Lecture 3

Basics of Crystal Binding, Vibrations, and Neutron Scattering 3.1 Classification of Solids : Ionic; Covalent; Metallic; Molecular and Hydrogen bonded

3.2 Analysis of Elastic Strains: The Strain and Stress Tensors; Stress-strain relationship; Strain energy density; Applications of elasticity theory

3.3 Vibrations of crystals with monatomic basis

- 3.4 Two atoms per primitive basis
- 3.5 Quantization of elastic waves

3.6 Phonon momentum

3.7 Inelastic neutron scattering for phonons

References: 1) Kittel, Chapter 3-4; 2) Marder, Chapter 11-13; 3) Ashcroft, Chapters 22, 24; 4) Burns, Chapters 12; 5) Ziman, Chapter 2; 6) Ibach, Chapter 6 Lecture 3

Example	s and cha	racteri	stics of 5 types of bond
Bond type	Examples	Typical energies, eV/atom	Distinct characteristics
lonic	LiF, NaCl, CsCl	5 - 10	Nondirected bonding, giving structures of high coordination; no electrical conductivity at low temperature
Covalent	Diamond, Si, Ge, graphite	3 - 8	Spatially directed bonds, structures with low coordination; low conductivity at low temperature for pure crystals
Metallic	Li, Na, Cu, Ta	0.7 - 1.6	Nondirected bond, structures of very high coordination and density; high electrical conductivity; ductility
Fluctuating or permanent dipole	Ne, Ar, Kr, Xe, CHCl ₃	0.05-0.2	Low melting and boiling points
Hydrogen	H ₂ O, HF	0.25-0.6	Increase in bonding energy over similar molecules without hydrogen bonds
		Lect	ure 3

	Ele	ctrostatic or	Made	lung Energy	,				
• Тур • Нід	 Typically large lattice energies: 600-3000 kJ/mol High melting temperatures: 801°C for NaCl 								
For Na Compa • Ionic	For NaCl: E _{NarCL} = - 7.42 × 10 ⁻¹⁹ J = 4.63eV (2.315 per ion) Compare to 3.3eV (elsewhere): big difference! • Ionic radii of selected ions are listed in the table								
	Cation	Ionic radius (nm)	Anion	lonic radius (nm)					
	Li+	0.060	F [.]	0.136					
	Na+	0.095	Cŀ	0.181					
	K+	0.133	Br	0.195					
	Rb+	0.148	ŀ	0.216					
	Cs+	0.169							
		ե	ecture 3		6				

Evaluation of the Madelung Constant

- 1. Consider a cube of 8 ions
- 2. Consider a line of alternating in sign ions, with distance R between ions
- Consider a lattice: lattice sum calculation can be used to estimate Madelung constant, α

$\alpha = \sum_{j} \frac{\pm}{R_{ij}}$
--

Structure	α
NaCl	1.7475
CsCl	1.7626
ZnS	1.6381

3.1	1.3 Nonlocalized ele	ectron	is in r	netals	5	
Three contribut 1. Electron mus potential	tions to the cohesive energy in st interact with the ion cores a $\mathcal{E}_{el} = \alpha e^2$	n metals nd itself a Madelung	accordin constants fo	g to the or metals		
	$\overline{N} = -\frac{1}{2} \frac{1}{r_s}$	bcc	fcc	hcp	sc	Diamond
Add in the ki	netic energy of the electrons	1.791 86	1.791 75	1.791 68	1.760 12	1.670 85
3. Include exch Summing:	$\frac{\mathcal{E}_{\rm Lim}}{N} = \frac{3}{5} \frac{h^2 k_F}{2m} = \frac{3}{5} \frac{h^2}{2m} \left(\frac{2}{7} \\ \frac{1}{5} \frac{2m}{2m} \right) \left(\frac{2}{7} \\ \frac{1}{5} \frac{m^2}{2m} - \frac{3}{4\pi} e^2 \\ \frac{1}{5} \frac{m^2}{2m} - \frac{3}{4\pi} e^2 \\ \frac{1}{5} \frac{1}{m} \frac{m^2}{2m} - \frac{3}{4\pi} e^2 \\ \frac{1}{5} \frac{1}{m} $	$\frac{(\tau_{-})^{2/3}}{r_{s}^{2}} \frac{1}{r_{s}^{2}}$ a uniform $\frac{9\pi}{4} \int^{1/3} \frac{1}{r_{s}} \frac{1}{r_{s}}$ $\frac{2.5}{a_{0}} \Big] eV/2$	positive	backgro	ound	
Not satisfactory	y! Minima at $\frac{r_s}{a_0} = 1.6$ hile types the second se	pical valu	ies are 2	-6		
	Lecture	3 Mai	rder, pp.	272-274		10

 When a covalent molecule has permanent dipole? Depends on geometry of the molecule. CO₂ ? CH₃Cl ? H₂O ? Calculate the dipole moment associated with the ionic model of the water molecule. The length of the O-H bond is 0.097nm and the angle between the bonds is 104.5°. Hydrogen bond: permanent dipole-dipole interaction for the molecules with a hydrogen atoms bonded to a highly electronegative element (F, Cl, O, N) e.g.: H₂O, polymeric materials Permanent dipole bond: a secondary bond created by the attraction of molecules that have permanent dipoles 	Permanent Dipoles	
 When a covalent molecule has permanent dipole? Depends on geometry of the molecule CO₂ ? CH₃Cl ? H₂O ? A.: Calculate the dipole moment associated with the ionic model of the water molecule. The length of the O-H bond is 0.097nm and the angle between the bonds is 104.5°. Hydrogen bond: permanent dipole-dipole interaction for the molecules with a hydrogen atoms bonded to a highly electronegative element (F, CI, O, N) e.g.: H₂O, polymeric materials Permanent dipole bond: a secondary bond created by the attraction of molecules that have permanent dipoles 	H F Hydrogen	
 CO2 ? CH₃Cl ? H₂O ? G.: Calculate the dipole moment associated with the ionic model of the water molecule. The length of the O-H bond is 0.097nm and the angle between the bonds is 104.5°. Hydrogen bond: permanent dipole-dipole interaction for the molecules with a hydrogen atoms bonded to a highly electronegative element (F, Cl, O, N) e.g.: H₂O, polymeric materials Permanent dipole bond: a secondary bond created by the attraction of molecules that have permanent dipoles 	When a covalent molecule has permanent dipole? Depends on geometry of the molecule	
 Q.: Calculate the dipole moment associated with the ionic model of the water molecule. The length of the O-H bond is 0.097nm and the angle between the bonds is 104.5°. Hydrogen bond: permanent dipole-dipole interaction for the molecules with a hydrogen atoms bonded to a highly electronegative element (F, Cl, O, N) e.g.: H₂O, polymeric materials Permanent dipole bond: a secondary bond created by the attraction of molecules that have permanent dipoles 	• CO ₂ ? CH ₃ Cl ? H ₂ O ?	
Hydrogen bond: permanent dipole-dipole interaction for the molecules with a hydrogen atoms bonded to a highly electronegative element (F, CI, O, N) e.g.: H ₂ O, polymeric materials Permanent dipole bond: a secondary bond created by the attraction of molecules that have permanent dipoles	Q.: Calculate the dipole moment associated with the ionic model of the water molecule. The length of the O-H bond is 0.097nm and the angle between the bonds is 104.5° .	
e.g.: H ₂ O, polymeric materials Permanent dipole bond: a secondary bond created by the attraction of molecules that have permanent dipoles	\bullet Hydrogen bond: permanent dipole-dipole interaction for the molecules with a hydrogen atoms bonded to a highly electronegative element (F, Cl, O, N)	
Permanent dipole bond: a secondary bond created by the attraction of molecules that have permanent dipoles	e.g.: H ₂ O, polymeric materials	
Lecture 3 13	Permanent dipole bond: a secondary bond created by the attraction of molecules that have permanent dipoles Lecture 3	13

_								
	Stress-strain relationship							
			$\sigma_{ij} = C_{ijkl} oldsymbol{arepsilon}_{kl}$					
	Elastic co contra	nstants of the so cted version of t	blid, C_{ijkl} , represented by a tensor of rank 4, c this tensor (matrix with only two indices C_{ij}))r				
	$1 \Rightarrow xx$ $2 \Rightarrow yy$ $3 \Rightarrow zz$ $4 \Rightarrow yz$ $5 \Rightarrow zx$ $6 \Rightarrow xy$	$\begin{split} & C_{xxxx} \Rightarrow C_{11} \\ & C_{xxyy} \Rightarrow C_{12} \\ & C_{xxzz} \Rightarrow C_{13} \\ & C_{yzxx} \Rightarrow C_{41} \\ & C_{zxxx} \Rightarrow C_{51} \\ & C_{xyyx} \Rightarrow C_{61} \end{split}$	$\begin{aligned} \sigma_{xx} &= C_{11} \varepsilon_{xx} + C_{12} \varepsilon_{yy} + C_{13} \varepsilon_{zz} + C_{44} \varepsilon_{yy} + C_{15} \varepsilon_{yy} \\ \sigma_{yy} &= C_{21} \varepsilon_{xx} + C_{22} \varepsilon_{yy} + C_{23} \varepsilon_{zz} + C_{24} \varepsilon_{xy} + C_{23} \varepsilon_{zz} \\ \sigma_{zz} &= C_{31} \varepsilon_{xx} + C_{32} \varepsilon_{yy} + C_{33} \varepsilon_{zz} + C_{44} \varepsilon_{xy} + C_{35} \varepsilon_{zz} \\ \sigma_{yz} &= C_{44} \varepsilon_{xx} + C_{42} \varepsilon_{yy} + C_{43} \varepsilon_{zz} + C_{44} \varepsilon_{xy} + C_{45} \varepsilon_{zz} \\ \sigma_{zz} &= C_{51} \varepsilon_{xx} + C_{52} \varepsilon_{yy} + C_{53} \varepsilon_{zz} + C_{54} \varepsilon_{xy} + C_{54} \varepsilon_{zy} + C_{54} \varepsilon$	$z_{z} + C_{16}\varepsilon_{zx}$ $z_{yz} + C_{26}\varepsilon_{zx}$ $z_{yz} + C_{36}\varepsilon_{zx}$ $z_{yz} + C_{46}\varepsilon_{zx}$ $z_{yz} + C_{56}\varepsilon_{zx}$ $z_{yz} + C_{56}\varepsilon_{zx}$				
		NAM UT	Lecture 3	24				

	Covalent ar	nd ionic soli	ds		Meta	ls	
Crystal	μ	λ	ν	Crystal	μ	λ	ν
				W	1.6	2.01	0.27
С	5.36	0.85	0.068	Mo	1.23	1.89	0.30
Si	0.681	0.524	0.218	Cr	1.21	0.778	0.130
Ge	0.564	0.376	0.200	Ni	0.947	1.17	0.276
				Fe	0.860	1.21	0.29
MgO	1.29	0.68	0.173	Cu	0.546	1.006	0.324
LiF	0.515	0.307	0.187	Ag	0.338	0.811	0.354
PbS	0.343	0.393	0.267	Au	0.310	1.46	0.413
NaCl	0.148	0.146	0.248	Al	0.265	0.593	0.341
KCl	0.105	0.104	0.250	Pb	0.101	0.348	0.383
AgBr	0.087	0.345	0.401	Na	0.038	0.025	0.201
				К	0.017	0.029	0.312

				-			
Element	C ₁₁ (GPa)	C ₄₄ (GPa)	C ₁₂ (GPa)	Element	C ₁₁ (GPa)	C ₄₄ (GPa)	C ₁₁ (GI
Al	108	28.3	62	Li (195K)	13.4	9.6	11.
Ar (80K)	2.77	0.98	1.37	Mo	459	111	168
Ag	123	45.3	92	Na	7.59	4.30	6.3
Au	190	42.3	161	Ne (6K)	1.62	0.93	0.8
Cs (78K)	2.47	2.06	1.48	Ni	247	122	153
Ca	16	12	8	Nb	245	28.4	132
Cr	346	100	66	O (54.4 K)	2.60	0.275	2.0
Cu	169	75.3	122	Pd	224	71.6	173
C (diamond)	1040	550	170	Pt	347	76.5	25
Fe	230	117	135	Rb	2.96	1.60	2.4
Ge (undoped)	129	67.1	48	Si (undoped)	165	79.2	64
Ge (n-doped, 1019 Sb)	128.8	65.5	47.7	Si (n-doped, 10 ¹⁹ As)	162.2	78.7	65.
Ge (p-doped,10 ²⁰ Ga)	118.0	65.3	39.0	Sr	14.7	5.74	9.9
He ³ (0.4 K, 24 cm ³ /mole)	0.0235	0.01085	0.0197	Ta	262	82.6	150
He ⁴ (1.6 K, 12 cm ³ /mole)	0.0311	0.0217	0.0281	Th	76	46	49
Ir	600	270	260	w	517	157	203
К	3.71	1.88	3.15	v	230	43.2	120
Kr (115K)	2.85	1.35	1.60	Xe (156K)	2.98	1.48	1.9
Pb	48.8	14.8	41.4				

3.2 Analysis of Elastic Strains: The Strain and Stress Tensors; Stress-strain relationship; Strain energy density; Applications of elasticity theory

3.3 Vibrations of crystals with monatomic basis

3.4 Two atoms per primitive basis

3.5 Quantization of elastic waves

3.6 Phonon momentum

3.7 Inelastic neutron scattering for phonons

References: 1) Kittel, Chapter 3-4; 2) Marder, Chapter 11-13; 3) Ashcroft, Chapters 22, 24; 4) Burns, Chapters 12; 5) Ziman, Chapter 2; 6) Ibach, Chapter 6

Lecture 3

3.5 Quantization of clastic waves	3.5	Quantization	of Elastic	Waves
-----------------------------------	-----	--------------	------------	-------

The energy of a lattice vibrations is quantized The quantum of energy is called a \underline{phonon} (analogy with the photon of the electromagnetic wave) Energy content of a vibrational mode of frequency ω is an integral number of energy quanta $\hbar\omega$. We call these quanta "phonons". While a <u>photon</u> is a quantized unit of <u>electromagnetic</u> energy, a <u>phonon</u> is a quantized unit of <u>vibrational</u> (elastic) energy. Name Field -----Electron $\sim \sim \sim$ Photon Electromagnetic wave ~~~~ Phonon Elastic wave Plasmon Collective electron wave 46

Brilloiun Zone in 3D: Wigner-Seitz cell of the reciprocal lattice

Recall: reciprocal lattice vector $\vec{G} = 2\pi n_1 \vec{b_1} + 2\pi n_2 \vec{b_2} + 2\pi n_3 \vec{b_3}$,

Some properties of reciprocal lattice:

The direct lattice is the reciprocal of its own reciprocal lattice The unit cell of the reciprocal lattice need not be a paralellopiped, e.g., Wigner-Seitz cell

first Brilloin Zone (BZ) of the fcc lattice

Why neutrons?

Wavelength: $\lambda = \frac{9.044}{\sqrt{E}}$

- At 10 meV, $\lambda\text{=}2.86\text{\AA}$ \Rightarrow similar length scales as structures of interest

Energy:

- thermal sources: 5-100meV

- cold sources: 1-10meV
- spallation sources: thermal and epithermal neutrons (>100meV)

can cover range of typical excitation energies in solids and liquids!

52

http://www.ncnr.nist.gov/summerschool/ss05/Vajklecture.pdf

