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Chapter 6

Mechanical Properties of Metals
Mechanical Properties refers to the behavior of material when 
external forces are applied

Stress and  strain       ⇒ fracture
For engineering point of view: allows to predict the ability of a component 

or a structure to withstand the forces applied to it

For science point of view: what makes materials strong → helps us to 
design a better new one

Learn basic concepts for metals, which have the simplest behavior

Return to it later when we study ceramics, polymers, composite materials, 
nanotubes
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6.1 Elastic and Plastic Deformation

• Metal piece is subjected to a uniaxial force  ⇒ deformation occurs
• When force is removed:

- metal returns to its original dimensions ⇒ elastic deformation (atoms return to their 
original position)
- metal deformed to an extent that it cannot fully recover its original dimensions ⇒
plastic deformation (shape of the material changes, atoms are permanently 
displaced from their positions)
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6.2 Concept of Stress and Strain

Load can be applied to the material by applying axial forces:
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∆L can be measured as a function of the applied force; area A0 changes in response
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Stress (σ) and Strain (ε)
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• defining F is not enough ( F and A can vary)

• Stress σ stays constant

• Units

Force / area = N / m2 = Pa

usually in MPa or GPa

Strain (ε) – result of stress

• For tension and compression: change in length of a 
sample divided by the original length of sample
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Shear and Torsion (similar to shear)

• Note: the forces are applied in this way, so that there is no net torque
• If the forces are applied along the faces of the material, they are 

called shear forces
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Shear Stress and Shear Strain

If the shear force S acts over an area A, 
the shear stress τ:
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The shear strain γ is defined in terms of the 
amount of the shear displacement a divided 
by distance over which the shear acts:
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Elastic Properties of Materials

• Most materials will get narrow when stretched and thicken when compressed
• This behaviour is qualified by Poisson’s ratio, which is defined as the ratio of lateral

and axial strain 
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• the minus sign is there because usually if εz > 0, and εx + εy < 0 ⇒ ν > 0

• It can be proven that we must have ν ≤ ½; ν = ½ is the case when there is no 
volume change
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Poisson’s Ratio, ν

• For isotropic materials (i.e. material composed of many randomly - oriented grains) ν
= 0.25

• For most metals:
0.25 < ν < 0.35

• If ν = 0 :means that the width of the material doesn’t change when it is stretched or 
compressed
• Can be:

ν < 0
(i.e. the material gets thicker when stretched)
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6.3 Modulus of elasticity, or Young’s Modulus

• Stress and strain are properties that don’t depend on the dimensions of the 
material (for small ε), just type of the material

• E – Young’s Modulus, Pa
• Comes from the linear range in the stress-strain diagram
• many exceptions…
Behavior is related to atomic bonding between the atoms

<0.00001Hydrogels and live cells
0.01Rubber
1.5-2Polypropelene
20-100Metals
Young’s Modulus [GPa]Material
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Q.: A wagon of mass m = 1100kg is suspended from the bridge by a steel cable of d = 1cm and length 
L = 10m. E(steel) = 2×1011Pa 

(a) By how much will the cable stretch?
(b) Can the cable handle this?
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Tensile Test

1. Modulus of elasticity
2. Yield strength at 0.2% offset
3. Ultimate tensile strength
4. Percent elongation at fracture
5. Percent reduction in area at fracture
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Other tensile test characteristics:

• Yield strength (at 0.2% offset)

• Ultimate Tensile Strength (UTS): the 
maximum strength reached in the stress-
strain curve

• Percent elongation at fracture (measure of 
ductility of the metal)

• Percent reduction in area at fracture
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True and Engineering Stress
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6.4 Hardness

Hardness: a measure of the resistance of a material to plastic 
(permanent) deformation

Measured by indentation
• indenter material (ball, pyramid, cone) is harder than the 

material being tested  (i.e.: tungsten carbide, diamond)
• indenter is pressed at 90o

• hardness is based on the depth of the impression or its cross-
sectional area

Several common hardness tests: hardness numbers can be 
calculated

Material strength and hardness are related
Hardness test is nondestructive ⇒ often used
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Hardness tests: hardness numbers
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6.5 Plastic deformations of single crystal metals

A rod of a single crystal Zn (hcp) stressed 
beyond its elastic limit:
• slipbands: slip of metal atoms on specific 
crystallographic planes (slip planes)
• slip is predominately along the basal planes

A rod of a single crystal Cu (fcc) during 
plastic deformation:
• slip lines: 50-500 atoms apart
• slipbands: separated by ~>10,000 
atomic planes
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Other mechanical characteristics

• Ductility: amount of plastic deformation that occurs before fracture
- if ductility is high, the material can be deformed by applying stresses.

Ex.: gold
- if it is low, material breaks first, without significant deformation (material is brittle)
- depend on T: at low T many metals become brittle and can break as a glass

• Resilience: ability to have high yield strength and low E.
Ex.: good springs

• Toughness: ability to absorb energy up to a fracture
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Mechanism of Slip deformation

the group of atoms do NOT slide over each 
other during plastic shear deformation ⇒
the process requires too much energy

The process takes less energy!!!
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Motion of Dislocations

In the metal slip mechanism, 
dislocations move through the metal 
crystals like wave fronts, allowing 
metallic atoms to slide over each other 
under low shear stress ⇒
deformation without fracture
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Slip Systems

Typically slip planes are the most densely packed planes (less energy is required to 
move from one position to another), which are the farthest separated

Combination of a slip plane and a slip direction: slip system
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Slip systems observed in crystal structures

For hcp crystals: 3 slip systems, restricts their ductility
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Schmid’s Law

Slip process begins within the crystal when the 
shear stress on the slip plane in slip direction 
reaches critical resolved shear stress τc

hcp (Zn, Mg): 0.18, 0.77 MPa
fcc (Cu): 0.48 MPa
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Q.: A stress of 75 MPa is applied in the [0 01] direction on an fcc single crystal. 
Calculate 

(a) the resolved shear stress acting on the (111) [-101] slip system and, 
(b) (b) the resolved shear stress acting on the (111) [-110] slip system.
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Mechanical Twinning

Another important plastic deformation mechanism (low T)

from G. Gottstein

Schematic diagram of surfaces of a deformed 
metal after (a) slip and (b) twinning
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6.6 Plastic Deformations in Polycrystalline Metals

• Majority of engineering alloys and metals are 
polycrystalline

• Grain boundaries – act as diffusion barriers for 
dislocation movements

• In practice: fine grain materials are stronger and 
harder (but less resistant to creep and corrosion)

• Strength and grain size are related by Hall-Pelch
equation:

d
k

oy += σσ

σo and k – constants

as grain diameter decreases, the 
yield strength of the material 
increases
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Pile-up of dislocations

Schematic

Observed in stainless 
steel (TEM)

Grain shape changes with plastic deformation

Dislocation arrangement changes 
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6.7 Cold Plastic Deformation for Strengthening of Metals

• The dislocation density increases with increased cold deformation
• New dislocations are created by the deformation and must interact with those already 

existing
• As the dislocation density increases with deformation, it becomes more and more 

difficult for the dislocations to move through the existing dislocations
⇒ Thus the metal work or strain hardens with cold deformation

Percent cold work versus tensile strength and 
elongation for unalloyed oxygen-free copper

Cold work is expressed as a percent reduction in 
cross-sectional area of the metal being reduced.
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6.8 Superplasticity in Metals

Superplasticity: the ability of some metals to deform plastically by 1000-2000% at high 
temperature and low loading rates

Ex.: Ti alloy (6Al – 4V) 12% @ RT, typical tensile test load rates
~1000% @ 840oC, lower loading rates

Requirements:
1. The material must possess very fine grain size (5-10mm) and be highly strain-rate 

density
2. A high loading T (>0.5 Tm) is required
3. A low and controlled strain rate in the range of 0.01-0.00001 s-1 is required
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Nanocrystalline Metals

• Nanocrystalline metals: d < 10-50nm

• Consider Cu: σo = 25 MPa, k = 0.11 MPa m0.5 (from Table 6.5)
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Different dislocation mechanism: grain boundary sliding, diffusion, etc
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Summary

•Introduced stress, strain and modulus of elasticity

• Plastic deformations of single crystal metals
- In the single crystal metal - slip mechanism: dislocations move through the metal 
crystals like wave fronts, allowing metallic atoms to slide over each other under low shear 
stress 
- Slip process begins within the crystal when the shear stress on the slip plane in slip 
direction reaches critical resolved shear stress τc
- Schmid’s law:

• Plastic deformations in polycrystalline metals
- Strength and grain size are related by Hall-Pelch equation:

• Nanocrystalline materials
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