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Penetration of spheres into loose
granular media

John R. de Bruyn and Amanda M. Walsh

Abstract: We study the penetration of steel spheres dropped vertically into a container of
loosely packed, small glass beads. We find that the penetration depth of the spheres increases
linearly with the incident momentum of the projectile, but with a zero-momentum intercept
that can be either positive or negative. This behavior can be understood by modelling the
granular medium as a non-Newtonian fluid with a yield stress and an effective viscosity. We
derive the scaling behavior of the viscosity and find agreement with our experimental results.

PACS Nos.: 45.70.–n, 83.80.Fg, 47.50.+d

Résumé : Nous étudions la pénétration de billes d’acier tombant verticalement dans un
récipient contenant de la fine grenaille de verre. Nous observons que la pénétration augmente
linéairement avec la quantité de mouvement du projectile, mais avec une valeur à l’origine
non nulle qui peut être positive ou négative. Ce comportement peut se comprendre en
modélisant le milieu comme un fluide non-Newtonien avec un effort d’écoulement et une
viscosité efficace. Nous obtenons ici le bon comportement d’échelle de la viscosité et un bon
accord avec les données expérimentales.

[Traduit par la Rédaction]

1. Introduction

Granular media exhibit a range of complex behavior and can have properties ranging from solid-
like to gas-like [1–3]. They also have innumerable applications — much of the World’s economic
activity involves the production, processing, and transport of granular materials. For these reasons,
these materials have been the subject of substantial study. Of particular interest is the transmission of
forces by and through granular materials. In a static granular medium, force chains involving a series of
point contacts between individual particles arise [4]. A particle moving through the material experiences
a drag force that results from the integrated effect of these chains [5]. The configuration of the force
chains changes as the particle moves, so the net force varies in a complicated manner with time [6]. For
slow motion of objects of lateral dimension D through a granular medium, Schiffer et al. [5] found a
drag force that was independent of velocity v, proportional to D, and increased quadratically with depth.
For a sphere moving through a granular material fluidized by vibration, Zik et al. [7] measured a drag
force proportional to v, so the material behaved like a fluid with an effective viscosity that depended
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on depth and vibration frequency. Earlier measurements for rapid motion in fluidized granular media
found a drag force that was nonmonotonic in v [8].

In this paper, we report measurements of the penetration of steel balls impacting on targets of loosely
packed glass beads. We interpret our results in terms of an effective viscous drag exerted on the balls by
the fluidized granular medium. The penetration of objects into granular media has recently been studied
experimentally [9–11] and numerically [11]. Uehara et al. [9] dropped spheres of different sizes and
densities vertically into glass beads and other granular targets. Newhall and Durian [10] extended this
work to include objects of different shapes. In both cases the depth of penetration δ was found to be
proportional to H 1/3, where H is the total distance traveled by the projectile. This scaling could not
be explained in terms of either a v-independent stopping force or a viscous drag. Ciamarra et al. [11]
performed experiments and simulations on granular impacts in a two-dimensional system. They found
both the mean force on the projectile and δ to be proportional to the impact velocity v0. While our data
are, in general, consistent with those of ref. 9, they do not obey the scaling suggested in that work.
We find, however, that both our results and those of ref. 9 can be understood by modeling the granular
material as a viscous fluid with a yield stress. This model is also consistent with the two-dimensional
results of ref. 11.

2. Experiment

Our experimental apparatus was the same as that used in ref. 12 to study the formation of impact
craters in granular materials. Before each trial, spherical glass beads of a particular size were poured
into a container 19 cm deep and 23 cm in diameter. Five bead sizes were used: 45–90, 75–125, 125–
180, 180–250, and 300−425 µm. The two smaller sized beads were poured through a sieve to prevent
clumping, although the 45−90 µm beads remained slightly cohesive [12]. Except for smoothing the
surface with a straight edge, the beads were used as poured, with no shaking. From measurements of
the mass and volume of smaller samples of our glass beads prepared in the same way, we determined
the packing fraction p of the target materials to be between 56% for the smallest beads (close to that for
random loose packing) up to 62% for the largest. Steel balls with diameters DB = 2.54 and 1.27 cm,
with masses m = 66.0 and 8.35 g, respectively, were dropped into the target using a release mechanism.
The release height, h, was measured from the surface of the beads to the lower surface of the steel ball,
i.e., h is the distance the ball falls under the influence of gravity before it makes contact with the target.
The velocity of the ball at impact v0 is determined from the release height of our projectiles: v0 = √

2gh,
with g the acceleration due to gravity. In most cases the projectile was completely buried in the target
material after impact, and δ, defined as the distance from the level of the original surface of the target
material to the bottom of the ball, was determined by inserting a probe into the beads and locating the
top of the ball. δ is the distance over which the ball interacts with the granular medium, and is thus a
measure of the average force exerted by the medium on the ball [9].

3. Results and discussion

Figure 1 shows our results for δ plotted as a function of the momentum of the sphere at impact,
mv0. Data for both balls and all five grain sizes are shown. All of the data sets fall on straight lines,
but with significantly nonzero δ intercepts. Fits to two data sets are shown as dotted lines; the other fits
are omitted for clarity. One of the fits shown has a positive intercept δ0, while the other has a negative
intercept.

Except for the nonzero intercept, this behavior is similar to that of a sphere of radius r moving slowly
through a viscous fluid in the absence of gravity. The sphere will experience a drag force described by
Stokes’ law,

Fd = −6πηrv (1)
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Fig. 1. The penetration of steel balls into a target of loosely packed glass beads as a function of the
incident momentum. Open symbols are for a ball with diameter DB = 1.27 cm and solid symbols are
for DB = 2.54 cm. The different symbols indicate different bead diameters, Dg: circles, 300–425 µm;
upward triangles, 180–250 µm; squares, 125–180 µm; downward triangles, 75–125 µm; and diamonds,
45–90 µm. The dotted lines are straight line fits to the data for DB = 2.54 cm, Dg = 300–425 µm and
for DB = 1.27 cm, Dg = 45–90µm.
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where η is the fluid’s viscosity, and the ball will penetrate to depth δ = mv0/6πηr . The penetration
depth is thus proportional to the momentum of the ball at impact and inversely proportional to the
viscosity. By analogy, this suggests that the slopes of the straight lines fit to the data plotted in Fig. 1
should be inversely proportional ηDB, where η is now an effective viscosity of the granular medium.
Although for a Newtonian fluid the viscosity is a property of the material, Fig. 1 indicates that the
effective viscosity of the granular medium studied here depends on both DB and the properties of the
granular medium.

To explain our results, we model the granular medium as a Bingham fluid, that is, a fluid with a
yield stress and an effective viscosity. If the applied stress is less than the yield stress, such a material
behaves as an elastic solid, but for stresses larger than the yield stress it flows. We further assume that
the drag force due to the viscosity is Stokes-like, that is, that it is linear in v. In the presence of gravity,
a sphere falling through a Newtonian fluid (with no yield stress) will reach a terminal velocity when mg

and the drag force balance. In the present case, the ball ultimately comes to rest because the material
has a yield stress that is large enough to support the ball against gravity. We, therefore, write the net
force on the moving ball as

Fd = −F0 − kv (2)

where F0 = F1sgn(v) is the net force due to the yield stress (i.e., for v > 0 it is the total force due
to the yield stress less mg). F0 changes sign when the direction of motion changes, and is zero when
the ball is at rest. We take the magnitude of this force, F1, to be a constant. The second term on the
right-hand side is the effective viscous drag, with k ∝ ηDB. By integrating (2) and finding the time at
which v = 0, we get a penetration depth δ in this model given by

δ = mv0

k
− F0m

k2 ln

(
1 + v0k

F0

)
(3)
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The first term on the right-hand side is proportional to the incident momentum of the sphere and inversely
proportional to the viscosity, as for a Newtonian fluid in the absence of gravity. The second term is due
to the yield stress. If v0k/F0 � 1 (i.e., if the yield stress is large enough or the impact velocity small
enough), then ln(1 + v0k/F0) ≈ v0k/F0, and the penetration is zero. On the other hand, if F0 = 0 the
logarithmic term vanishes and we recover the Newtonian result. For large enough v0, the logarithmic
correction varies slowly with v0 and a plot of δ versus mv0 would look like a straight line with an
intercept δ0 < 0.

Unlike the case for a Newtonian fluid, the resistance of a granular medium to flow will depend on
both the properties of the medium itself and the imposed flow conditions. A very loose material, for
example, would be expected to have lower effective viscosity than a more tightly packed material. With
this in mind, we can derive the scaling behavior of η from the definition of viscosity,

η = σ/ (∂vz/∂r) (4)

where σ is the shear stress, vz is the flow velocity in the z (vertically downward) direction, and ∂vz/∂r

the shear rate in the fluidized granular target in cylindrical coordinates.
The shear stress is the force due to the shear divided by the area over which it acts. The force exerted

by the granular medium on the ball is typically mgh/δ ∼ gρBD3
Bh/δ, where ρB is the density of the

ball. The area is of the order of the surface area of the ball, which is proportional to D2
B, so the stress is

σ ∼ gρBDBh/δ.
The velocity of the ball at impact is (2gh)1/2. Assuming that the energy of the projectile is

transferred elastically to the motion of the grains on impact, we get a typical granular velocity of
vz ∼ v0

(
ρB/ρg

)1/2 ∼ (
ghρB/ρg

)1/2, where ρg is the bulk density of the granular medium. It is known
that the velocity field around a sphere moving through a yield-stress fluid drops to zero over a distance

of order DB [13, 14], so the shear rate is given by ∂vz/∂r ∼ vz/DB ∼ (
gρBh/ρgD

2
B

)1/2
. Neglecting

numerical factors, inserting these results into (4) gives

η ∼ g1/2(ρBρg)
1/2D2

Bh1/2/δ (5)

We still have to deal with the term h1/2/δ in (5). This term is proportional to the reciprocal of the
slopes of the data sets plotted in Fig. 1. Figure 1 shows that h1/2/δ is constant for a given projectile
and target, but varies with both projectile size and the nature of the target material. This quantity
has dimensions (length)−1/2. Since in our model the granular material acts as a continuum, the size
of the beads cannot matter, and the only relevant length scale in the problem is the diameter of the
projectile, DB. We, thus, expect h1/2/δ ∼ D

−1/2
B . (This term could, in principle, also involve a factor of

ρB/ρg to some power, since the dimensions would remain correct. We assume here that all of the density
dependence has been accounted for, an assumption that is justified by comparison with the experimental
results.) Using this in (5) gives3

η ∼ g1/2(ρBρg)
1/2D

3/2
B (6)

This indicates that η indeed depends on DB, in contrast to the Newtonian viscosity. Qualitatively, this
is because moving a larger and larger object through a granular medium requires physically displacing
more and more grains; the number of grains to be displaced and the work required to displace them
increases faster than linearly with the size of the object.

3Applying the same reasoning to a Newtonian fluid gives a nonsensical result. This is because, as noted above, the
viscosity of a Newtonian fluid is a property of the material and does not depend on the nature of the experiment
used to measure it. In the present case, we have assumed the contrary, that is, that the effective viscosity of our
granular material is explicitly not a material property but depends on the experimental conditions.
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Fig. 2. The slopes of straight lines fit to the penetration depth as a function of the scaled momentum,
mv0/g

1/2(ρBρg)
1/2D

5/2
B , plotted as a function of the packing fraction p of the granular target material.

The dependence on projectile diameter has been scaled out. Open symbols are for a ball with diameter
DB = 1.27 cm and solid symbols are for DB = 2.54 cm. The different symbols indicate different bead
diameters, Dg: circles, 300–425 µm; upward triangles, 180–250 µm; squares, 125–180 µm; downward
triangles, 75–125 µ; and diamonds, 45–90 µm. The broken line is a linear fit that gives an x intercept of
pc = 0.66 ± 0.02.
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Using this expression for η, (3) gives δ − δ0 ∼ mv0/k ∼ mv0/g
1/2(ρBρg)

1/2D
5/2
B , where δ0 is

the zero-momentum intercept. An appropriate plot does indeed give a substantial, but not complete,
collapse of the data — Fig. 2 is a plot of the slopes obtained using this scaling. There remains, however,
a dependence not accounted for by the dimensional analysis given above — the scaled slope decreases
as bead size increases. Bead size itself cannot be relevant within our model, since we are treating the
granular medium as a continuum. On the other hand, the packing fraction p of the granular target should
have an important influence on η via its influence on the shear rate, since it is a measure of the ability of
individual particles to move in response to the impact. To show this, we plot the slopes obtained using
the above scaling as a function of p in Fig. 2. Figure 2 shows that our D

5/2
B scaling has indeed collapsed

the data for the two ball sizes. Within the scatter of our data, we can describe the remaining dependence
on p by a factor proportional to 1 − p/pc, where pc is the packing fraction at which the effective
viscosity becomes infinite. A fit to the data, shown as a broken line in Fig. 2, gives pc = 0.66 ± 0.02,
consistent with the value of 0.64 for random close packing of monodisperse spheres. A value slightly
larger than random close packing is not unexpected due to the polydispersity of our glass beads.

Incorporating this packing fraction dependence into our scaling, we plot δ − δ0 versus mv0(1 −
p/pc)/

(
µg1/2(ρBρg)

1/2D
5/2
B

)
= (1 − p/pc)

(
ρB/ρgµ

2
)1/2

D
1/2
B h1/2 in Fig. 3. Here, we have sub-

tracted the zero-momentum intercept from the penetration depth data. µ is a coefficient of friction that
will be discussed below. The data collapse reasonably well. All sets have δ − δ0 accurately proportional
to the scaled momentum, with a mean power-law exponent of 1.01 ± 0.03. The mean constant of pro-
portionality is 1.4 ± 0.3, indicating that the numerical coefficients neglected in our scaling analysis end
up, perhaps fortuitously, being of order 1. The variation in this value may be due to inaccuracies in our
measurements of the packing fraction.

We also have reanalyzed 21 data sets from similar experiments described in ref. 9. These data are
also well-described by our model; that is, δ is linear in mv0 and the data collapse when plotted as above.
Indeed, since ρB and ρg were not varied in our experiments, we confirmed the predicted density scaling
using these data. Fits to these data sets give a mean constant of proportionality of 1.1 ± 0.2, shown as
a broken line in Fig. 3. This agrees with the value for our own results within our uncertainty, although
differences between the two sets of results due to slight differences in experimental protocol would not
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Fig. 3. The penetration depth plotted as a function of the momentum scaled by µg1/2(ρBρg)
1/2D

5/2
B /(1 −

p/pc), as discussed in the text. Open symbols are for a ball with diameter DB = 1.27 cm and solid symbols
are for DB = 2.54 cm. The different symbols indicate different bead diameters, Dg: circles, 300–425 µm;
upward triangles, 180–250 µm; squares, 125–180 µm; downward triangles, 75–125 µ; and diamonds,
45–90 µm. The intercept δ0 has been subtracted. δ −δ0 is proportional to the scaled momentum with a mean
constant of proportionality of 1.4 ± 0.3. The broken line indicates the mean behavior of the data of ref. 9,
with a proportionality constant of 1.1 ± 0.2; the dotted lines show the range of these data.
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be unexpected. The dotted lines show the range of the fitted data sets. The data of ref. 9 extend from
0.06 to 2.1 on the abscissa of Fig. 3 and overlap with our data over a portion of this range; the upper
limit is indicated by the end of the plotted lines. Uehara et al. [9] also found the penetration depth to
depend linearly on the friction coefficient µ = tan θr, where θr is the angle of repose of the granular
medium [9]. Although θr was not accurately measured in our experiments, we have incorporated this
dependence into our scaling, assuming θr = 24◦, the value for the glass beads used in ref. 9.

In previous work [9, 10], the penetration depth data were analyzed in terms of the total change in
potential energy of the ball, mgH . Here H = h + δ is the total distance the ball travels from release
to arrest in the target material. δ was found [9, 10] to scale as (ρB/ρgµ

2)1/2D
2/3
B H 1/3 for a range of

conditions. We test this scaling for our data in Fig. 4. The broken line is the function obtained in ref. 9,
with an additional factor of (1−p/pc) to account for the packing-fraction dependence noted above (the
materials used in ref. 9 all had p = 0.60). The data of ref. 9 have values of the quantity plotted on the
abscissa in the range from 10−1 to 103, with the upper limit again indicated by the extent of the broken
line, while ours run from 102 to 104. Our individual data sets fall on straight lines on this log–log plot
and collapse rather close to the functional form obtained in ref. 9. Our data do not, however, obey the
H 1/3 power law found in ref. 9. The effective power-law exponents determined from our data are all
significantly larger than 1/3 and vary systematically with packing fraction (or bead size) [12]. This is
shown in the inset to Fig. 4, where the effective exponent α is plotted as a function of packing fraction.
For our largest beads we find δ ∼ Hα with α ≈ 0.4. As Dg is decreased (p decreased), the exponent
increases to α ≈ 0.6. Note that the inclusion of the packing-fraction term in our scaling improves the
collapse of our data, but does not change the values of α.

The logarithmic term in (3) should make a plot of δ versus mv0 have an apparent intercept δ0 < 0,
while for the most part our data (and those of ref. 9) have δ0 > 0. This is due to the fact that the
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Fig. 4. δ plotted as a function of the total distance traveled H , scaled as described in ref. 9 and in the text.
The broken line is proportional to H 1/3. This line is the function determined in ref. 9 with an additional
factor dependent on packing fraction. It ends at the upper limit of the range of their data. Our data do not
obey the 1/3 power-law scaling: the inset shows the effective power-law exponents α found from fits of our
data to the form δ ∝ Hα , plotted as a function of packing fraction. Symbols in both the main figure and the
inset are as follows: open symbols are for a ball with diameter DB = 1.27 cm and solid symbols are for
DB = 2.54 cm. The different symbols indicate different bead diameters, Dg: circles, 300–425 µm; upward
triangles, 180–250 µm; squares, 125–180 µm; downward triangles, 75–125 µm; and diamonds, 45–90 µm.
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properties of the granular material at the surface differ from those a few grain diameters below the
surface. Equation (3) would strictly apply if the sphere was released with an initial speed v0 in the
interior of a homogeneous granular medium. In our case, in contrast, the sphere is released from above
the medium. Imagine a ball released from h = 0, at which point the bottom of the sphere touches the
surface of the target. By our definition, v0 = 0 in this case. However, the sphere does in fact fall some
distance into the granular material before coming to a stop, and so has a positive penetration depth at
h = 0. In terms of the properties of the granular material, the grains near the surface of the target can
move much more easily than those beneath the surface, so the yield stress at the surface is substantially
lower than in the bulk. As a result the surface layers cannot support the sphere against gravity, and it
falls.

One might expect the agreement with the model predictions to improve as the packing fraction
decreases, since for loosely packed beads the difference in mobility between beads at the surface and
those in the bulk will be less pronounced. Our results for the values of δ0 are noisy, but the intercept
tends to decrease with decreasing packing fraction. For the smallest beads, δ0 is negative, as shown by
one of the fits plotted in Fig. 1, and in agreement with the predictions of (3).

Finally, we note that there is some uncertainty introduced by calculating v0 on the basis of the
distance from the bottom of the sphere at its release point to the surface of the target. As we have seen
above, the speed of the sphere can continue to increase even after it has penetrated slightly into the
granular material, so the maximum momentum of the ball could be slightly larger than calculated. This
would lead to another contribution to δ0. Calculations indicate that in fact this effect is negligible for
our data.
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4. Conclusions

In summary, we have observed that the penetration depth of spheres impacting into a granular
medium is linearly dependent on the impact momentum, and shown that this behavior can be explained
in terms of the yield stress and an effective viscosity of the granular medium. Dimensional analysis and
comparison with data indicate that the viscosity is of the form

η ∼ µg1/2(ρBρg)
1/2D

3/2
B /(1 − p/pc) (7)

We have also analyzed our data in terms of the total change in potential energy of the falling sphere,
following the approach of refs. 9 and 10. Our results indicate that the 1/3 power-law exponent found
in that work is not universal, but depends on the packing fraction of the granular target material. Our
effective viscosity is also not a fixed property of the material, but depends on the dimensions and
density of the projectile used in the experiments as well as on the packing fraction, density, and friction
coefficient of the granular material. Nonetheless, these results demonstrate an interesting and potentially
useful way to characterize a class of granular flows.
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