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Lecture 3

Basics of Crystal Binding, Vibrations, and Neutron Scattering

References:
1) Kittel, Chapter 3-4; 2) Marder, Chapter 11-13; 3) Ashcroft, Chapters 22, 24; 4) 

Burns, Chapters 12; 5) Ziman, Chapter 2;  6) Ibach, Chapter 6

3.1 Classification of Solids : Ionic; Covalent; Metallic; Molecular and Hydrogen 
bonded

3.2 Analysis of Elastic Strains: The Strain and Stress Tensors; Stress-strain 
relationship; Strain energy density; Applications of elasticity theory

3.3 Vibrations of crystals with monatomic basis

3.4 Two atoms per primitive basis

3.5 Quantization of elastic waves

3.6 Phonon momentum

3.7 Inelastic neutron scattering for phonons
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3.1 Classification of Solids

Cohesive energy – energy to dissociate the solid into separate atoms

Solids divide into  5 rough classes for purposes of studying cohesion 

� Ionic

� Covalent
� Metallic

� Molecular

� Hydrogen bonded

Goal is to obtain conceptual and semi-quantitative estimates of cohesive energies

Cohesive energy has nothing to do with the strength of solids. It allows one to 
decide what the ground state structure ought to be.
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Examples and characteristics of 5 types of bonds

Increase in bonding energy over similar 
molecules without hydrogen bonds

0.25-0.6H2O, HFHydrogen

Low melting and boiling points0.05-0.2Ne, Ar, Kr, Xe, 
CHCl3

Fluctuating or 
permanent 
dipole

Nondirected bond, structures of very 
high coordination and density; high 
electrical conductivity; ductility

0.7 - 1.6Li, Na, Cu, TaMetallic

Spatially directed bonds, structures 
with low coordination; low conductivity 
at low temperature for pure crystals

3 - 8Diamond, Si, 
Ge, graphite

Covalent

Nondirected bonding, giving structures 
of high coordination; no electrical 
conductivity at low temperature

5 - 10LiF, NaCl, 
CsCl

Ionic

Distinct characteristicsTypical 
energies, 
eV/atom

ExamplesBond type



2

Lecture 3 4

3.1.1 Ionic bonding: Force and Energy Diagram

The interionic energy can be defined as the 
energy needed to rip a compound into its 
components placed ∞ far apart (ENET(∞) = 0)

n
o

repulsiveattractiveNET
a

b

a

eZZ
EEE ++=+=

πε4

2
21

Fnet = Fattactive+ Frepulvise

97   constants; are  and 

4

))((

1

2
21

−=

−=

−=

+

nbn
a

nb
F

a

eZeZ
F

nREP

o
ATTR πε

12

2
21

4
0 +=−==

n
o

NET a

bn

a

eZZ
F

πε

oo

o

aeZZaeZZ
b

a

b

a

eZZ
n

πεπε

πε
82

21
82

21

102

2
21

36

1

94

    ;
9

4
    ;9

−=
×

−=

=−=

Lecture 3 5

Interionic Energies

- the energy needed to rip a compound into its components placed ∞ far apart 
(Enet(∞) = 0

n
o

repulsionattractionnet a

b

a

eZZ
EEE ++=+=

πε4

2
21

Lecture 3 6

Electrostatic or Madelung Energy

• Typically large lattice energies: 600-3000 kJ/mol
• High melting temperatures: 801oC for NaCl

For NaCl: ENa+Cl-= - 7.42 × 10-19J = 4.63eV (2.315 per ion)

Compare to 3.3eV (elsewhere): big difference…!

• Ionic radii of selected ions are listed in the table 

0.169Cs+

0.216I-0.148Rb+

0.195Br-0.133K+

0.181Cl-0.095Na+

0.136F-0.060Li+
Ionic radius (nm)AnionIonic radius (nm)Cation
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Coordination and neutrality in ionic crystals

CsCl: 

8 Cl- ions can pack around Cs+

R(Cs+)/R(Cl-)=

= 0.169 / 0.181 = 0.934

NaCl: 

6 Cl- ions can pack around Na+

R(Na+)/R(Cl-)=

= 0.095 / 0.181 = 0.525

Geometrical arrangements (coordination) and neutrality is maintained
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Evaluation of the Madelung Constant

1. Consider a cube of 8 ions

2. Consider a line of alternating in sign ions, with distance R between 
ions

3. Consider a lattice: lattice sum calculation can be used to estimate 
Madelung constant , α

∑
±=

j ijR
α

1.6381ZnS

1.7626CsCl

1.7475NaCl

αStructure
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3.1.2 Covalent bonding

• Takes place between elements with small difference in electronegativity

- F, O, N, Cl, H, C, Si…

• s, p, d electrons are commonly shared to attain noble-gas electron 
configuration

• Multiple bonds can be formed by one atom; hybridization 
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3.1.3 Nonlocalized electrons in metals

Three contributions to the cohesive energy in metals

1. Electron must interact with the ion cores and itself according to the 
potential

2. Add in the kinetic energy of the electrons

3. Include exchange energy for electrons in a uniform positive background

Summing:

Not satisfactory! Minima at              , while typical values are 2-6

Marder, pp.272-274
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3.1.4 Molecular or Secondary Bonding

• Fluctuating or permanent dipoles (also called physical bonds, or 
van der Waals bonds or forces)

• weak relatively to the primary bonding (2-5eV/atom or ion)
~ 0.1eV/atom or ~ 10 kJ/mol

• always present, but overwhelmed by other interaction

most easily observed in inert gases

• dipoles to be considered…
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• this potential falls off more rapidly than ionic bonds
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Permanent Dipoles

• When a covalent molecule has permanent dipole? Depends on 
geometry of the molecule…

• CO2 ? CH3Cl ? H2O ?

Q.: Calculate the dipole moment associated with the ionic model of the 
water molecule. The length of the O-H bond is 0.097nm and the angle 
between the bonds is 104.5o.

• Hydrogen bond: permanent dipole-dipole interaction for the molecules 
with a hydrogen atoms bonded to a highly electronegative element (F, Cl, 
O, N)

e.g.: H2O, polymeric materials

Permanent dipole bond : a secondary bond created by the attraction of 
molecules that have permanent dipoles
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Fluctuation Dipole

• Noble-gas elements: s2p6

• Stronger effect for larger electron shells →
Boiling temperature increases as a function 
of Z

Schematic representation of how the 
van-der-Waals bond is formed by 
interaction of induced dipoles.

6
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3.1.5 Hydrogen Bond
The melting and boiling temperature decrease from H2Te to H2S

The polarizability ⇓ and the van der Waals attraction ⇓ from Te to S

Abrupt change between H2S and H2O ⇒ formation of hydrogen bonding

H+ ion is just a bare proton, unlike 
the other alkali metal atoms

Hydrogen has only one electron to 
form a covalent bond

Extremely small size enables it to 
bond with only two other atoms
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3.2  Analysis of elastic strains

Many ways to derive elasticity…

Could derive from theory of atoms and their interactions. This approach is not 
accurate, and not fully general

Before deformation After deformation

zzyyxxr ˆˆˆ ++=r zwzyvyxuxrrr ˆ)(ˆ)(ˆ)( +++++=+= rrr δ

following Kaxiras, Appendix E
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Stress (σ) and Strain (ε)

A

Block of 
material

L=

L0+∆ L

F

F

Stress ( σσσσ)

- defining F is not enough ( F and A can vary)

- Stress σ stays constant

• Units

Force / area = N / m2 = Pa

usually in MPa or GPa

Strain ( ε ε ε ε ) – result of stress

• For tension and compression: change in length of a 
sample divided by the original length of sample

A

F=σ

L

L∆=ε
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General Theory of Linear Elasticity

Most general approach modeled by Landau: 
construct free energy simply by considering symmetry and using fact that 

deformations are small:

• Deformation field vanishes in equilibrium

• Free energy invariant under translation.

• Smallest allowed powers or u

• Derivatives of lowest allowed order
• Uniform rotation costs no energy

Unique(?) free energy consistent with these constraints
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3.2.1 The strain tensor

Each of the displacement fields u, v, wis a function of the position in the solid: 
u (x, y, z), v (x, y, z), w (x, y, z)

The normal components of the strain are defined as:

Stretching and shearing are usually coupled; the shear strain components given 
by:

it is symmetric (i.e., εxy = εyx)

Strain tensor is a symmetric tensor with diagonal elements εii (i=x, y, z) and 
off-diagonal elements εij (i, j=x, y, z) 

zwzyvyxuxrrr ˆ)(ˆ)(ˆ)( +++++=+= rrr δ
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The strain tensor

Rotational tensor is an antisymmetric tensor, ωij
= - ωji (i, j = x, y, z)

If the coordinate axes x and y are rotated around the axis z by an angle θ, the 
strain components in the new coordinate frame (x’, y’, z’) are given by:
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We can identify the rotation around the z axis which will make the shear 
components of the strain vanish

Lecture 3 21

3.2.2 The Stress Tensor

Definition of the stress tensor for the cartesian (x, y, z) coordinate system, and 
the polar (r, θ, z) coordinate system

The forces that act on the these surfaces has arbitrary directions and have Fx, 
Fy, Fz components

Stress tensor is symmetric tensor with diagonal elements σii=F i/Ai (i=x, y, z)
and off-diagonal elements σij=F j/Ai (i, j=x, y, z)
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The Stress Tensor

Just as in the analysis of strains, a rotation of the x, ycoordinate axes by an 
angle θ around the z axis
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On the planes that are perpendicular to the principle stress axes, the shear 
stress is zero, only the normal component of the stress survives!

We can find the maximum and minimum values of the stress from the 
equations above:
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3.2.3 Stress-strain relationship

• Stress and strain are properties that don’t depend on the dimensions of 
the material (for small ε), just type of the material

• Y – Young’s Modulus, Pa
• Comes from the linear range in the stress-strain diagram

• many exceptions…

Behavior is related to atomic bonding between the atoms

<0.00001Hydrogels and live cells

0.01Rubber

1.5-2Polypropelene

20-100Metals

Young’s Modulus [GPa]Material

εσ
ε
σ

Y
strain

stress
Y == or  

)(

)(
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Stress-strain relationship

Elastic constants of the solid, Cijkl ,  represented by a tensor of rank 4, or 
contracted version of this tensor (matrix with only two indices Cij)

klijklij C εσ =
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3 ⇒ zz

4 ⇒ yz
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3.2.4 Strain energy density

Connection between energy, stress and strain
Calculate the energy per unit volume (or strain energy density) in terms of the 

applied stress and the corresponding strain
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Strain energy density

The strain energy density W, defined as the potential energy per unit volume, 
we can obtain:

Using the Taylor expansion for the strain energy density and taking derivatives:
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Note : Strain energy density is quadratic in the strain tensor
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3.2.5 Applications of elasticity theory

Isotropic elastic solid more definitions…

When normal stress is applied in the x direction, solid can also deform in the y 
and z directions:

ν is Poisson’s ratio

If a shear stress σxy is applied to a solid, the corresponding shear strain is 

where µ is the shear modulus

Lame’s constant, λ: and bulk modulus, B

Y
xx

xxzzyy

σννεεε −=−==

• the minus sign is there because usually if εzz > 0, and εxx + εyy < 0 ⇒ ν > 0

xyxy σ
µ

ε 1=

)21)(1( νν
νλ

−+
= Y

)21(3 ν−
= Y

B
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Elastic constants of isotropic solids

Among three elastic constants (Young’s modulus, Poisson’s ratio and 
shear modulus) only two are independent:

)1(2 ν
µ

+
= Y
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Solid with cubic symmetry

Consider symmetry elements, we can only have the following kinds:
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Solids of Cubic Symmetry
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Basics of Crystal Binding, Vibrations, and Neutron Scattering

References:
1) Kittel, Chapter 3-4; 2) Marder, Chapter 11-13; 3) Ashcroft, Chapters 22, 24; 4) 

Burns, Chapters 12; 5) Ziman, Chapter 2;  6) Ibach, Chapter 6

3.1 Classification of Solids : Ionic; Covalent; Metallic; Molecular and Hydrogen 
bonded

3.2 Analysis of Elastic Strains: The Strain and Stress Tensors; Stress-strain 
relationship; Strain energy density; Applications of elasticity theory

3.3 Vibrations of crystals with monatomic basis

3.4 Two atoms per primitive basis

3.5 Quantization of elastic waves

3.6 Phonon momentum

3.7 Inelastic neutron scattering for phonons
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3.3 Longitudinal and transverse waves

Planes of atoms as displaces for longitudinal and transverse waves
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Continuous Elastic Solid

We can describe a propagating vibration of amplitude u along a rod of material 
with Young’s modulus Y and density ρ with the wave equation:

2

2

2

2

x

uY

t

u

∂
∂=

∂
∂

ρ
for wave propagation along the x-direction

By comparison to the general form of the 1-D wave equation:

2

2
2

2

2

x

u
v

t

u

∂
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∂
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we find that
ρ
Y

v = So the wave speed is independent of 
wavelength for an elastic medium!

kv
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f ===
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ππω 22 ω

k

)(kω is called the 
dispersion relation of 
the solid, and here it is 
linear (no dispersion!)

dk

d
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ω=group velocity
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3.3 Vibrations of Crystals with Monatomic Basis

By contrast to a continuous solid, a real solid is not uniform on an atomic scale, 
and thus it will exhibit dispersion.  Consider a 1-D chain of atoms:

In equilibrium:

1−su

Longitudinal wave:

M
a

su 1+su psu +

1−s s 1+s ps+

For atom s
(for plane s)

( )∑ −= +
p

spsps uucF

p = atom label
p = ± 1    nearest neighbors
p = ± 2    next nearest neighbors
cp = force constant for atom p
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The equation of motion of the plane s

Elastic response of the crystal is a linear function of the forces (elastic energy is 
a quadratic function of the relative displacement)

The total force on plane s comes from planes s ± 1

FS = C (uS+1 – uS) + C (uS - 1 – uS)
C – the force constant between nearest-neighbor planes (different for 
transverse and longitudinal waves)

)2( 112

2

SSS
S uuuC

dt

ud
M −+= −+

S
S u

dt

ud 2
2

2

ω−=

)2( 11
2

SSSS uuuCuM −+=− −+ω This is a difference equation in 
the displacements u

iKaisKa
S eueu ±

± =1

Equation of motion 
of the plane s:

Solutions with all displacements having time dependence exp(-iωt). Then
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Equation of Motion for 1D Monatomic Lattice

Thus: ( )∑ −−+− −=−
p

tksaitapski
p

tksai ueueceiMu )())(()(2)( ωωωω

For the expected harmonic 
traveling waves, we can write
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)( tkxi

s
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Dispersion relation of the monatomic 1D lattice

The result is: ∑∑
>>
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and the only unique 
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Theory vs. Experiment

In a 3-D atomic lattice we expect to 
observe 3 different branches of 
the dispersion relation, since there 
are two mutually perpendicular 
transverse wave patterns in 
addition to the longitudinal pattern 
we have considered

Along different directions in the 
reciprocal lattice the shape of the 
dispersion relation is different 

Note the resemblance to the simple 
1-D result we found

Lecture 3 39

Counting Modes and Finding N( ωωωω)
A vibrational mode is a vibration of a given wave vector       (and thus λ), 
frequency       , and energy                   .  How many modes are found in the 
interval between                  and                           ?

ω ωh=E
k
v

),,( kE
v

ω ),,( kdkdEEd
vv

+++ ωω

# modes kdkNdEENdNdN
v

3)()()( === ωω

We will first find N(k) by examining allowed values of k.  Then we will be able 
to calculate N(ω)

First step:  simplify problem by using periodic boundary conditions for the 
linear chain of atoms:

x = sa x = (s+N)a

L = Na
s

s+N-1

s+1

s+2

We assume atoms s and 
s+N have the same 
displacement—the lattice 
has periodic behavior, 
where N is very large
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Step one: finding N(k)

This sets a condition on 
allowed k values: ...,3,2,1

2
2 ==→= n

Na

n
knkNa

ππ

So the separation between 
allowed solutions (k values) is:

independent of k, so 
the density of 
modes in k-space is 
uniform

Since atoms s and s+N have the same displacement, we can write:

Nss uu += ))(()( taNskitksai ueue ωω −+− = ikNae=1

Na
n

Na
k

ππ 22 =∆=∆

Thus, in 1-D:
ππ 22

1 LNa

kspacekofinterval

modesof# ==
∆

=
−
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Next step: finding N( ωωωω)

Now for a 3-D lattice we can apply periodic boundary 
conditions to a sample of N1 x N2 x N3 atoms:

N1a
N2b

N3c

)(
8222 3

321 kN
VcNbNaN

spacekofvolume

modesof# ===
− ππππ

Now we know from before that 
we can write the differential # 
of modes as:

kdkNdNdN
v

3)()( == ωω kd
V v

3
38π

=

We carry out the integration 
in k-space by using a 
“volume” element made up 
of a constant ω surface with 
thickness dk:

[ ]dkdSdkareasurfacekd ∫== ω)(3
v
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Finding N( ωωωω))))

A very similar result holds for N(E) using constant energy surfaces for the 
density of electron states in a periodic lattice!

dkdS
V

dNdN ∫== ωπ
ωω

38
)(

Rewriting the differential number 
of modes in an interval:

We get the result:
k

dS
V

d

dk
dS

V
N

∂
∂∫∫ ==
ωωω πωπ

ω 1

88
)(

33

This equation gives the prescription for calculating the density of modes 
N(ω) if we know the dispersion relation ω(k).
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3.4 Two Atoms per Primitive Basis

Consider a linear diatomic chain of atoms (1-D model for a crystal like NaCl):

In equilibrium:

M1

a

M2 M1 M2

Applying Newton’s second law and the nearest-neighbor approximation to this 
system gives a dispersion relation with two “branches”:

2/1

2
12

21

2
1

2

21

212
1

21

21
1

2 )(sin
4














−







 +±






 += ka
MM

c

MM

MM
c

MM

MM
cω

ω-(k)     ω � 0 as k � 0 acoustic modes (M1 and M2 move in phase)

ω+(k)    ω � ωmax as k � 0     optical modes (M1 and M2 move out of phase)

M1 < M2
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Optical and acoustical branches

Two branches may be presented as follows:

If there are p atoms in the primitive cell, there are 3p branches to the 
dispersion relation: 3 acoustical branches and 3p-3 optical branches

gap in allowed frequencies

M1 < M2

(2a/M2)1/2

(2a/M1)1/2
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Optical and acoustical branches
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3.5 Quantization of Elastic Waves

The energy of a lattice vibrations is quantized
The quantum of energy is called a phonon (analogy with the photon of the 
electromagnetic wave)

Energy content of a vibrational mode of frequency       is an integral number of 
energy quanta        .  We call these quanta “phonons”.
While a photon is a quantized unit of electromagnetic energy, a phonon is a 
quantized unit of vibrational (elastic) energy.

ωh
ω
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3.6 Phonon Momentum

Associated with each mode of frequency       is a wavevector , which leads 
to the definition of a “crystal momentum”:   

ω k
v

Crystal momentum is analogous to but not equivalent to linear momentum.  No 
net mass transport occurs in a propagating lattice vibration, so a phonon does 
not carry physical momentum

But phonons interacting with each other or with electrons or photons obey a 
conservation law similar to the conservation of linear momentum for interacting 
particles

k
v

h
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Conservation Laws
Lattice vibrations (phonons) of many different 
frequencies can interact in a solid.  In all 
interactions involving phonons, energy must be 
conserved and crystal momentum must be 
conserved to within a reciprocal lattice vector:

Gkkk
r

h
v

h
v

h
v

h

hhh

+=+

=+

321

321 ωωω

22 k
v

ω

11 k
v

ω

33 k
v

ω
Schematically:

Compare this to the special case of elastic 
scattering of x-rays with a crystal lattice: Gkk

rvv
+=′

Photon wave vectors

Just a special case 
of the general 
conservation law!
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Brilloiun Zone in 3D : Wigner-Seitz cell of the reciprocal lattice

;   ;  ;such that    vectorsbasic are ,, where

 , 2 2 2                                                              

321

21
3

321

13
2

321

32
1321

332211

aaa

aa
b

aaa

aa
b

aaa

aa
bbbb

bnbnbnG

rrr

rr
r

rrr

rr
r

rrr

rr
rrrr

rrrr

×⋅
×=

×⋅
×=

×⋅
×=

++= πππ

Brilloiun Zone in 3D

Recall: reciprocal lattice vector 

Some properties of reciprocal lattice:

The direct lattice is the reciprocal of its own reciprocal lattice 

The unit cell of the reciprocal lattice need not be a paralellopiped, e.g., 
Wigner-Seitz cell 

first Brilloin Zone (BZ) 
of the fcc lattice
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Back to Brillouin Zones

Gkk
rvv

+= 1
k

ω

a

π
a

π2

a

π−
a

π2− 0

M

c14

a

π3

a

π4

a

π3−
a

π4− k
v

1k
v

G
r

The 1st BZ is the region in reciprocal space containing all information about the 
lattice vibrations of the solid

Only the       values in the 1st  BZ correspond to unique vibrational modes.  
Any      outside this zone is mathematically equivalent to a value        inside the 
1st BZ

This is expressed in terms of a general translation vector of the reciprocal lattice:

k
v

1k
v

k
v

Lecture 3 51

3.7 Neutron scattering measurements

Conservation of energy:

When a phonon of wavelength |K|  is created by the inelastic scattering of a 
photon or neutron, the wavevector selection rule: 

E
M

k

M

k fi ∆±=
22

2222 hh

What is  a neutron scattering measurement?

- neutron source sends neutron to sample

- some neutrons scatter from sample

- scattered neutrons are detected

phonon a ofon annihilati   

phonon a ofcreation    

GKkk

GkKk

if

if
rrrr

rrrr

++=

+=+
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Why neutrons?

Wavelength:

- At 10 meV, λ=2.86Å ⇒ similar length scales as structures of interest

Energy:
- thermal sources: 5-100meV

- cold sources: 1-10meV

- spallation sources: thermal and epithermal neutrons (>100meV)

can cover range of typical excitation energies in solids and liquids!

E

044.9=λ

http://www.ncnr.nist.gov/summerschool/ss05/Vajklecture.pdf
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Energy and Length Scale

http://www.ncnr.nist.gov/index.html
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Effective Cross Section

Cross Section, σσσσ: an effective area which represents probability 
that a neutron will interact with a nucleus 

σ varies from element to element and even isotope to isotope

Typical σ ~ 10-24 cm2 for a single nucleus

One unit of cross section is a 1 barn= 10-24 cm2

… as in “it can’t hit the size of the barn”

Total nuclear cross section 
for several isotopes

http://www.ncnr.nist.gov/index.html
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Neutron Scattering

Number of scattered neutrons is proportional to scattering function, S (G, ω)

Scattering: 

elastic; 

quasielastic;  
Inelastic

Neutrons are sensitive to 

components of motion 
parallel to the momentum 

transfer Q

Angular width of the scattered 
neutron beam gives information

on the lifetime of phonons
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Phonon dispersion of bcc-Hf

Trampenau et al. (1991)

LA-Phonon

TA-Phonon
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Inelastic neutron scattering data for KCuF 3
measured

Bella Lake, D. Alan Tennant, Chris D. Frost and Stephen E. 
NaglerNature Materials4, 329 - 334 (2005)
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2D: Inelastic Scattering on the Surfaces

Thermal Energy Helium Atom Scattering
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Time-of-Flight Spectra and Dispersion Curves

Time-of-flight spectrum for He atoms scattering from an LiF(001) surface along the [100] azimuth. The sharp 
peaks are due to single surface phonon interactions (From Brusdeylins et al, 1980)
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Neutron Scattering

Neutron enters the crystal 
as  a plane wave (blue)

Interacts with the crystal 
lattice (green)

And become by 
interference effects an 
outgoing plane vector (red)

Time-of-flight in measured


