Chapter 6

|
Mechanical Properties of Metals

Mechanical Properties refers to the behavior of material when
external forces are applied

Stress and strain = fracture

For engineering point of view: allows to predict the ability of a component
or a structure to withstand the forces applied to it

For science point of view: what makes materials strong — helps us to
design a better new one

Learn basic concepts for metals, which have the simplest behavior
Return to it later when we study ceramics, polymers, composite materials,

nanotubes
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6.1 Elastic and Plastic Deformation
|

» Metal piece is subjected to a uniaxial force = deformation occurs

*  When force is removed:
- metal returns to its original dimensions = elastic deformation (atoms return to their
original position)
- metal deformed to an extent that it cannot fully recover its original dimensions =
plastic deformation (shape of the material changes, atoms are permanently
displaced from their positions)

<> W,
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6.2 Concept of Stress and Strain

|
Load can be applied to the material by applying axial forces:

Not Tension Compression
deformed /IF\
A i
Lo L= L=
LotAL LotAL

AL can be measured as a function of the applied force; area A, changes in response

Chapter 6 3

Stress (o) and Strain (g)
|
Stress (o)
« defining F is not enough ( F and A can vary)
Block of
metal » Stress o stays constant
»-F
F A
* Units
L= Force / area = N/ m?=Pa
Lo+A L usually in MPa or GPa
Strain (g) — result of stress
F « For tension and compression: change in length of a
sample divided by the original length of sample
AL
&E=—
L
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Shear and Torsion (similar to shear)

Not Pure shear Torsion
deformed

%

* Note: the forces are applied in this way, so that there is no net torque
» If the forces are applied along the faces of the material, they are
called shear forces
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Shear Stress and Shear Strain
| .

Surface area A
If the shear force S acts over an area A,

e L s ~4 the shear stress =
eV
p S(shear _ force
% "4 |} t(shear _stress)= S(shear _ force)
0! ol I A(area)
!;h\ “ Ff\\ §
. s / / The shear strain 7 is defined in terms of the
/ ' amount of the shear displacement a divided
by distance over which the shear acts:
M
= a
§ = shear force y=2—tan®
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Elastic Properties of Materials

* Most materials will get narrow when stretched and thicken when compressed

» This behaviour is qualified by Poisson’s ratio, which is defined as the ratio of lateral
and axial strain

. , . £
Poisson's_Ratio:v=-2*=--"Y

* the minus sign is there because usually if &, > 0,and &+ § <0= v>0

« It can be proven that we must have v< %; v = % is the case when there is no
volume change
(I + ALY, + ALY, +AL) =1, 1, x1,
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Poisson’s Ratio, v

« Forisotropic materials (i.e. material composed of many randomly - oriented grains) v

=0.25
* For most metals:
0.25<v<0.35
« If v = 0 :means that the width of the material doesn’t change when it is stretched or
compressed
» Can be:
v<0

(i.e. the material gets thicker when stretched)
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6.3 Modulus of elasticity, or Young’s Modulus

+ Stress and strain are properties that don’t depend on the dimensions of the
material (for small ¢), just type of the material

_ o(stress)
g(strain)

* E - Young’s Modulus, Pa

* Comes from the linear range in the stress-strain diagram
* many exceptions...

Behavior is related to atomic bonding between the atoms

Material Young’s Modulus [GPa]
Metals 20-100
Polypropelene 1.5-2
Rubber 0.01
Hydrogels and live cells <0.00001
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Q.: A wagon of mass m = 1100kg is suspended from the bridge by a steel cable of d = 1cm and length
L = 10m. E(steel) = 2x10""Pa

(a) By how much will the cable stretch?
(b) Can the cable handle this?
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Load cell

Modulus of elasticity

Ultimate tensile strength

ok wDN =

Tensile Test

Yield strength at 0.2% offset

Percent elongation at fracture
Percent reduction in area at fracture

Ultimate :ensile'almng:h
= B7.000 psi (600 MPa)
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Ultimate :ensile'almng:h
= B7,000) psi (600 MPa)
a0 / 4 b i
e e S l.._,. ~ 600
80 |5 : !
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0 T 1
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z
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tress (MPa)

neering s

Engi

Other tensile test characteristics:

Yield strength (at 0.2% offset)

Ultimate Tensile Strength (UTS): the
maximum strength reached in the stress-
strain curve
F AL
o=————=Ex—
A(original) L

S

Percent elongation at fracture (measure of
ductility of the metal)

Percent reduction in area at fracture

0 : . _ Aﬁnitial B Afinal 0
% _reduction_in_area=———-x100%

nitial

Chapter 6 12




True and Engineering Stress

z
T

Engineering stress—cngineering strain

e

Stress o (1000 psi)

True stress—true strain

e

20 «denoles Fachire
0 - ’
0 008 016 024 032 040 048 056 064 072 080
Unit strain
F £ AL
O-engineering - =EX L
Ainitial
F
Otrue =
Ainstant
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6.4 Hardness

Hardness: a measure of the resistance of a material to plastic
(permanent) deformation

Measured by indentation

» indenter material (ball, pyramid, cone) is harder than the
material being tested (i.e.: tungsten carbide, diamond)

* indenter is pressed at 90°

Indenter —=

Surface of
specimen

A
(1) Indenter above
specimen surface

Load —1

* hardness is based on the depth of the impression or its cross- l t

sectional area

Several common hardness tests: hardness numbers can be
calculated

Material strength and hardness are related
Hardness test is nondestructive = often used
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T Mr-{:ﬁ:—

(2) Indenter under set
load penetrates
specimen surface

f ;
T x/_’...T
(3) Indenter is removed

from specimen surface
leaving indentation.




Hardness tests: hardness numbers

Table 6.2 Hardness tests

ntlndenmlon
Test Indenter Load number

Brinell :,?m :‘:bm P BHN = m
|unwm

Vickers ;:;::mu ‘(m‘-‘>’ %. VHN = T

14.2P
Kaoop Dismond F 7
microhardness  pyramid
I =711
B =400 |
Rockwell
A Diamond cone 60kg Ry=
: e o Re- ) 1o-soy
D ~ O 100kg Rp=
'
100kg Rg=
B Jyvin.-diameter s k: Py
teel
; steel sphere 150kg Rg = 130-500f
100kg Reg=

- O

Source: After H. W, Hayden, W. G. Moffan, and J. Wulff, “The Structure and Properties of Materials.” vol. 11, Wiley, 1965, p. 12
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6.5 Plastic deformations of single crystal metals

Farce

— HCP basal
slip planes

Shown in (e} 2
a
. A ich e “ “
A rod of a single crystal Zn (hcp) stressed A rod of a single crystal Cu (fcc) during
beyond its elastic limit: plastic deformation:
+ slipbands: slip of metal atoms on specific « slip lines: 50-500 atoms apart
crystallographic planes (slip planes) « slipbands: separated by ~>10,000
« slip is predominately along the basal planes atomic planes
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Other mechanical characteristics
I

. Ductility: amount of plastic deformation that occurs before fracture
- if ductility is high, the material can be deformed by applying stresses.
Ex.: gold
- if it is low, material breaks first, without significant deformation (material is brittle)
- depend on T: at low T many metals become brittle and can break as a glass

. Resilience: ability to have high yield strength and low E.

Ex.: good springs

. Toughness: ability to absorb energy up to a fracture
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Mechanism of Slip deformation
|

Shear stress.

S rl= e the group of atoms do NOT slide over each
& 4 other during plastic shear deformation =
[__ : — the process requires too much energy
) i

Shear stress ! Shear stress

Unit step
of slip
—-—

{a) An edge dislocation, pictured as formed (b} A low stress causes a shift of atomic bonds {c) Repetition of this process causes the
by an extra half plane of atoms, 1o free a new interleaved plane, dislocation to move across the crystal,

The process takes less energy!!!
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Motion of Dislocations

= o
. sl il e .
A e

I
| 1 O =
Il e I
/‘ S —
In the metal slip mechanism, J\ﬂ& T
dislocations move through the metal 5
crystals like wave fronts, allowing ﬁ W
metallic atoms to slide over each other _j
under low shear stress = J\ﬁé m—a
deformation without fracture
by S

Slip Systems

Typically slip planes are the most densely packed planes (less energy is required to
move from one position to another), which are the farthest separated

—— —-
— w
-—
Combination of a slip plane and a slip direction: slip system

i i)

LA T (T

) [t
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Slip systems observed in crystal structures
I
Slip Slip Number of
Structure plane direction slip systems
FCC:
Cu, Al, Ni,
I’hl, Au, Ag, “A‘
yFe.... {1 aio) 4x3=12 [B
o1 g
BCC:
aFe, W, Mo, .
B brass 1110} (i 6x2=12
aFe, Mo, W,
Na (211 any 2x1=12
aFe, K 1321} {111y 4x%1=24
For hcp crystals: 3 slip systems, restricts their ductility

21

F
Normalto &= 4~

slip plane
BE \-—-—""‘"
Vb

Schmid’s Law

Slip process begins within the crystal when the
shear stress on the slip plane in slip direction

reaches critical resolved shear stress 7,

hcp (Zn, Mg): 0.18, 0.77 MPa

A, Slip direction
(shear arca and fcc (CU)Z 0.48 MPa
slip plane) ~E
7=
(=t
A, F 2o Fr
o =~ = uniaxial stress T =—7
@ applied to cylinder r As .
F lip_ plane
T, = I’- = resolved shear
i

stress in shear

direction Fr — F Cosi Aslip_plane = @

. = Fcosdcosg F
' A

C0SACOS¢ =0 COSACOS¢@| Schmid’s law

Chapter 6

22

11



Q.: A stress of 75 MPa is applied in the [0 01] direction on an fcc single crystal.
Calculate

(a) the resolved shear stress acting on the (111) [-101] slip system and,
(b) (b) the resolved shear stress acting on the (111) [-110] slip system.
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Mechanical Twinning

Another important plastic deformation mechanism (low T)

Slip stcps

remains straight

Schematic diaaram of surfaces of a deformed
metal after (a) slip and (b) twinning

(111) twinning plane

twin
(111) twinning plane

. 6.23. Atomic configuration in matrix and twin of a fec lattice.

Fig. 6.22. Deformation twins in zirconiam.
Cﬁapter 6 24

from G. Gottstein
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6.6 Plastic Deformations in Polycrystalline Metals

50

*  Majority of epgineering alloys and metals are o
polycrystalline 40 Polyerysial
- Grain boundaries — act as diffusion barriers for £ ;
dislocation movements & %0 g Bt
¥ =
* In practice: fine grain materials are strongerand = | o
harder (but less resistant to creep and corrosion) = Singleerysal _{ 10 3
= {1} " >
H . 0 1n 20 1] -M:I
» Strength and grain size are related by Hall-Pelch iy
N Straun t|"|.'|\t.‘|'|ll
equation:
O, =0,+—=
A/ d Table 6.5 Hall-Petch relationship constants for selected materials
o, and k — constants a0 K
° (MPa) (MPa - m'?)
as grain diameter decreas.es, the ¢, 25 011
yield strength of the material Ti 80 0.40
increases Mild steel 70 0.74
NizAl 300 1.70
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Pile-up of dislocations

—_—

] L L 1l |é Schematic

(a)

Observed in stainless
steel (TEM)

(b)
Grain shape changes with plastic deformation

Dislocation arrangement changes
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6.7 Cold Plastic Deformation for Strengthening of Metals

* The dislocation density increases with increased cold deformation

» New dislocations are created by the deformation and must interact with those already
existing

+ As the dislocation density increases with deformation, it becomes more and more
difficult for the dislocations to move through the existing dislocations

= Thus the metal work or strain hardens with cold deformation

ngth (s}

Percent cold work versus tensile strength and
elongation for unalloyed oxygen-free copper

= Cold work is expressed as a percent reduction in
w= cross-sectional area of the metal being reduced.

nsile srengih
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6.8 Superplasticity in Metals

Superplasticity: the ability of some metals to deform plastically by 1000-2000% at high
temperature and low loading rates

Ex.: Ti alloy (6Al — 4V) 12% @ RT, typical tensile test load rates
~1000% @ 840°C, lower loading rates

Requirements:

1. The material must possess very fine grain size (5-10mm) and be highly strain-rate
density
2. A high loading T (>0.5 T,)) is required
3. A low and controlled strain rate in the range of 0.01-0.00001 s1 is required
Chapter 6 28
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Nanocrystalline Metals
|

* Nanocrystalline metals: d < 10-50nm

k
o, =0, +—F—
y o )d

« Consider Cu: o, = 25 MPa, k = 0.11 MPa m°5 (from Table 6.5)

25Mpa + 1tMPa

UlOnm _ V :I-(TB

= =?
%0.m  25MPa + 0.11MPa
V10°®

Is this possible?

Different dislocation mechanism: grain boundary sliding, diffusion, etc

* Plastic deformations of single crystal metals

- In the single crystal metal - slip mechanism: dislocations move through the metal
crystals like wave fronts, allowing metallic atoms to slide over each other under low shear
stress

- Slip process begins within the crystal when the shear stress on the slip plane in slip
direction reaches critical resolved shear stress z

- Schmid’s law:
F cos A cos F
T :741} =—C0SAC0S¢ = o COSACOS¢
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Summary
|
Introduced stress, strain and modulus of elasticity
F AL o(stress)
o=— &E=— E=——-=
A L g(strain)

.
A
* Plastic deformations in polycrystalline metals
- Strength and grain size are related by Hall-Pelch equation: k
y = O'0 + ﬁ
* Nanocrystalline materials
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