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Synopsis

e have studied the motion of spheres falling through yield-stress Carbopol gels. We measured the
elocity of the falling sphere as a function of time and sphere density. Reproducible results were
btained when the experimental fluids were carefully prepared and homogenized. Three regimes of
otion were observed. Spheres of high enough density reached a constant terminal velocity, as in
ewtonian fluids. Below a critical density, the sphere came to a complete stop, while in an

ntermediate regime, the sphere continued to move but with a velocity which steadily decreased
ith time. We have also carefully characterized the rheological behavior of the fluids. The flow

egimes observed for the falling sphere are analogous to those observed in creep tests for different
pplied stress levels. The yielding criterion and the drag force on the sphere obtained from our data
re in excellent agreement with the longstanding but previously unconfirmed theoretical
redictions of Beris et al. �J. Fluid Mech. 158, 219–244 �1985�� and Beaulne and Mitsoulis �J.
on-Newtonian Fluid Mech. 72, 55–71 �1997��. © 2007 The Society of Rheology.

DOI: 10.1122/1.2401614�

. INTRODUCTION

Yield-stress fluids such as cement pastes, mineral slurries, drilling fluids, and natural
uds are typically suspensions of coarse particles in a liquid. These particles can settle

ver time, since their density is larger than that of the suspending fluid. In many practical
pplications it is critical to control this settling to avoid the development of heterogene-
ties �as in food products� or to facilitate the transport of the suspended particles �as in

�
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126 TABUTEAU, COUSSOT, AND DE BRUYN
rilling muds�. The presence of a yield stress implies that settling of an object is only
ossible if the net gravitational force on the object exceeds the upward force due to the
ield stress of the material. This principle has been the basis of practical rheometric tests
or determining yield stress �Uhlherr et al. �2002�, Schatzmann et al. �2003�, Coussot
2005��.

Despite the apparent simplicity of the problem, the motion of an object through a
ield-stress fluid remains poorly understood. It has long been observed that steady motion
f the object required that a critical force be overcome. This is obviously a result of the
aterial’s yield stress, but the exact value of this critical force and the way in which the

rag force increases with velocity once the object is moving have not been thoroughly
nvestigated. Data in the literature are scarce and often poorly reproducible at low ve-
ocities �see the review of Chhabra and Uhlherr �1988��. The most extensive studies are
hose of Atapattu et al. �1995� and, more recently, Merkak et al. �2006�. Atapattu et al.
1995� carried out experiments in which spheres of different sizes were dropped under
ravity into Carbopol gels with a range of properties. Jossic and Magnin �2001� and
erkak et al. �2006� studied the evolution of the velocity of spheres in response to an

pplied force. In particular, they observed that the roughness of the sphere’s surface had
significant effect: the drag force was about 25% higher for rough spheres than for

mooth spheres. The velocity dependence of the drag force on a sphere moving through
oam �de Bruyn �2004�, de Bruyn �2006�� and through Bentonite clay suspensions �Chafe
nd de Bruyn �2005�� has also been studied recently.

Much of the previous experimental work on yield-stress fluids has been done using
arbopol, a family of commercial polymers which form transparent gels when dispersed

n water at concentrations on the order of tenths of a percent by weight. Carbopol gels are
elatively simple yield-stress fluids. They exhibit no significant thixotropy or aging in
heir bulk properties, and their transparency makes them ideal for visualization experi-
ents �Magnin and Piau �1990��. Nonetheless, some previous work has found that the

erminal velocity of a sphere falling through Carbopol could depend on the history of the
ample — in particular, on the number of spheres that had previously been dropped into
he same fluid �Hariharaputhiran et al. �1998�, Horsley et al. �2004��. This effect appears
o suggest thixotropic behavior, but systematic studies of the motion of objects through
uids known to be thixotropic show a dependence of the velocity �or of the drag force� on

he waiting time between the preparation of the sample and the measurement, or on the
uration of the flow �Briscoe et al. �1992�, Ferroir et al. �2004�, Chafe and de Bruyn
2005�� that is not observed in Carbopol.

From a theoretical point of view, after various early attempts to provide approximate
nalytical expressions �du Plessis and Ansley �1967�, Ansley and Smith �1967��, the
ielding criterion �i.e., the force required to overcome the yield stress at the point of
ncipient motion� was determined analytically and numerically by Beris et al. �1985� by
olving the equations for a regularized Bingham model. Blackery and Mitsoulis �1997�
onfirmed these results with numerical simulations using Papanastasiou’s �1987� model
or a Bingham fluid. The same group subsequently determined an expression for the force
s a function of the velocity �Beaulne and Mitsoulis �1997��. Using other regularization
ethods, Liu et al. �2002� confirmed these results for Bingham fluids.
The experimental validation of these theoretical developments nevertheless remains

roblematic: the only detailed comparison with an extensive set of data �the data of
tapattu et al. �1995�� indicates some discrepancy between theory and experiments. A
uantitative validation of the theory requires not only a precise determination of the
orce-velocity curve over a wide range of velocities, but also a precise characterization of

he rheological behavior of the fluid. The issue is complicated by the fact that the exis-
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127DRAG FORCE IN A YIELD-STRESS FLUID
ence of a “true” yield stress is still under discussion in some quarters �Barnes and
alters �1985�, Barnes �1999��. In this paper we study the drag force on a spherical

bject moving in a yield-stress fluid through systematic experiments over a wide range of
arameters coupled with a careful rheological analysis. We measured the variation of
elocity with time for spheres falling through Carbopol gels, using spheres with a range
f densities. At the lowest densities no motion was observed in steady state. We were able
o discriminate between steady motion �a constant terminal velocity� and motion involv-
ng a progressive slowing of the sphere over long times, and to determine the yielding
riterion accurately. We obtained reproducible results with our Carbopol samples simply
y mixing them for a sufficiently long time prior to the experiment.

In Sec. II we describe the materials used and our experimental procedure. Our experi-
ental results are presented in Sec. III and discussed in Sec. IV. Section V is a brief

onclusion.

I. EXPERIMENT

As experimental fluids we used two aqueous solutions of Carbopol ETD 2050 �No-
eon�, with concentrations �=0.5% and 2% by weight. Carbopol is a commercial prod-
ct based on cross-linked linear polyacrylic acid chains which is commonly used as a
hickener. Carbopol powder was added slowly and with continuous stirring to de-ionized
ater. Sodium hydroxide solution was then added to raise the pH to 6. The suspension
as then further mixed for ten days with a motorized mixer at 300 rpm to remove
ubbles and completely homogenize the material. In bulk quantities these suspensions
ehave as yield-stress fluids due to the existence of a continuous network of interacting
icron-sized hydrogel particles �Carnali and Naser �1992��. The density � of both sus-

ensions was measured to be 1000 kg/m3 to within 0.5% at a temperature of 22 °C.
Rheometric measurements were carried out under controlled strain using an ARES

HS rheometer equipped either with stainless steel concentric cylinders �inner radius

1=16 mm, outer radius r2=17 mm, immersed length 34 mm� or with parallel plates of
iameter 50 mm and separation 1.5 mm. Sandpaper with a roughness on the order of
00 �m was glued onto the parallel plates to prevent wall slip. A temperature-controlled
irculating fluid bath was used to maintain the tool at a temperature of 22 °C. The flow
urve was measured by imposing a steady shear and recording the corresponding steady-
tate stress; measurements were done starting at high shear rate and working downwards.
he linear viscous and elastic moduli were measured by applying a small-amplitude
scillatory shear. Measurements were also performed using a TA Instruments AR 1000
ontrolled-stress rheometer equipped with parallel plates of diameter 40 mm with a gap
f 1.5 mm. As above, the plates were covered with sandpaper to prevent wall slip. In this
ase, a constant stress was applied and the resulting deformation measured as a function
f time. The material was presheared at 300 s−1 and left at rest for 30 s before each
easurement at constant stress.
The motion of spheres moving through suspensions of Carbopol was studied using a

igh-speed video camera �MotionScope, Red Lake Imaging� with frame rates typically in
he range of 60–250 frames/s. The position of the bottom edge of the sphere in each
rame was measured with a digital cross hair and converted from pixel units to true
istance. We used a series of 1.27-cm-diam metal spheres of different densities �s. All of
hese objects had a surface roughness well below 1 �m �the roughness of one steel ball
as measured with a profilometer to be ±0.1 �m over 1 mm�, with the exception of one
hich was machined to give a roughness measured to be ±4 �m over 1 mm. We also

sed a hollow plastic ping-pong ball of diameter 3.96 cm with a hole cut into its top. The
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128 TABUTEAU, COUSSOT, AND DE BRUYN
ensity of the ping-pong ball was varied by gluing a number of small steel beads inside
t before each run, after which the hole was covered with a small piece of duct tape. Apart
rom the tape, which was at the top of the ball as it moved through the material, the
urface roughness of the ping-pong ball was estimated to be on the order of 10 �m.

Except where explicitly noted below, the balls were dropped into Carbopol suspen-
ions contained in a Plexiglas vessel having a square cross section with length and width
=25 cm, 25 cm deep. After the container was filled with the fluid, the sphere was
ositioned a known distance �5 cm, except as noted below� above the free surface on an
djustable diaphragm. The diaphragm was opened to release the sphere and its motion
ecorded with the high-speed camera. The maximum duration of the video, which was
imited by the camera’s memory, was 10 s, so for slow runs we recorded several videos
t different times during the fall. In some cases we released the sphere from below the
ree surface by hand. All experiments were carried out at room temperature, which was
2 °C.

II. RESULTS

. Rheometry

Figure 1 shows the flow curves for the two concentrations of Carbopol. Data from
oth stress and strain controlled measurements are shown, in the latter case for both
ouette and parallel plate geometries.

For the Couette geometry, the shear stress at the inner cylinder is plotted as a function
f the apparent shear rate, �̇=�r1 / �r2−r1�. Here � is the angular velocity of the inner
ylinder. The shear rate within a yield-stress fluid can be inhomogeneous, but since the
ap-to-diameter ratio �r2−r1� /r1 is small, this effect is expected to be small except at very
ow velocities and will be neglected.

For the parallel plate geometry, the shear rate and shear stress vary with radial position
ithin the gap. This can be accounted for using the classical formula �Coleman et al.

IG. 1. The steady-state shear stress � plotted as a function of shear rate �̇ for the two concentrations of
arbopol studied �squares: �=0.5, circles: �=2.0�. Data indicated by solid symbols were measured with the
arallel plate geometry, and by open symbols disks with the Couette geometry, both with the controlled strain
heometer. The data plotted as crosses were measured in controlled stress tests.
1966��
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129DRAG FORCE IN A YIELD-STRESS FLUID
�R =
M

2�R3�3 +
�̇R

M

�M

��̇R
� �1�

n which �R and �̇R=�R /h are the shear stress and shear rate at radial position R,
espectively, where R is the radius of the circular plates, h the gap between them, and M
he torque. From Eq. �1� we can get �R as a function of �̇R, the constitutive equation for
he material in simple shear. The software that controls the rheometer, however, calcu-
ates an apparent shear stress �app=3M /2�R3 and provides �app as a function of �̇R. From
ur data we find that �app is well described by a Herschel-Bulkley model of the form

app=�c+K��̇R
n , where �c, K�, and n are fitting parameters. Given this we can deduce

rom Eq. �1� that the constitutive equation of the fluid in simple shear should have a
imilar form with the coefficient K� replaced by K= �1+n /3�K�:

�R = �c + K�̇R
n . �2�

ince we can rewrite the equation for �app as �app=�c+K��K� /K�1/n�̇R�n, we see that

R��̇R�=�app��K� /K�1/n�̇R�. The parallel-plate data shown in Fig. 1 have been corrected in
his way.

The Couette and parallel-plate data agree well except at shear rates below 0.1 s−1,
here the Couette data fall below the parallel-plate data. This is likely due to wall slip at

he smooth tool surfaces in the Couette geometry. The data for the higher concentrations
t these low shear rates were noisy, possibly due to shear banding, and are not shown in
he figure. Neglecting this region, �R is well described by a Herschel-Bulkley model in
he form of Eq. �2� with n=0.5. For �=0.5% we find �c=7 Pa and K=6 Pa s0.5, while for
=2%, �c=34 Pa and K=20.4 Pa s0.5. Measurements of the linear viscous and elastic
oduli under small-amplitude oscillatory shear show that the elastic modulus is at least

en times larger than the viscous modulus for frequencies between 0.1 and 10 Hz.
The Herschel-Bulkley model implicitly assumes that the material is in a solid

egime—that is, that �̇=0 and the material does not flow—for ���c, and in a liquid
egime for larger stresses. Creep measurements made with the controlled stress rheometer
or �=0.5%, shown in Fig. 2, provide further insight into the material behavior. These
ata display distinct solid and liquid regimes: below a certain stress value �0 the defor-
ation of the material reaches a constant value and remains constant even over very long

imes, but for an applied stress above a higher value �c the material reaches a steady state
n which it flows with a constant shear rate �̇. For stresses intermediate between �0 and

c, the deformation ��t� at first increases then tends to plateau. Over longer times ��t�
ncreases further, but with a logarithmic slope of the deformation vs. time curve that is

uch less than 1. This gives a deformation proportional to tb, with b�1, so the shear rate
˙ � tb−1. This shear rate decreases in time, never reaching a steady state, implying that in
his intermediate regime there are no stable flows over long times. In physical terms, this
ikely corresponds to the fact that at these values of �, the initial structure of the material
s not broken but rather undergoes a finite deformation even after long times, possibly
ccompanied by some local structural rearrangement. Here we consider this ultimate
aturation of the deformation to indicate that the material is still in the solid regime under
hese conditions. The value of �c at which the material enters the liquid regime—slightly
ess than 8 Pa—corresponds well with that found from the controlled rate measurements

f Fig. 1.
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130 TABUTEAU, COUSSOT, AND DE BRUYN
. Falling spheres

Figure 3 shows the results of falling sphere experiments performed with the variable-
ensity ping-pong ball. The figure shows the penetration depth as a function of time with
ogarithmic scales. The same data are plotted with linear scales in Fig. 4. At early times
ome oscillations in the depth appear �Akers and Belmonte �2006�, Jayaraman and Bel-

IG. 2. The deformation � of a 0.5% Carbopol suspension as a function of time for different applied stress
evels, measured with a parallel-plate geometry using the controlled stress rheometer. Here �=	R /h, where 	
s the rotation angle of the moving plate. From bottom to top, the lines correspond to stresses of 4, 5.4, 8.1, 9.1,
0.1, 11.1, 12.1, 14.1, 16.8, 20.2, 23.6, 26.9, 33.7, 40.4, and 40.7 Pa. The dotted lines have logarithmic slope 1,
orresponding to a constant shear rate.

IG. 3. The depth as a function of time for the variable-density ping-pong ball falling through a 0.5% Carbopol

uspension. The different symbols correspond to different densities as indicated.



m
e
t
a
s
a
d
a
o
a
n

o
t
a
r
i
d
i
c
l
m

t
e
r
c
c
r

d
o

F
l

131DRAG FORCE IN A YIELD-STRESS FLUID
onte �2003��. These result from the interaction between the inertia of the sphere and the
lastic behavior of the material in its solid regime and will be discussed elsewhere. After
he end of these oscillations we can again distinguish three regimes: for densities above
critical density �c the depth of the sphere increases linearly with time, corresponding to

teady-state motion at a density-dependent terminal velocity V. For a density smaller than
lower value �0, the sphere rapidly comes to rest after the initial transient. For interme-

iate densities it never reaches a steady state, and its velocity steadily decreases with time
t long times, as indicated by a logarithmic slope in Fig. 3 that is significantly less than
ne. The decrease in velocity visible in Fig. 4 for depths larger than about 230 mm occurs
s the sphere approaches the bottom of the sample vessel, suggesting that the bottom does
ot affect the sphere’s motion before it reaches this depth.

There is a strong similarity between the behavior of the falling spheres and the results
f the creep tests shown in Fig. 2. In analogy with the above discussion, we interpret
hese data as follows. For densities higher than �c, the sphere reaches a steady velocity
nd is surrounded by a volume of material which can be considered to be in the fluid
egime. For densities below �0, the sphere remains motionless and the material around it
s in the solid regime. For intermediate densities the sphere moves with a continuously
ecreasing speed, possibly due to localized changes in the material structure close to the
nterface with the sphere. In this regime the suspension surrounding the sphere cannot be
onsidered to be totally fluidized. We take the material surrounding the sphere to be
iquid for �
�c, and associate this density with the critical stress �c found in the rheo-
etric measurements.
We note that the terminal velocity was independent of the number of spheres dropped

hrough the fluid—our results were quite reproducible, in contrast to what was found in
arlier work �Hariharaputhiran et al. �1998�, Horsley et al. �2004��. We attribute the
eproducibility of our results to careful preparation of the suspensions, and more pre-
isely to the long mixing times used. Indeed, when we prepared material using signifi-
antly shorter mixing times �on the order of only one day�, the data were much less
eproducible.

The terminal velocity was also independent of the depth of the vessel for sufficiently
eep vessels: no significant difference in V was found between experiments using vessels

IG. 4. The higher-density data from Fig. 3 plotted with linear axes. The terminal velocity is the slope of the
inear portion of the curve at long times.
f depths 25 and 60 cm. The influence of the container walls was investigated by mea-
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132 TABUTEAU, COUSSOT, AND DE BRUYN
uring the terminal velocity for different values of the ratio L /d, where L is the width of
he container and d the diameter of the sphere, for the same density difference. In agree-

ent with the results of Atapattu et al. �1990�, we found the velocity to be constant for
/d�10, and to decrease with decreasing L /d below this value. This effect is most

mportant for the largest spheres used, for which this ratio is 6.3. In this case the terminal
elocity is only about 10% smaller than the asymptotic value for large aspect ratio. In
hat follows we will neglect this effect. The height from which the sphere was released

ffected the motion in the initial transient regime, but we observed no significant differ-
nce in the terminal velocity for different release heights. The same terminal velocity was
lso obtained when the sphere was released below the fluid surface. Finally, we found no
ignificant effect of surface roughness on the terminal velocity, for roughnesses ranging
rom 0.1 to several �m. Since this range of roughness goes from smaller than the typical
ength scale of the microscopic structure of the Carbopol to larger than that length scale,
his suggests that wall slip is unimportant and that roughness plays a negligible role in
ur experiments. This may also be a consequence of the good homogenization of the
aterial.

V. DISCUSSION

The drag force on an object moving through a Newtonian or a power-law fluid is
roportional to some power of the velocity �Dazhi and Tanner �1985��. For our spheres
alling at constant speed through a yield-stress fluid, we expect the net downward force

g= �1/6��d3g��, where the density difference ��=�s−� to be balanced by an upward
orce that is the sum of a constant term related to the yield stress and a “viscous” term
epending on the velocity. This hypothesis is confirmed by our data: In Fig. 5 we plot ��
gainst the terminal velocity V measured with a variety of falling spheres in the two
arbopol samples. The results for the ping-pong ball with different densities follow a
urve similar in shape to the flow curve plotted in Fig. 1. The dotted line in Fig. 5 is a fit

n

IG. 5. The density difference �� of the spheres falling through Carbopol suspensions plotted against the
erminal velocity. Open symbols: d=3.96 cm; solid symbols, d=1.27 cm. The squares are for a Carbopol
oncentration of 0.5% and the circles for �=2%. The dotted line is the prediction of a theoretical model for the
arge spheres in the more dilute material, as discussed in the text.
o an equation of the form ��=��c+K0V with the exponent n=0.5, and describes the
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133DRAG FORCE IN A YIELD-STRESS FLUID
ata reasonably well for velocities up to about 0.1 m/s. The drag force on an object
oving through a foam has been shown to have a similar behavior �de Bruyn �2004��.
The general problem of the motion of a sphere through a yield-stress fluid is described

y the complete set of equations of motion, along with a constitutive equation, which we
ake to be the Herschel-Bulkley equation, Eq. �2�, and appropriate boundary conditions.

hile this problem is in general complex, it is readily shown that three dimensionless
umbers parameterize the problem. They are the generalized Reynolds number

Re =
�0V2

K�V/d�n , �3�

he Bingham number

Bi =
�c

K�V/d�n , �4�

nd the yield number

Y =
3�c

gd��
. �5�

n an attempt to generalize the simple relation between the drag coefficient CD

4gd�� /3�0V2 and the Reynolds number that holds for Newtonian fluids, Ansley and
mith �1967� proposed to express the drag coefficient for yield-stress fluids as

CD =
4 Bi

Y Re
= 24X�n��1 + k Bi

Re
� =

24X�n�
Q

, �6�

here the so-called dynamical parameter Q=Re/ �1+k Bi�. The numerical coefficient k
as postulated to be equal to 1 by Ansley and Smith �1967� and found from numerical

imulations to be 0.823 �Beaulne and Mitsoulis �1997��. Atapattu et al. �1995�, on the
ther hand, fit their data to Eq. �6� and found k=0.614. X�n� is a drag-correction factor
or power-law fluids which has been determined by Gu and Tanner �1985� to be 1.42 for
=0.5. In Fig. 6 we plot our data in the form of the drag coefficient CD as a function of
. The solid line corresponds to Eq. �6� with the numerically determined value of 0.823

or k. The agreement between our data and the theoretical predictions is excellent over
even decades in Q, with slight deviations from the predicted 1/Q dependence becoming
pparent only for Q
10. This is in contrast with the data of Atapattu et al. �1995�, for
hich some discrepancy with the theory was observed, even for small values of Q.
In fact Fig. 6 does not permit a particularly stringent comparison between the data and

he predictions of Eq. �6�, since any deviation visible on a log-log graph spanning eight
ecades must be rather large. A more sensitive plot is obtained by rewriting Eq. �6� in the
orm

1

Y
= 6kX�n� +

6X�n�
Bi

= 7 +
8.52

Bi
, �7�

here we have used the theoretical value of Beaulne and Mitsoulis �1997� for k and the
bove value of X�n� for n=0.5. This theoretical prediction, which we emphasize is based
n numerical predictions and involves no free parameters, is compared with our data in
ig. 7. We find extremely good agreement for Bi−13. In addition, we find the critical
alue Yc of the yield parameter above which there is no motion of the sphere �that is, the
eciprocal of the intercept of Fig. 7 at Bi−1=0� to be 0.145, in excellent agreement with

he value of 0.143 predicted by Beris et al. �1985� and Blackery and Mitsoulis �1997�.
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134 TABUTEAU, COUSSOT, AND DE BRUYN
his provides experimental confirmation of the critical conditions for the onset of steady
otion of a sphere through a yield-stress fluid. We note that this good agreement depends

n the correct identification of the dynamical regimes observed in both the rheometry and
he falling sphere experiments described above.

For Bi−1
3 the experimental data deviate from the theoretical curve; this deviation is
ven more clear when the data are plotted with linear axes as in the inset to Fig. 7. For
imple power-law fluids, Y−1=6X�n�Bi−1. Our data do not show this behavior when Bi is
mall, i.e., when the shear-dependent term in Eq. �2� becomes much larger than the
onstant term. This may be due to the increasing importance of inertial effects as V
ncreases. To investigate this, we plot Y−1 as a function of the generalized Reynolds

IG. 6. The drag coefficient as a function of the dynamic parameter Q for the data of Fig. 5. The symbols have
he same meaning as in that figure. The solid line is the prediction of Eq. �6� using the numerically calculated
alues of the coefficients.

IG. 7. The data of Fig. 6 plotted as Y−1, the reciprocal of the yield number, as a function of Bi−1, the reciprocal
f the Bingham number. The inset shows the same data plotted with linear axes. In both cases the solid line

orresponds to Eq. �7�; the dotted line shows the deviation of data from the theory.
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135DRAG FORCE IN A YIELD-STRESS FLUID
umber in Fig. 8. For large Y−1, we find that Y−1 increases linearly with Re. This implies
hat the drag force is also linear in the Reynolds number �which here scales as V2−n�, and
uggests an analogy with the well-developed turbulent regime in Newtonian fluids. In
hat case the drag coefficient is approximately constant, leading to a drag force propor-
ional to the Reynolds number �which in that case scales as V�. In the present case,
owever, the regime where the drag force is proportional to Re occurs just at the end of
he laminar regime, where inertial effects are still small, whereas for Newtonian fluids
here is a wide transitional regime. Further data covering a larger range of velocities and
xperimental parameters are required to confirm the generality of this finding.

. CONCLUSION

Careful preparation of the Carbopol suspensions used in our experiments made it
ossible for us to obtain reproducible results. Careful determination of the yielding con-
ition in rheometrical experiments and from the motion of spheres falling through the
uspensions led to very good agreement between our experimental data and previous
heoretical predictions for the drag force on a sphere moving through a yield-stress fluid
t large Bi. These results give confidence in the application of current theory to practical
ituations once the rheological behavior of the material has been carefully determined.
urther studies of the regime in which inertia becomes important are required, but our
reliminary results suggest that this regime might be very different from the analogous
egime in Newtonian fluids.
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