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Gravity draining of a yield-stress fluid through an orifice
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Abstract

We study the draining of a yield-stress fluid from a vertical vessel having a hole or a tube at its bottom. In order to understand the basic
process we first study the problem with a Newtonian fluid and show that the flow characteristics can be very well described by assuming that
the flow is analogous to that through a straight conduit of given length. For a yield-stress fluid draining through a hole the behaviour is different:
the flow stops when the pressure drop across the orifice falls to a finite value which increases as the yield stress of the fluid increases or the
hole radius R decreases. All the data collapse onto a master curve when plotted in terms of dimensionless numbers involving a characteristic
length which is a function of R. We deduce an empirical model for the flow characteristics in such a case. When a length of tube is added
after the hole we show that the characteristics of the flow are similar to those for flow through a straight conduit with an equivalent length
equal to the tube length plus a fixed additional length.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The drainage or extrusion of pasty materials is widely applied
in industry, for example, in the shaping of ceramics, foodstuffs,
cosmetics, and other products. In these processes the material
is expelled from a large cylinder (the barrel) through a small
orifice, under its own weight in the case of drainage, or by an
externally applied pressure in the case of extrusion. The control
and optimization of this process requires a good knowledge of
the flow characteristics of these highly non-Newtonian materi-
als. Despite its wide applicability, however, the state of knowl-
edge in this field is still rather basic. In this paper we focus
on the gravity-driven draining of a yield-stress fluid through
an orifice at the bottom of a container. This particular type of
flow may be encountered in civil engineering when, for exam-
ple, a volume of concrete, sewage sludge or batter, is emptied
from the bottom of a storage hopper. This problem is also re-
lated to the flow induced in the so-called “L-Box” test for con-
crete and the Bostwick consistometer for foodstuffs or paints,

∗ Corresponding author. Tel.: +33 1 40 43 65 41.
E-mail address: coussot@lcpc.fr (P. Coussot).

0009-2509/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ces.2007.08.073

in which a material initially stored in a vertical vessel flows
through a gate at the bottom of the vessel. We also expect this
work to provide some insight into the extrusion of yield-stress
fluids in general.

We note that the word “paste” is used in different fields to
describe materials which keep their shape under gravity in the
absence of surface tension effects. The expression “yield-stress
fluid” is used in rheology to describe a material which exhibits
a yield stress but flows as a liquid beyond this yield stress. With
these definitions, pastes are similar to yield-stress fluids. Since
the stresses induced by gravity increase with sample volume,
the yield stress simply defines a critical volume below which
the material in a given shape will be unaffected by gravity and
beyond which it will be affected. For example, a modelling
paste generally keeps its shape under gravity for the small vol-
umes typically used in applications, but would start to flow for
much larger volumes. In the following we will use both terms
to describe the same systems.

The flow of a fluid through a straight conduit (labelled 1) into
another conduit of smaller cross-section (labelled 2) involves
some additional viscous dissipation beyond that resulting from
the flow in the straight conduits alone. This may be expressed
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in terms of an additional pressure drop �pe, so that the total
pressure drop �p can be written as

�p = �p1 + �p2 + �pe. (1)

Here �p1 and �p2 are the pressure drops in the two conduits
alone. From the momentum balance in a fluid flowing through
a cylindrical conduit of radius Ri and length Li we get

�pi = (2�wi
/Ri)Li , (2)

in which �wi
is the wall stress in conduit i far from the ends.

In some previous work (Boger, 1977) a distinction is drawn
between “entrance” and “exit” losses, but here we treat the extra
dissipation as a single effect due to the change of cross-section
which affects the flow field both before and after the orifice.

For a Newtonian fluid of viscosity � flowing in steady state
in a straight cylindrical conduit, integration of the momentum
equation gives the wall stress as

�w = 4�V/R, (3)

where V is the mean flow velocity. In this case, calculations
(Sampson, 1891; Hasegawa et al., 1997) for two asymptotic
geometries—flow through a conduit of constant radius con-
taining an orifice of negligible thickness, and flow through
a long conduit with a stepwise change in radius—led to the
expression

�pe = ne(2�w). (4)

ne is referred to as the entrance correction, and was calculated
to be 0.589, while experimental values of ne range from 0.589
to 1.08 (Boger, 1977). By comparing this result with Eq. (2) it
follows that the viscous dissipation due to the change of cross-
section is of the same order as the viscous dissipation in a tube
of radius R and length L.

The behaviour of yield-stress fluids is described quite well
by the Herschel–Bulkley model (Adams et al., 1994, 1997a;
Coussot, 2005):

�̇ = 0 for � < �c

and

� = �c + K �̇n for � > �c. (5)

Here �̇ is the shear rate and K and n are material parameters.
Let us consider the steady flow of a yield-stress fluid through a
tube of length L and radius R. Integration of the expression for
the shear rate determined from Eqs. (2) and (5) allows one to
derive an expression for the flow rate as a function of pressure
drop (Bird et al., 1982). In dimensionless form, this may be
written as

B−m
i = Y−1(Y − 1)1+m

[
1 − Y−1(1 − Y−1)

m + 1

−2(1 − Y−1)

m + 2

]
, (6)

where Y = R�p/2�cL , Bi = �c/K(V/R)n, and m = 1/n. It
is worth noting no flow occurs if the pressure drop is below a
critical value equal to 2�cL/R. Note that this equation assumes
no wall slip, an effect which frequently occurs with such pasty
materials (Yilmazer and Kalyon, 1989).

Similarly in the case of extrusion of a paste, the existence of
the yield stress implies that there should exist a certain critical
pressure drop below which no flow is possible. Because the be-
haviour of such fluids is strongly nonlinear, it is very difficult to
find analytical solutions for flows in complex geometries. The
entrance correction for the flow of a Bingham fluid (for which
the exponent n=1 in Eq. (5)) through an orifice has been deter-
mined from numerical simulations to be (Abdali et al., 1992)
ne =0.579+0.562/�∗

c , where �∗
c =�cR0/2KV , R0 is the radius

of the upstream cylinder and V the average velocity through the
orifice. Benbow and Bridgwater (1993) modeled extrusion flow
of a yield-stress fluid as a homogeneous compression between
parallel plates. With this analogy they estimated the minimum
die entry pressure drop to be

�pe = �c ln(A0/A), (7)

in which �c is the uniaxial yield stress (equal to 31/2�c, accord-
ing to Adams et al., 1997b) and A0 and A are the upstream and
downstream cross-sectional areas, respectively. For cylindrical
conduits one gets �pe =2�c ln(R0/R). Refined expressions in-
volving conical entry angles were determined by Horrobin and
Nedderman (1998) from large-deformation elastic–plastic finite
element calculations. Benbow and Bridgwater (1993) modified
the expression (7) by adding a term depending on V to account
for the role of velocity. Alternatively, Basterfield et al. (2005)
assumed that the flow through the orifice is equivalent to the
flow in a conical duct with an angle around 45◦ and for cylin-
drical conduits found �pe to be given by

�pe = 2�c ln

(
R0

R

)
+ k

(
V

R

)n

(1 − (R/R0)
3n) (8)

with k = (2/3n)1.2n × 3(n+1)/2K . This reduces to Eq. (7) as
V approaches zero. Efforts to verify the above formulae ex-
perimentally have mainly been concerned with pastes having a
very high yield stress (Basterfield et al., 2005), for which it was
difficult to determine the rheological parameters separately.

Here we focus on the gravity-driven flow of simple yield-
stress fluids through an orifice. There are two fundamental
differences between this flow and pressure-driven extrusion
through an orifice: first, the pressure increases with depth from
the fluid surface to the orifice at the bottom of the container
as a result of the weight of the fluid above, and second, the
flow just after the orifice is unconstrained so that, in partic-
ular, the pressure there is equal to the ambient pressure. In
contrast, in conventional extrusion or flow through an orifice
the pressure is imposed upstream, far from the orifice, and de-
creases downstream. However, as discussed below, it is likely
that some characteristics observed here can be extrapolated to
conventional extrusion. We first establish a baseline by study-
ing gravity-driven drainage with a viscous Newtonian fluid,
then focus on the flow of a yield-stress fluid whose rheological
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properties have been well characterised by independent rheo-
metric measurements.

2. Experimental technique and materials

The experimental set up consists of a vertical Plexiglas vessel
with a square cross-section of side length W0. The bottom plate
of the vessel has a thickness e = 4.6 mm and a hole of radius
R in its centre. For some experiments a tube of length l and
inner radius R was used instead of a simple hole. Initially the
hole is blocked with a piece of tape. The vessel is filled with
the experimental fluid, after which the hole is opened so that
the fluid can flow out. We monitored the height h as a function
of time and shape of the free surface of the fluid as it drained
from the vessel with a video camera. Over the course of the
experiment the free surface remained approximately flat and
horizontal. As the material drained downwards, a thin layer
of fluid remained on the vertical walls of the vessel above,
implying that slip on the vessel walls was negligible. (The
presence of wall slip would imply a finite velocity of the fluid
at the wall, so that no material would remain on the wall behind
the flow.) The volume of fluid in this layer is small so its effect
on the flow rate is negligible and the average downward flow
velocity V0 = dh/dt = ḣ.

Two different types of fluid were used in the experiments.
First, we used Newtonian glycerol–water solutions with con-
centrations of 99% and 90% glycerol by volume. These solu-
tions had densities of 1258 and 1235 kg/m3, and viscosities
at 21 ◦C of 1.32 and 0.22 Pa s, respectively. We also used two
aqueous suspensions of Carbopol ETD 2050 (Noveon). Car-
bopol is a commercial product based on cross-linked linear
polyacrylic acid chains and is commonly used as a thickener.
Carbopol gels have a yield stress that depends on concentra-
tion and pH due to the existence of a continuous network of
micron-sized hydrogel particles throughout the fluid (Carnali
and Naser, 1992). They have stable properties and are
transparent, making them useful as model yield-stress fluids.
Carbopol powder was added slowly to continuously stirred,
deionized water to concentrations � of 0.5% and 1.2% by
weight. Sodium hydroxide solution was then added to raise the
pH to 6. The suspension was further mixed with a propeller-
blade mixer at 300 rpm for 10 days, which removed bubbles and
homogeneized the material (Tabuteau et al., 2007). The density
of both gels was estimated to be 1000 kg/m3 to within 0.5%.

We determined the rheological properties of the Carbopol
gels using a strain-controlled rheometer with a Couette ge-
ometry. The measured flow curves are shown in Fig. 1. A
steady shear rate was imposed for 15 s and the shear stress
measured, starting at high shear rates and working downwards.
Since the surfaces of the Couette cylinders were smooth, wall
slip is significant at low shear rates (Bertola et al., 2003), as
is seen in Fig. 1 for �̇ ≤ 0.1 s−1. Ignoring the data in this
region, we simply fitted a Herschel–Bulkley model (Eq. (5))
to the data for shear rates larger than 0.1 s−1 as shown in
Fig. 1. The fits give �c = 5.8 Pa, K = 5 Pa sn for � = 0.5% and
�c = 13.9 Pa, K = 9.8 Pa sn for �= 1.2%, with n fixed at 0.5 in
both cases.
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Fig. 1. Flow curves of the two Carbopol gels (squares: � = 0.5%; circles:
� = 1.2%) as measured with a strain-controlled rheometer using a Couette
tool. The curves are fits to the Herschel–Bulkley model, Eq. (5), excluding
the data at low shear rates for which the effects of wall slip are evident.
The fits give �c = 5.8 Pa and K = 5 s0.5 for � = 0.5% and �c = 13.9 Pa and
K = 9.8 s0.5 for � = 1.2%, with n = 0.5 in both cases.

3. Results

3.1. Drainage of a Newtonian fluid

Fig. 2 shows a semi-logarithmic plot of the surface height h
as a function of time t for the drainage of the Newtonian glyc-
erol solutions. The height decreases exponentially with time
for a range of different hole diameters, vessel sizes and fluid
viscosities, deviating from this behaviour at longer times as h
approaches zero. The exponential decrease implies that h ∝ ḣ.
Since in general the potential energy is proportional to h while
viscous effects are proportional to ḣ, this result suggests that the
flow might be described by a balance between potential energy
and viscous dissipation, and we thus propose a simple model of
the process based on such a balance. We assume that the pres-
sure in the vessel is hydrostatic, i.e., the pressure p at a depth
y from the free surface is given by p = p0 + �gy, where p0 is
the ambient (atmospheric) pressure. This assumption would be
strictly valid for a fluid at rest in a vessel. In our case we approx-
imate the pressure near the entrance to the hole by p0+�gh and
assume that p decreases from this value to p0 at the exit from
the hole, so that the flow occurs as a result of a pressure drop
�p = �gh across the hole. We model the hole as a cylindrical
tube of radius equal to the actual hole radius R and effective
length Le. Le may differ from the actual hole thickness e due
to the approximations made, and may in general depend on the
fluid viscosity and the ratio W0/R. This description is some-
what similar to that for classical extrusion described above.

From Eqs. (2) and (3) above we get

�gh = 8�V Le

R2
, (9)

where V is the mean velocity through the orifice. By conser-
vation of mass V may be written as

V = ḣW 2
0 /�R2, (10)
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Fig. 2. Fluid height h as a function of time for the drainage of the glycerol
solutions with a variety of different flow geometries. The different symbols
represent different values of W0 and R, as indicated in the legend.
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2 . The different symbols represent different
values of W0 and R, as indicated in the legend.

so

�gh = 8�ḣW 2
0 Le

�R4
. (11)

We plot �gh as a function of �ḣW 2
0 /�R4 in Fig. 3. The data

from runs for many different conditions collapse within ±10%
to a single straight line at low velocities, indicating that this
approach is valid and that in fact Le is independent of W0
and � over the range of parameters covered here. A fit gives
Le = 4.6 ± 0.2 mm, which is equal to e within experimental
uncertainties, suggesting that one may use the actual thickness
of the hole as the effective tube length.

At large flow velocities the data sets for the largest hole
diameters and lowest viscosity depart from the straight line
found for the other data as described above. For these data the
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Fig. 4. Height as a function of time for the drainage of Carbopol gels through
an orifice, and different flow geometries. The different symbols represent
different values of W0 and R, as indicated in the legend.

Reynolds number Re =�V R/� is of the order of or larger than
100, suggesting that this deviation is due to inertial effects.
For well-developed turbulent flows through an orifice of neg-
ligible thickness the inertial term in the momentum equation
becomes dominant so that the pressure drop will be given by
�gh = �V 2. Using Eq. (10) we see that �gh becomes equal
to (�ḣW 2

0 /�R4)2�R4/�2 in this case. This is consistent with
the high Re data plotted in Fig. 3, which appear to tend to a
straight line of slope 1/2.

3.2. Drainage of a paste

The height as a function of time for drainage experiments
with yield-stress fluids is shown in Fig. 4. In contrast to the
results for the Newtonian case, here h does not decrease ex-
ponentially: the semi-logarithmic plots are curved and tend to
a nonzero height at long times. This height increases with the
yield stress �c and decreases with the hole radius R. One would
expect the flow to stop when the pressure at the entrance to the
orifice, i.e., �gh, is no longer sufficient to overcome the mini-
mum die entry pressure �pe. According to Eq. (7), this mini-
mum pressure should increase with �c and decrease with R for
a fixed value of W0, as observed.

We will start by assuming that the drainage of the pastes
through the orifice can be described using an approach similar
to that used for Newtonian fluids above, that is, we again treat
the flow as equivalent to that through a tube of radius R and a
constant effective length Le due to a pressure drop �p equal to
the hydrostatic pressure �gh. If this model was valid, the data
plotted as B−1

i vs. Y would fall along a single curve given by
Eq. (6). In fact this is not the case: for fixed Le, our data do
not collapse and have a shape different from that of Eq. (6).
The data do collapse, however, if we treat Le as an adjustable
parameter in the calculation of an effective value of Y , which
we refer to as Ye, and plot B−1

i as a function of Ye. The result
is shown in Fig. 5. The master curve through the data can be
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Fig. 5. Flow characteristics for the drainage of Carbopol through an orifice,
plotted in dimensionless form as B−1

i
vs. Ye as described in the text. The

dashed line is a curve given by Eq. (6) and the solid line is the model given
by Eq. (12). The different symbols represent different values of W0 and R,
as indicated in the legend.
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empirical model discussed in the text.

described by the empirical equation

Ye = 1.42 + 0.64B0.64
i , (12)

which is shown as a solid line in Fig. 5. The values of Le

required to collapse the data increase with the hole radius R,
as shown in Fig. 6. Within the experimental scatter, we find
Le = 0.285R0.4, with both Le and R in meters.

It is difficult to generalise our results to values of the dimen-
sionless ratios R/W0 and R/h outside of the ranges covered
by our experiments, since their dependence on these quantities
is not obvious. However we note that, in contrast with the pre-
diction of Eq. (7) (Benbow and Bridgwater, 1993) we observe

I

101

100

10-3 10-2

R (m)

Fig. 7. Comparison of our results (Eq. (12); solid curve) with the predictions
of Benbow and Bridgwater (Eq. (7)) for W0 = 15 cm (upper dashed curve)
and W0 = 5 cm (lower dashed curve).

no strong dependence on the vessel size. Eq. (12), which was
obtained from the master curve fit to the data plotted in Fig. 5,
predicts that the flow stops for Ye=1.42. Using the definition of
Ye and the experimentally determined expression for Le, we de-
fine a new dimensionless pressure-drop parameter I ≡ YeLe/R

which is equal to I =�p/2�c =1.42×0.285R−0.6 =0.4R−0.6.
In contrast, Eq. (7) would predict that I =√

3 ln(W0/
√

�R). In
Fig. 7 we plot I as a function of R for our experimental results
and as predicted by Eq. (7) for two values of W0; the latter
underestimates the effective pressure drop for small R/W0 by
more than a factor of 2.

Finally, we consider experiments in which the vessel drained
through a length l of tubing with radius R = 1.75 mm, rather
than a simple hole. The data for h as a function of time are
qualitatively similar to those plotted in Fig. 4: h decreases non-
exponentially with time, there is an asymptotic height at long
times which increases with the yield stress of the fluid. We
analyse this behaviour using the same model, and calculate Ye

using a total effective length Lt = Le + l, where l is the actual
length of the tube and Le is the effective length of the orifice,
as above. B−1

i is plotted as a function of Y for several values
of l and W0 in Fig. 8. A value of Le = 22.5 mm was used to
collapse all of the data along a single curve corresponding to
Eq. (6). This description is consistent with the above approach
for the flow through an orifice alone: it predicts �gh/2�c =15.4
for l = 4.6 mm and V = 0 (Y = 1), which is close to the value
of 18.6 found from Eq. (12) for V = 0 and R = 1.75 mm. Note
that the data tend to a horizontal plateau (constant velocity) at
low depths (small Y ), likely due to wall slip becoming impor-
tant at low velocities.

These results show that Eq. (6) provides a good representa-
tion of the data when the yield-stress fluid drains through a tube
of length larger than the orifice diameter, but not when there is
no tube present. Further insight into the origin of this behaviour
could be gained from local measurements of the velocity field
using, for example, particle image velocimetry.
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Fig. 8. Flow characteristics for the drainage of Carbopol gels through an
orifice followed by a tube for different flow geometries. The data are plotted
in dimensionless form as B−1

i
vs. Ye , taking into account a dependence of Le

on the tube length, as discussed in the text. The different symbols represent
different values of W0 and R, as indicated in the legend.

4. Conclusion

Our results provide an expression for the critical pressure
drop associated with the stoppage of flow in the drainage, and
by extension in the extrusion, of yield-stress fluids. We find

�p = �gh = 2�c

C

R
,

where C = 0.4R0.4 when the downstream length l is small (on
the order of R) and C = l + l0 when l is much larger than
R. In developing these expressions from our data, we have
assumed that the viscous dissipation in our flows was analogous
to that for shear flow through a tube. The application of these
results to conventional extrusion flows remains to be confirmed
experimentally.

Notation

A0, A upstream and downstream cross-sectional areas
Bi Bingham parameter: ratio of the yield stress to

the viscous stress
e thickness of the vessel bottom plate
g acceleration due to gravity
h fluid height in the vessel
I dimensionless pressure parameter
K, n parameters of the Herschel–Bulkley model
l length of the additional downstream tube
L conduit length
Le length of the tube leading to a pressure drop �pe

m = 1/n

ne entrance correction
p pressure
p0 ambient pressure
�p pressure drop

�pe pressure drop due to a change in cross-section
R radius of the vessel orifice, or of the downstream

conduit
Re Reynolds number
R0 radius of the upstream conduit
V mean flow velocity
V0 mean fluid velocity in the vertical direction in

the vessel
W0 vessel side width
Y dimensionless pressure drop

Greek letters

�̇ shear rate
� Newtonian fluid viscosity
� fluid density
�c uniaxial yield stress
� shear stress
�c yield stress
�w wall stress
	 Carbopol concentration
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