Ga| Ge[As | se | Be
[Ic B s e e 3 R A R
Mo| Tc [Ru | Rn | Pa | Ag [ Ca|Tn |Sn|sb|Te| 1
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3.1.3 Nonlocalized electrons in metals
|
Three contributions to the cohesive energy in metals

1. Electron must interact with the ion cores and itself according to the
potential

eh ¢  Madelung constants for metals
VIR T fec hep sc Diamond
2. Add in the kinetic energy of the electrons 70156 170175 179168 176012 1.67085
En 31K _3IP 9L
N s2m sa2m 4 2
3. Include exchange energy for electrons in a uniform positive background
b 3 3o (9,)/ 1
N ar am \4 75
Summing: 3 24.35 30.1 12.5
7= [ T~ g <V

Not satisfactory! Minima at :i = L.¢hile typical values are 2-6
Ao

Marder, pp.272-274
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3.1.4 Molecular or Secondary Bonding
—
* Fluctuating or permanent dipoles (also called physical bonds, or
van der Waals bonds or forces)
« weak relatively to the primary bonding (2-5eV/atom or ion)
~ 0.1eV/atom or ~ 10 kJ/mol
« always present, but overwhelmed by other interaction
most easily observed in inert gases
« dipoles to be considered...
Lecture 3 11
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Electric dipole
—

consider a “+" and “-" charge (e)
a2 0 +al separated by a distance a

Dipole moment [debye]: p=ex a

What is the PE (U) of two dipoles in a distance x apart?
+ : B + { o
a2 0 +al2 x-al2 x x+al2

Lo K& kE ke
X—-a X X+a

U(X):_kez[iJri_g}:_ke{x(x+a)+x(x—a)—2(x—a)(x+a)}:

Xx-a x+ta X X(x—a)(x+a)

_ X*+xat+x’-xa-2x"+2a’ | kéf2a® _ _ke'a® | _kp’

= ke =- = 4250
X —xa? x(x® —a?) x* X3

« this potential falls off more rapidly than ionic bonds
Lecture 3 12




Permanent Dipoles

* When a covalent molecule has permanent dipole? Depends on
geometry of the molecule...

.co, ? CHCI ? HO0 2
Q.: Calculate the dipole moment associated with the ionic model of the

water molecule. The length of the O-H bond is 0.097nm and the angle
between the bonds is 104.5°.

« Hydrogen bond: permanent dipole-dipole interaction for the molecules
with a hydrogen atoms bonded to a highly electronegative element (F, CI,
0O, N)

e.g.: H,0, polymeric materials

Permanent dipole bond : a secondary bond created by the attraction of

molecules that have permanent dipoles
Lecture 13

Fluctuation Dipole
( ) ~———Electron cloud
S ]
o eiactrn cioua <
®
« Noble-gas elements: s2pé Pt
«  Stronger effect for larger electron shells — - @
Boiling temperature increases as a function e .
ofZ )
~ anctpoa
b
__aa Schematic representation of how the
ré van-der-Waals bond is formed by
interaction of induced dipoles.
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3.1.5 Hydrogen Bond

The melting and boiling temperature decrease from H,Te to H,S
The polarizability U and the van der Waals attraction UfromTeto s
Abrupt change between H,S and H,0 = formation of hydrogen bonding

HiO
100°C

H*on is just a bare proton, unlike Melting Points. Boiling Points
the other alkali metal atoms
Hydrogen has only one electron to HFe
form a covalent bond o eTe

e SbHy
Extremely small size enables it to H NH, HI

- HiTe SnHe

bond with only two other atoms § LX Wi

& NHy B 8

HF SbH; oM
100 ) PHy *
RsHs St
PHs SnHy
5 oHa
-0 |

Fig. 6-6 The melting and boiling points of isoelectronic sequences of hydrides. (After
Pauling.)




3.2 Analysis of elastic strains

Before deformation After deformation

D

P
L

Vo

¥
X

F=xk+yW+2 F=r+& =(X+u)X+(y+Vv)y+(z+w)z
Many ways to derive elasticity...
Could derive from theory of atoms and their interactions. This approach is not

accurate, and not fully general L following Kaxiras, Appendix E
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Stress (o) and Strain (g)

Stress (0)
- defining F is not enough ( F and A can vary)
Block of
material - Stress o stays constant
E
« Units
L= Force / area =N /m?2=Pa

Lo+A L usually in MPa or GPa
Strain (_g) — result of stress

l,: « For tension and compression: change in length of a
sample divided by the original length of sample

Lecture 3 17

General Theory of Linear Elasticity

Most general approach modeled by Landau:

construct free energy simply by considering symmetry and using fact that
deformations are small:

+ Deformation field vanishes in equilibrium
« Free energy invariant under translation.
+ Smallest allowed powers or u

« Derivatives of lowest allowed order

« Uniform rotation costs no energy

Unique(?) free energy consistent with these constraints

Lecture 3 18




3.2.1 The strain tenso
[ =
3 a

F=F+d =(X+u)R+(y+V)§+(z+w)2 ~

Each of the displacement fields u, v, wis a function of the position in the solid:
U Xy, 2), V(%Y 2), WY, 2)

The normal components of the strain are defined as: ¢, = au Eyy = L €, w
ox oy 0z

Stretching and shearing are usually coupled; the shear strain components given

by, Jifou ov) o _fov ow) :1(%@]
Wo2lax ay) " 2lay az) ™ 2laz ox

itis symmetric (i.e., &, = §,)

Strain tensor is a symmetric tensor with diagonal elements &; (i=x, y, z) and
off-diagonal elements ¢ (i, j=x, y, z)

Lecture 3 19

The strain tensor

—
Rotational tensor  is an antisymmetric tensor, o ="« (i, j = X, ¥, 2)

_1(0ou ov _1fov_ow _1(ow ou
“=2loy o) Y T2loz oy ) T2l ox oz
y X 0z

If the coordinate axes x and y are rotated around the axis z by an angle 6, the
strain components in the new coordinate frame (X', y', z') are given by:

Ep = %( ot £W)+ % (Exx - EW)C0525+ £,,8in26

Epy = 1 (sxx + sw) f% (sxx - sw)coszg - &, sin20

2
£
s,y:l(s -¢ )sin29+s cos26 = tan2d=—>"—
xy =5y T o =y

We can identify the rotation around the z axis which will make the shear
components of the strain vanish

Lecture 3 20

3.2.2 The Stress Tensor

Definition of the stress tensor for the cartesian (x, y, 2 coordinate system, and
the polar (r, 6, 2 coordinate system

The forces that act on the these surfaces has arbitrary directions and have F,,
Fyv F, components

Stress tensor is symmetric tensor with diagonal elements g;=F /A (i=x, y, z)
and off-diagonal elements g;=F /A (i, j=X, y, )

Lecture 3 21




The Stress Tensor
|

Just as in the analysis of strains, a rotation of the x, ycoordinate axes by an
angle faround the z axis

Ty = %(ﬂxx + aw) +% (cfXx - ayy)0052€+ a,,sin20
Tyy :% (aXx + UW)—% (ax, - ayy)cosze -0, sin260

Oy = % (cfyy - ax,)sinze +0,,00526

On the planes that are perpendicular to the principle stress axes, the shear
stress is zero, only the normal component of the stress survives!

We can find the maximum and minimum values of the stress from the
equations above:
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3.2.3 Stress-strain relationship

—
« Stress and strain are properties that don't depend on the dimensions of
the material (for small €), just type of the material

* Y-Young's Modulus, Pa

« Comes from the linear range in the stress-strain diagram
* many exceptions...

Behavior is related to atomic bonding between the atoms

Material Young's Modulus [GPa]
Metals 20-100

Polypropelene 1.5-2

Rubber 0.01

Hydrogels and live cells <0.00001
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Stress-strain relationship
|

0y =Cyéy

Elastic constants of the solid, Cuk_ represented by a tensor of rank 4, or
contracted version of this tensor (matrix with only two indices C;)
1=xx wox = Ci1 O =Cp + C12£yy +Cp,, + C14£xy + C15£y1 +Cief
oy = Cp Jyy = C21£xx + C22£yy + CZS'EH + 024£xy + czs‘Eyz + CZG'sz
=Cy 0,= C31£xx + C32£yy + C33£11 + 034£xy + 035£y1 + CSG'sz

2=yy

xxzz

4=yz =Cy 0,= Cpf t C42£yy +Cpf,, + CM'Exy + C45£yz +Cyef

yzxXx

oo = Co1 O = Corfio ¥ Copy, +Cof, + Cogfy + Cogf, + Gyl

C

C
3=>zz C.
C

5= zx C
C

6=xy o = Cer Oy = Corfc Cez‘fyy +Cqif + C54£xy + C55£yz +Coefox
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3.2.4 Strain energy density

Connection between energy, stress and strain

Calculate the energy per unit volume (or strain energy density) in terms of the
applied stress and the corresponding strain

dE du, au,
-Jf,yu js'an Y 4s

dt | T

Volume Surface
distortions distortions

dE d d Lol
Using the divergence theorem: E = J[ f; % +07><J(U" %]Jdv

A der "
Newton’s law of motion F = mW applied to the volume element takes the form:

o, _ . 99
L ot* )
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Strain energy density
—

The strain energy density W, defined as the potential energy per unit volume,
we can obtain:

0¢,
U :JWdV;LW:g” o, W
v at at o¢
Using the Taylor expansion for the strain energy density and taking derivatives:
W:Wc,+E W £, 6t
2| 0,08, |
oW _1f oW
mE g :5[ e ](rxmé.nsu +8,0,6,)=
mn 108

1] ow 1| aw 1] aw
== £+ & == £
2| 0,08, 2| 0¢,,0¢; 2| 0¢,,0¢;

W 1 1
Ci =| 52— |2 W =W+ Cp56, =W+ 05,
7| o006, 2 2
Note: Strain energy density is quadratic in the strain tensor
Lecture 3 26
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3.2.5 Applications of elasticity theory

Isotropic elastic solid _more definitions...
When normal stress is applied in the x direction, solid can also deform in the y
and z directions:

£ =& =-yg. =-y O
= €= o=
v is Poisson’s ratio

« the minus sign is there because usually if £, >0, and &, + §,<0= V>0

If a shear stress o, is applied to a solid, the corresponding shear strain is

_1
&y = ; gy
where p is the shear modulus
Lame’s constant, A\: A :L and bulk modulus, B B :L
@a+v)d-2v) 31-2v)
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Elastic constants of isotropic solids
|

Covalent and ionic solids Metals
Crystal i 2 v Crystal n A v
w 1.6 2.01 0.278
C 5.36 0.85 0.068 Mo 1.23 1.89 0.305
Si 0.681 0.524 0.218 Cr 1.21 0.778 0.130
Ge 0.564 0.376 0.200 Ni 0.947 1.17 0.276
Fe 0.860 1.21
Mg 0.68 0.173 Cu 0.546 1.006
Li 0.307 0.187 Ag 0.338 0.811
PbS 0.393 0.267 Au 0.310 1.46
NaCl 0.146 0.248 Al 0.265 0.593
KCl1 0.104 0.250 Pb 0.101 0.348
\gBr 0.345 0.401 Na 0.038 0.025
K 0.017 0.029

Among three elastic constants (Young's modulus, Poisson’s ratio and

shear modulus) only two are independent: Y
u=—
Lecture 3 2(1+v) 28
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I
W =W, +1C &€&
= Vo 2 ikl €ij €kl
Consider symmetry elements, we can only have the following kinds:
2 2
i€ EiE Ei € Ei €y € g
Samdor ,,£5,65,=C,; =C,, =Cyy
2 —C.=C.=C.=C. =
Samefor £y = C,=C3=C,=C,;=C; =Cy,
Samélor £,,¢,,= C,,; =Cy5 =Cyq
Cu=Cs=C;=Cyy =G5, =C, =0
CZA :CZS = CZE = C42 = CSZ = CEZ =0
Cyy =Cys=C3=Cpy =G5 =C, =0
Cis=Cis=Cyy =G5 =Cys =Cis =0
w=ic (52 +e2 +£2)+}C (52 +£2 +£2)+ (£ Epy FELELFELE, )
= 2 11\ xx yy =2]"% 44\ xy yz 2x Ciz Xy ywezz T €2fxx
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Element =N [ 1 Elemeat 1y Cy En
[CONNED) (GPa) (GPa)  (GPa)  (GPy)
Al 108 283 62 Li (195K) 134 96 113
Ar (30K) 277 098 137 Mo 450 1 168
Ag 123 453 22 Na 759 430 633
Au 190 423 161 Ne (6K) 1.62 093 085
s (18K) 247 206 148 Ni 247 12 153
[ 16 12 3 No 245 84 12
o 346 100 66 0 (544K) 260 0275 206
< 169 7.3 m e 24 716 17
C (diamond) 1040 550 170 Pt 347 765 251
Fe 230 17 135 Rb 296 1.60 244
Ge (undoped) 120 67.1 48 Si (undoped) 165 792 64
Ge (n-doped,1019st) 1288 655 477 Si (-doped, 10194) 1622 787 654
Ge (p-doped. 102 Ga) 180 653 390 st 147 s 99
He (04K 2em’imol) 00235 001085 00197 | T 262 826 156
Het (16K 2emPmole) 00311 00217 00281 | Th 76 46 %
I 600 270 260 w 517 157 203
K 3n 188 315 v 230 432 120
Kr (115K) 285 135 1.60 Xe (156K) 2.98 148 1.90
Pb 488 148 414
S— ]
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|

Basics of Crystal Binding, Vibrations, and Neutron Scattering
3.1 Classification of Solids : lonic; Covalent; Metallic; Molecular and Hydrogen
bonded

3.2 Analysis of Elastic Strains: The Strain and Stress Tensors; Stress-strain
relationship; Strain energy density; Applications of elasticity theory

3.3 Vibrations of crystals with monatomic basis

3.4 Two atoms per primitive basis

3.5 Quantization of elastic waves

3.6 Phonon momentum

3.7 Inelastic neutron scattering for phonons

References:

1) Kittel, Chapter 3-4; 2) Marder, Chapter 11-13; 3) Ashcroft, Chapters 22, 24; 4)
Burns, Chapters 12; 5) Ziman, Chapter 2; 6) Ibach, Chapter 6
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3.3 Longitudinal and transverse waves
—

'
i
|
T
|
i
i
|
i
0
i
h
i
'
i
i
i
|
|

it
i/
=
h

|
Planes of atoms as displaces for longitudinal and transverse waves
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Continuous Elastic Solid
|

We can describe a propagating vibration of amplitude u along a rod of material
with Young’s modulus Y and density p with the wave equation:
0% _Yduu

o p ot

for wave propagation along the x-direction

By comparison to the general form of the 1-D wave equation:

o’u —\2 o’u we find that v = i So the wave speed is ir}depen_dent of
ot? ox? p  wavelength for an elastic medium!
w=27 =27y =k @ a(k) is called the

A dispersion relation of

the solid, and here it is
linear (no dispersion!)

group velocity v =d7(’“
¢ dk k

Lecture 3 33
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3.3 Vibrations of Crystals with Monatomic Basis
|

By contrast to a continuous solid, a real solid is not uniform on an atomic scale,
and thus it will exhibit dispersion. Consider a 1-D chain of atoms:

—

In equilibrium: AN @AM - @M@ AMN-@ANN-@

s-1 s+l [P

n

Longitudinal wave: JVWVV\_._/\AA/\_.—W\—.—/VM

us—l us usvl u,

p = atom label

_ ( ) p=+£1 nearestneighbors

Foratoms F,= ch sep ~Us p=2%2 nextnearest neighbors

(for plane s) P ¢, = force constant for atom  p
Lecture 3 34

The equation of motion of the plane s

Elastic response of the crystal is a linear function of the forces (elastic energy is
a quadratic function of the relative displacement)

The total force on plane s comes from planes s #1

Fs=C (Usyy—Ug) + C (Us_;— U
C — the force constant between nearest-neighbor planes (different for
transverse and longitudinal waves)

Equation of motion d’ug
of the plane s: dt?

=C(Us,y +Us,; —2Us)

Solutions with all displacements having time dependence exp(-iat). Then

—~MaAu, = C(u., +Uu. , —2u.) This is a difference equation in
o = ClUga ¥ Usy ) the displacements u

u uésKae:\Ka a5

Equation of Motion for 1D Monatomic Lattice
|

92
Applying Newton’s second law: F;=M a[L;S = ch (us.,, —us)
P

For the expected harmonic u, = udos—at)

" - = sa position of atom s
traveling waves, we can write % P

: i N2gi(ksaat) — (k(s+p)a-at) _ 1, q(ksa-at)
Thus: Mu(-i w)?€ —Zcp(ue‘ ue )
P
or —Maldksa) = i(ksa»m)z c, (e\kpa —l)
3

so: —M o = Z cp(e\kpa _1) Now since ¢, = ¢, by symmetry,

-Ma? = Zp: cp(e'kpa +eea_ 2) =" 2c,(coskpa) 1)

p>0 >0

Lecture 3 36
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Dispersion relation of the monatomic 1D lattice
|

Theresultis: & = iz ¢, (L-coskpa)) = 4 "¢, sin?($kpa)
M &5 M 5

Often it is reasonable to make the 4c, .
nearest-neighbor approximation (p = 1): &? DVSIn2 (3ka)

The result is periodic in k

and the only unique

solutions that are physically
meaningful correspond to
values in the range: _ 72 <ks< n

Lecture 3 37

Theory vs. Experiment
[

In a 3-D atomic lattice we expect to
observe 3 different branches of
the dispersion relation, since there
are two mutually perpendicular
transverse wave patterns in
addition to the longitudinal pattern
we have considered

Along different directions in the
reciprocal lattice the shape of the
dispersion relation is different

Note the resemblance to the simple
1-D result we found

Counting Modes and Finding N( )
|

A vibrational mode is a vibration of a given wave vector K and thus A),
frequency ¢, andenergy E=#a . How many modes are found in the
interval between (w,EK) and (g+dw,E+dE,k +dk) ?

#modes  dN = N(w)dw= N(E)dE = N(k)d*k
We will first find N(k) by examining allowed values of k. Then we will be able

to calculate N(w)

First step: simplify problem by using periodic boundary conditions for the
linear chain of atoms:

We assume atoms s and

; d sN-1 s+N have the same
i L=Na i displacement—the lattice
| | S has periodic behavior,
© ¢ © 6 06 0 ¢ 0 where N is very large
| | s+l
| |
X=sa x = (s+N)a Lecture 3 g+2 39
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Step one: finding N(K)

|
Since atoms s and s+N have the same displacement, we can write:

U, = U,y uglsaa) = | dsHNa-an)

This sets a condition on K 2m

allowed k values: kNa=2m - n=123..

27 27 independent of k, so
=—AQNn=——the density of

Na Na  modes in k-space is
uniform
#of modes _ 1 _Na_

interval of k- space_ Ak 271 2m

So the separation between
allowed solutions (k values) is:

Ak

Thus, in 1-D:
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Next step: finding N( o)

I

Now for a 3-D lattice we can apply periodic boundary N.C

conditions to a sample of N, x N, x N, atoms: N

N,b
#of modes _NaNJbNgc_ V _ N(K) N;a

volumeof k—space 2m 2m 2 8T

Now we know from before that

we can write the differential # dN = N(w)dw= N(k)d3|2 :7\/ d3k

of modes as: an®

We carry out the integration

in k-space by using a 3

“yolume” element made up d°k = (surface area) dk = UdSNJdk

of a constant w surface with

thickness dk:

Lecture 3 41
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Finding N( w)

Rewriting the differential number _ _Vv
of modes in an interval: dN = N(w)dw= 8n® stmdk

Y dk _ Vv 1
We get the result: | N(w) = ﬁjdswa = ﬁjdsw%

A very similar result holds for N(E) using constant energy surfaces for the
density of electron states in a periodic lattice!

This equation gives the prescription for calculating the density of modes
N(w) if we know the dispersion relation axk).

Lecture 3 42
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3.4 Two Atoms per Primitive Basis
|
Consider a linear diatomic chain of atoms (1-D model for a crystal like NaCl):

a
In equilibrium: -GN @AM -@
Ml MZ Ml MZ

M, <M,

Applying Newton’s second law and the nearest-neighbor approximation to this
system gives a dispersion relation with two “branches”:

2 5 1/2
+ + .
64)2=(:1(Ll szi 012(7’\"1 sz -—L_sin*(ka)
MM, MM, MM,
w(k) w>0ask->0 acoustic modes (M, and M, move in phase)

w,(k) w-> w,,ask->0 opticalmodes (M, and M, move out of phase)
Lecture 3 43
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Optical and acoustical branches
I

Two branches may be presented as follows:

Optic branch M; <M,
! (2aIM,)v2
gap in allowed frequencies

M>m |
| (2a/M,)1/2
|
|

@ (or energy, 8=ha)

Fig. 12-6 The o vs. k
(optic and acoustic branch-
Acoustic branch es) for a lincar diatomic

chain,

If there are p atoms in the primitive cell, there are 3p branches to the
dispersion relation: 3 acoustical branches and 3p-3 optical branches

Lecture 3 44
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Optical and acoustical branches
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|
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Fig. 12-7 A schematic diagram showing the atomic displacements for (a) k = 0
branch; (b) acoustic branch for small but certainly not zero ki (c) and (d) shoy
zone boundary modes for the diatomic chain at k = 7/a, that is, the zone boundar.

diatomic chain.
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3.5 Quantization of

electromagnetic wave)

—— - Electron
NN Photon
— N\ Phonon
—_— Plasmon

The energy of a lattice vibrations is quantized
The quantum of energy is called a phonon_ (analogy with the photon of the

Energy content of a vibrational mode of frequency & is an integral number of
energy quanta %« . We call these quanta “phonons”.

While a photon is a quantized unit of electromagnetic energy, a phonon is a
quantized unit of vibrational (elastic) energy.

Elastic Waves

Field
Elcctromugnetic wave
Elustic wave

Collective electron wave

46
S

Associated with each mode of frequency

not carry physical momentum

particles

3.6 Phonon Momentum

to the definition of a “crystal momentum”: 7k

Crystal momentum is analogous to but not equivalent to linear momentum. No
net mass transport occurs in a propagating lattice vibration, so a phonon does

But phonons interacting with each other or with electrons or photons obey a
conservation law similar to the conservation of linear momentum for interacting

Lecture 3 47

a is awavevector k, which leads

frequencies can interact in a solid. In all

conserved and crystal momentum must be

@k

w k,

Compare this to the special case of elastic
scattering of x-rays with a crystal lattice:

Conservation Laws
Lattice vibrations (phonons) of many different
interactions involving phonons, energy must be

conserved to within a reciprocal lattice vector:

Schematically: vLLL FaVa Ve ot

Photon wave vectors
Lecture 3

ha +hw, =ha,
7k, +hk, = hk, + hG

@ K,

¥ Justaspecial case
k' =k +G of the general
conservation law!

48
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Brilloiun Zone in 3D
|

Brilloiun Zone in 3D _: Wigner-Seitz cell of the reciprocal lattice

Recall: reciprocal lattice vector G =27nf +27n,b, +277np;,

. __GxE p_ EXE &
whereb,, b, b, arebasicvectorssuch thab, =— —; b, =— —; by=—
& (3, x3, a (&3, a (&

a .

Some properties of reciprocal lattice:

The direct lattice is the reciprocal of its own reciprocal lattice

The unit cell of the reciprocal lattice need not be a paralellopiped, e.g.,
Wigner-Seitz cell

first Brilloin Zone (BZ)
of the fcc lattice

Back to Brillouin Zones
|

The 1st BZ is the region in reciprocal space containing all information about the
lattice vibrations of the solid

Only the K values in the 1st BZ correspond to unique vibrational modes.
Any k outside this zone is mathematically equivalent to a value K inside the
1st BZ

This is expressed in terms of a general translation vector of the reciprocal lattice:

=

Lecture 3 50

3.7 Neutron scattering measurements

|
What is a neutron scattering measurement?

- neutron source sends neutron to sample
- some neutrons scatter from sample

- scattered neutrons are detected

k, E; detector
Incident K =
neutrons Scattered Qo
K, E, T
Sample :
; nk? ok
Conservation of energy: =5 -7 7 4 AF
M M

When a phonon of wavelength |K| is created by the inelastic scattering of a
photon or neutron, the wavevector selection rule:

k, +K =k +G creationof aphonon

Kk, =k +K +G annihilation of aphonon 51
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Why neutrons?
|

9.044

JE

- At 10 meV, A\=2.86A = similar length scales as structures of interest

Wavelength: A =

Energy:

- thermal sources: 5-100meV

- cold sources: 1-10meV

- spallation sources: thermal and epithermal neutrons (>100meV)

can cover range of typical excitation energies in solids and liquids!

52

http://www.ncnr.nist.gov/st 100l/ 1] . pdf

Energy and Length Scale

—

SANS Reflectometry Diffraction
100 1(A) o

Filter ;\na\yzer
Spectrometer

Time of Flight
Spectrometers 4t

o
B et m
¥ B
—10 S
Triple Axis
Spectro-
meters
Spin Echo d1o
Spectrometer
1 1 102
001 o QA 1 ) 53

http://www.ncnr.nist.gov/index.html

Effective Cross Section
|

Cross Section, ©: an effective area which represents probability
that a neutron will interact with a nucleus

o varies from element to element and even isotope to isotope
Typical o ~ 102 cm2for a single nucleus

One unit of cross section is a 1 barn= 1024 cm?
... as in “it can't hit the size of the barn”

Total nuclear cross section
for several isotopes

http://www.ncnr.nist.gov/index.html  Lecture 3 54
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Neutron Scattering
|

Number of scattered neutrons is proportional to scattering function, S (G, w)

Scattering: S(Q,w)

elastic; Elastic

quasielastic; 3
Quasielastic Inelastic

Inelastic l \

Neutrons are sensitive to
components of motion
parallel to the momentum
transfer Q

Angular width of the scattered E< .

neutron beam gives information
on the lifetime of phonons

{loss) =0 (gain) ©
Energy Transfer

e =
non
ox

Phonon dispersion of bcc-Hf
—
so— N r H d r LA-Phonon
l2g £2] |lgeol| [oog] lzge) o o
R 1800 3 o o
B A BNV -
H j oo
st A o
Vi °
w : § TA-Phonon
; 0 0
. QO (#]
0() &IEIQS‘ = ‘0 Q' Wel
REDUCED WAVE VECTOR oL~ )
v o
T tal. (1991
rampenau et al. ( ) o
Lecture 3 56
B— |

Inelastic neutron scattering data for KCuF
measured

Energy (me)

025 05 075 1
WaVereCto G, (2747

Energy (meV)

P
H
]

Waeiectr G, (274°)

Bella Lake, D. Alan Tennant, Chris D. Frost and SepE.

NaglerNature Materials4, 329 - 334 (2005) 57
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2D: Inelastic Scattering on the Surfaces

|
Thermal Energy Helium Atom Scattering
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Time-of-Flight Spectra and Dispersion Curves
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Time-of-flight spectrum for He atoms scattering from an LiF(001) surface along the [100] azimuth. The sharp
peaks are due to single surface phonon interactions (From Brusdeylins et al, 1980)
-

Neutron Scattering
|

Neutron enters the crystal
as a plane wave (blue)

Interacts with the crystal \
lattice (green)

And become by
interference effects an
outgoing plane vector (red)

Time-of-flight in measured




