

Typical	parameters: a	toms are small
	Mass (kg)	Charge (coulomb)
Proton	1.673 ×10 ⁻²⁷	+1.602 ×10 ⁻¹⁹
Neutron	1.675 ×10 ⁻²⁷	0
Electron	9.109 ×10 ⁻³¹	-1.602 ×10 ⁻¹⁹
Nuclear radElectron rad	dius is measured in dii measured in Å =	10 ⁻¹⁵ m = fm • 0.1 nm = 10 ⁻¹⁰ m
 Fundamen 	tal charge = e = -1.	602 ×10 ⁻¹⁹ C
	Chapter 2	

The Heisenberg Uncertainty Principle										
3. We can no momentu 4. <u>The Heis</u> We cannot know I There is a limit ! We do know exact 5. <u>Electrons</u> The energy is "qu	 We can no longer describe a particle as having a precise position x and momentum p The Heisenberg Uncertainty Principle We cannot know both x and p simultaneously with arbitrary precision There is a limit ! δx δp ≥ h/2Π = ħ We do know exactly where an electron is, we can't know how fast it is moving Electrons in atoms can only be in certain "states" The energy is "guantized" – only certain levels are permitted 									
 The level can cha 6. <u>4 quantur</u> of 4 quantur principle subsidiary magnetic spin 7. <u>The Pauli</u> exactly the 	nge, but only if exactly the or m numbers: The state of um numbers quantum number or azimuthal number quantum number quantum number i Exclusion Principle: T same set of all 4 quantum of Chap	correct energy an electron in n = L = $m_L =$ $m_S =$ wo electrons numbers (<i>n</i> , L ter 2	is emitted or absorbed an atom is described by 1, 2, 3,n 0, 1, 2, n-1 0, ± 1 , ± 2 , $\pm n$ -1 $\pm \frac{1}{2}$ in an atom can never ha , m _L , m _S)	y a set ve 6						

Exampl	es and ch	aracter	istics of 5 types of bonds
Bond type	Examples	Typical energies, eV/atom	Distinct characteristics
Ionic	LiF, NaCl, CsCl	5-10	Nondirected bonding, giving structures of high coordination; no electrical conductivity at low temperature
Covalent	Diamond, Si, Ge	3-8	Spatially directed bonds, structures with low coordination; low conductivity at low temperature for pure crystals
Metallic	Li, Na, Cu, Ta	0.7-1.6	Nondirected bond, structures of very high coordination and density; high electrical conductivity; ductility
Fluctuating or permanent dipole	Ne, Ar,Kr, Xe, CHCl ₃	0.05-0.2	Low melting and boiling points
Hydrogen	H ₂ O, HF	0.25-0.6	Increase in bonding energy over similar molecules without hydrogen bonds
		Char	oter 2 15

					El	ect	ror	าeថ្	gat	i∨it	y					
												H 2.1				
Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.1	0 3.5	F 4.1
Na 1.0	Mg 1.3											Al 1.5	Si 1.8	P 2.1	S 2.4	Cl 2.9
K 0.9	Ca 1.1	Sc 1.2	Ti 1.3	V 1.5	Cr 1.6	Mn 1.6	Fe 1.7	Co 1.7	Ni 1.8	Cu 1.8	Zn 1.7	Ga 1.8	Ge 2.0	As 2.2	Se 2.5	Br 2.8
Rb 0.9	Sr 1.0	Y 1.1	Zr 1.2	Nb 1.3	Mo 1.3	Tc 1.4	Ru 1.4	Rh 1.5	Pd 1.4	Ag 1.4	Cd 1.5	In 1.5	Sn 1.7	Sb 1.8	Te 2.0	I 2.2
Cs 0.9	Ba 0.9	La 1.1	Hf 1.2	Ta 1.4	W 1.4	Re 1.5	Os 1.5	Ir 1.6	Pt 1.5	Au 1.4	Hg 1.5	Tl 1.5	Pb 1.6	Bi 1.7	Po 1.8	At 2.0
Fr 0.9	Ra 0.9	Ac Lanthanides: 1.0–1.2 Actinides: 1.0–1.2														
							С	hapter	2							25

