Lecture 1.1 Crystal Lattices
1.2 The Reciprocal Lattice
1.3 Experimental Determination of Crystal Structure
Crystal:
a solid composed of atoms, ions, or molecules arranged in a pattern that is
repeated in three dimensions
A material in which atoms are situated in a repeating or periodic array over large
atomic distances
References:

1. Marder, Chapters 1-3
2. Kittel, Chapter 1 and 2
3. Ashcroft and Mermin, Chapter 4-6
4. Burns, Chapters 1-2
5. Ziman, Chapter 1


### 1.1 Crystal Lattices

Atomic Structure Questions:

- What is the basic structure of matter?
- How do atoms spontaneously organize?

Basic Answers:

- Scaling theory relates atom-scale units to macroscopic solids
- Atoms form crystalline arrays
- Idea comes from special class of solids: minerals
 Lecture


### 1.1.1 Two-Dimensional Lattices

## Definitions

- Bravais lattice
- Primitive vector
- Basis vector
- Unit cell (primitive or not)
- Wigner-Seitz cell (Voronoi polyhedron)
- Translation, space and point groups


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Lattice with Basis

Note presence of glide plane, showing that space group is not the same as the product of translation and point group

$\qquad$
$\qquad$
$\qquad$
Some, but not all symmetries of triangular $\qquad$ lattice destroyed

$\qquad$
$\qquad$

## Symmetries and The Space Group

The complete set of rigid body motions that takes a crystal into itself is called space group $\qquad$

$\qquad$
$\qquad$
Two subgroups: translation and point groups
Translation: translation through all lattice vectors defined by $n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+\ldots$ and it leaves the crystal unchanged (invariant)
Point group consists of rotations that leave the crystal invariant
... plus crew axis and glide planes

## Summary: Classification of 2D periodic Structures


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ the centre of the cell; draw the perpendicular
bisector planes of the translation vectors from the chosen centre to the nearest equivalent lattice site Lecture 1



| Allotropy |  |  |  |
| :---: | :---: | :---: | :---: |
| Many elements adopt multiple crystal structures between 0 K and their melting temperatures |  |  |  |
| Transformation Temp, C | Phase | Structure (atoms per unit cell) | Density (g/cc) |
| 112 | $\alpha$ | monoclinic (16) | 19.8 |
| 185 | $\beta$ | fc monoclinic (34) | 17.8 |
| 310 | $\gamma$ | fc orthorhombic (8) | 17.1 |
| 450 | $\delta$ | fcc (4) | 15.9 |
| 475 | $\delta^{\prime}$ | fc tetragonal (2) | 16.0 |
| 640 |  | bcc (2) | 16.5 |
| Table 1: Source, Atomic Weapons Establishment, Discovery Article |  |  |  |


$\qquad$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$

$\qquad$

14 Bravais Lattices and 7 Crystal Systems $\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Schönflies and International Notations

## Schönflies

C = Cyclic; allows successive rotation about main axis.
$D=$ Dihedral; contains two-fold axes perpendicular to main axis.
$S=$ Spiegel; unchanged after combination of reflection and rotation.
$T=$ Tetragonal.
$O=$ Octahedral.
A subscript $n=1 \ldots 6$ denotes the order of a rotational axis, and subscripts denote the three types of mirror plane on previous slide International
Associates each group with a list of its symmetry axes.
Notation such as $6 m$ refers to a mirror plane containing a six-fold axis, while $6 / m$ refers to a mirror plane perpendicular to the six-fold axis

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Angles between the planes

$[i j k]=[l m n] \times[o p q]$


Cross products of two vectors in a plane defines direction perpendicular to plane
[ $/ m n n$ and [opq] are both vectors in plane (ijk)

Angle between two planes (directions) $\cos \Theta=\frac{[i j k] \bullet[l m n]}{\sqrt{i^{2}+j^{2}+k^{2}} \sqrt{l^{2}+m^{2}+n^{2}}}$
e.g., for [111], [211] :

$$
\cos \Theta=\frac{2+1+1}{\sqrt{3} \sqrt{6}} \Rightarrow \Theta=19.47^{\circ}
$$




### 1.2 Reciprocal Space

Reciprocal space is also called Fourier space, $\boldsymbol{k}$-space, or momentum space in contrast to real space or direct space

The reciprocal space lattice is a set of imaginary points constructed in such a way that the direction of a vector from one point to another coincides with the direction of a normal to the real space planes and the separation of those points (absolute value of the vector) is equal to the reciprocal of the real interplanar distance $\qquad$
$\Rightarrow$ The things which are larger in real space are smaller in reciprocal space by definition

$\qquad$
1.3 Experimental Determination of Crystal Structures $\qquad$


## History

Experiments and theory in 1912 finally revealed locations of atoms in crystalline solids
Essential ingredients:

- Theory of diffraction grating
- Skiing, and physics table at Café Lutz
- X-ray tubes, photographic plates, and first experiments with their use
- Persistence
- Coherent experiments with incoherent theory along behind

Incident particles to consider:
X -rays
Neutrons
$\begin{array}{lllll} & \text { Charge } & 0 & 0 & \\ \text { Electrons } & \text { Mass } & 0 & 1.67 \cdot 10^{-27} \mathrm{~kg} & 9.11 \cdot 10^{-31} \mathrm{~kg}\end{array}$
$\begin{array}{llllll}\text { Atoms } & ? & \text { Typical energy } & 10 \mathrm{keV} & 0.03 \mathrm{eV} & 100 \mathrm{keV} \\ & \text { Typical wavelength } & 1 \AA & 1 \AA & 0.05 \AA\end{array}$
Typical antenuation length 100 cm 5 cm
Typical atomic form factor. $f \quad 10^{-3} \AA \quad 10^{-4} \AA \quad 10 \AA$

| Term |  |
| :---: | :---: |
| - Miller indices <br> - Reciprocal lattice |  |
| Structure Determination <br> - Bragg scattering, elastic and inelastic <br> - Bragg angle, Bragg peak and crystal planes |  |
| - Atomic form factor <br> - Structure factor <br> - Extinctions |  |
| Experimental Methods: <br> - Ewald construction <br> - Laue method <br> - Debye-Scherrer method, powder diffraction <br> Lecture 1 | 44 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

- Ewald construction
- Laue method
- Debye-Scherrer method, powder diffraction



## Scattering from a particle

Using Eq. above and defining $\vec{k}=k_{o} \frac{\vec{r}}{r}$ and $\vec{q}=\vec{k}_{o}-\vec{k} \quad$ outgoing waves
$\psi \sim A e^{-i \alpha \alpha}\left[e^{i k_{0} \bar{F}}+f(r) \frac{e^{i k_{s} r+i \bar{q} \bar{R}}}{r}\right] \quad$ Lecture 1 $\quad \theta$ - Bragg angle $\quad 46$

$\qquad$
$\qquad$

## Many scattering particles

Assuming multiple scattering and inelastic scattering can be ignored
$\psi \sim A e^{-i \omega x}\left[e^{i \vec{k}_{o} \vec{r}}+\sum_{l} f_{l}(r) \frac{e^{i \vec{k}_{0} \vec{r}+i \bar{q} \vec{R}_{l}}}{r}\right]$
In direction away from incident beam
$\psi \sim A e^{-i \omega x}\left[\sum_{l} f_{l}(r) \frac{e^{i \vec{k}_{o} \vec{r}+i \bar{q} \vec{R}_{1}}}{r}\right]$
Intensity per unit solid angle
$I=\sum_{l, l} f_{l} f_{l}^{*} e^{i\left(\bar{q}\left(\vec{R}_{1}-\vec{R}_{l}\right)\right.}$
Equation above is true no matter how atoms are arranged!


## Scattering in three dimensions

> Main result : when $\vec{q}=\vec{k}_{o}-\vec{k}=\vec{K}$ satisfies
> $e^{i \vec{K} \vec{R}}=1$ or $\vec{K} \cdot \vec{R}=2 \pi$
> there is a strong peak
> The scatering sum can be rewritten
> $\sum_{\vec{R}} e^{i \vec{R} \vec{q}}=\sum_{\vec{K}} N \frac{(2 \pi)^{3}}{v} \delta(\vec{q}-\vec{K})$

When the vectors $\mathbf{R}$ lie in a Bravais lattice, then vectors $\mathbf{K}$ satisfying equation above also lie in a lattice - the reciprocal lattice

$$
\begin{aligned}
& \text { When } F_{d} \text { vanishes, have an extinction: Laue overlooked this possibility, leading to years } \\
& \text { of confusion interpreting patterns. }
\end{aligned}
$$

$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
And the radius $r$ on film of the scattering ring due to the reciprocal lattice vector $r=D \tan (2 \theta)$

$$
56
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$

## Bragg's law

The diffraction (the coherent elastic scattering of waves by the crystal lattice) condition

$$
n \times \lambda=2 d \sin \Theta \quad \begin{aligned}
& \text { Bragg's law (X-rays } \\
& \text { neutrons, electrons) }
\end{aligned}
$$

where $\lambda$ - wavelength of X -ray beam, $d$ - spacing of reflecting planes, $\Theta$ - angle of incidence and reflection, $n$-order of diffraction (for most of the cases we discuss $n=1$ )

The lattice plane spacing $d$ depends on the crystal structure and indices $\{\mathrm{hkl}\}$ of the planes

$$
d_{\text {cubic_str }}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}} \quad d_{\text {hexagonal_str }}=\frac{a}{\sqrt{\frac{4}{3}\left(h^{2}+k^{2}+h k\right)+\frac{l^{2} a^{2}}{c^{2}}}}
$$

$d$ - set by the crystal
$\lambda$ - set by apparatus (constant for a given setup) can change $\Theta$ (theta) or often $2 \Theta!!!$ $\qquad$
Kittel, pp.29-30
Lecture 1

## Constructive and destructive interference

X-ray waves scatter in phase (constructive interference): $\lambda, 2 \lambda, 3 \lambda, \ldots, \mathrm{n} \lambda$ ( n - whole number)
Out of phase (destructive interference): $1 / 2 \lambda, 3 / 2 \lambda, 5 / 2 \lambda$,..
What about the other planes? $\qquad$
$\qquad$
-if in phase condition holds for plane 1 and 2 , it also holds for the plane 3, 4, etc. $2 \square$

- if plane 1 and 2 are out of phase, the $3^{\text {rd }}$ will be in phase will the $1^{\text {tst }}, \ldots$ but the $\quad 3$
$4^{\text {th }}$ will cancel it out $\qquad$
Other planes are also important:
$\qquad$

$\qquad$
$\qquad$
. Consider diffraction from the (100) face of the fcc crystal


$$
\text { If } 2 d \sin \Theta=\lambda \text { (i.e., } \mathrm{n}=1 \text { ) }
$$

but there is always another plane at ( $n=1 / 2$ ) $\Rightarrow$ no intensity..
Rules for determining the diffracting \{hkl\} planes in cubic crystals

Schematic illustration of $(100)-(200)$ annihilation in a foc lattice. $\begin{aligned} & \text { Details of crystal unit cell are important } \\ & \text { Different rules for different unit cells }\end{aligned}$ Lecture 1
$\qquad$

Possible peaks for cubic structures
$d_{h b l}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}$

| $d_{h k l}$ | Family of <br> panes | sc | fcc | $b c c$ |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | $\{100\}$ |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Powder diffraction

```
- Use polycrystalline sample
- All possible planes are at angle \(\Theta\) to beam
- Only ones satisfying Braggs condition provide diffraction
- Need to change angle \(\Theta\) to detect all "Bragg peaks"
```



```
Record of the diffraction angles for a W (tungsten) sample obtained by the use of a diffractometer with Cu radiation
```

Experimental details (powder diffraction)


