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SECTION 4 
Electric Fields in Matter 

This section (based on Chapter 4 of Griffiths) continues with the study of electrostatics but now in the presence 
of another material (such as an insulator or dielectric). The topics are: 

• Polarization 
• The field of a polarized object 
• Electric displacement 
• Linear dielectrics 

 

Polarization 
Conductors and Insulators 
Most materials falls into two broad categories as regards their electrical properties:  

 

Unless the electric field is very strong, the electron cloud of a non-metallic atom is only moved a little in the 
direction opposite to the electric field. The atom then becomes a dipole with moment p pointing in the direction 
of the electric field. If the field isn’t too strong, we have a proportionality: 

      
where α is a constant called the polarizability. The polarizability is determined experimentally and it depends on 
the properties of the atom. 

                                                                                                                  
Molecules are more complicated, since they are typically asymmetric and can be categorized as:  
 

   Non-polar molecules (p = 0 when E = 0)                    Polar molecules (p ≠ 0 when E = 0) 
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•  Conductors 	  
These have free charges which move in 
response to external electric fields.	  
When a conductor is placed in an electric 
field, the charges move to cancel out the 
applied external field, making the net field 
equal to 0 inside the conductor. 
 

                       

•  Insulators 	  
These have charges which are bound to particular atoms or 
molecules. 	  
When an insulator is placed in an electric field, the atoms and 
molecules become dipoles and line up with the field, partially 
cancelling the field in the insulator. 
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For molecules, the polarizability is a function of direction of the electric field. In the case of carbon dioxide, the 
polarizability is different along the molecule’s axis and perpendicular to it: 

      
In general, for asymmetric molecules, the polarizability depends on the field component in each direction: 

 
px = !xxEx +!xyEy +!xzEz

py = !yxEx +!yyEy +!yzEz

pz = !zxEx +!zyEy +!zzEz

  OR   p = !E  

where p and E are column vector and α is a 3 × 3 matrix. Hence there is a polarizability matrix (or tensor) in 
these cases, instead of a scalar constant. 
 

Polar molecules 
Polar molecules, like water, which have built-in dipole moments, experience a torque when they are subjected 
to an electric field. 

 
                

  
      So a dipole with dipole moment p experiences a torque 

      
 

For discussion in class: Show that the potential energy of the above dipole in the field E is given by −p.E   
 
Force on an electric dipole 
If the electric field is non-uniform, so that it varies from one side of the dipole to the other (which is a rather 
small effect typically for molecules), then there is a net force on the dipole:  

    
If the dipole is very short (meaning vector d is small), we can approximate the small change in any component 
of E (say the x component) by: 

    
Doing the same for the y and z components gives: 

    
and therefore (since p = qd for the dipole moment): 
 

Polarization of matter 
In a material with neutral atoms or nonpolar molecules, when an electric field is applied, a tiny dipole is 
induced in each, which on average aligns with the electric field. In a material made of polar molecules, each 
dipole tends to align with the electric field. 
 

In either case, the material becomes polarized (i.e., acquires a dipole moment throughout its volume), which can 
be expressed as: 

   
Next, we look at the electric field or potential produced by the polarized matter. 

 

The field of a polarized object 
We have a dipole moment per unit volume in a polarized material. We already know from Section 3 that an 
individual dipole gives rise to an electric field. So the polarization of the material gives rise to an electric field. 
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Polarization P = dipole moment per unit volume

Consider	  a	  simple	  dipole	  of	  two	  charges	  q	  and	  −q	  separated	  by	  distance	  d.	  
If	  the	  field	  E	  is	  uniform,	  the	  two	  forces	  are	  equal	  and	  opposite	  (so	  they	  
cancel	  out),	  but	  they	  tend	  to	  align	  the	  molecule	  with	  the	  field.	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
	  

The torque is: 
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To find this electric field, it’s easier to use results for the potential. We start from the potential due to a single 
dipole, which is:    

  
 
First, we know that: 

   	   
Here the prime on the gradient indicates that we’re taking the derivative with respect to the source coordinates 
(re = r –r’ ). So now we have: 

   	   
We can next use integration by parts: 

   	   
Then, applying the divergence theorem to the first term in the bracket gives: 

   	   
 

We can now re-interpret this result. Notice that the first term looks like the potential of a surface charge, where 
the charge per unit area is: 

    
and the second term looks like the potential of a volume charge, where the charge density is: 

    
So we can rewrite the potential in terms of these bound charges that are associated with the polarized material: 

   	   
 

The bound charges are more than just a mathematical analogy: they correspond to real accumulations of charge 
in parts of the polarized material.  
Look at two examples: 
 

 
 
However, at the ends, the dipoles are lined up perpendicular to the surface: 
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The	  potential	  outside	  a	  volume	  of	  polarized	  material	  is	  found	  by	  integrating	  over	  
all	  the	  dipoles:	  

	   	   	  
In	  principle,	  we	  can	  evaluate	  this	  integral	  directly	  for	  any	  polarized	  material;	  but	  
there’s	  actually	  a	  better	  way	  to	  look	  at	  the	  same	  calculation.	  
	  

First,	  consider	  a	  cylinder	  with	  uniform	  polarization	  along	  the	  
axis.	  Since	  the	  divergence	  of	  P	  will	  be	  zero	  inside,	  there	  will	  be	  
no	  bound	  volume	  charge.	  	  	  
	  

There	  is	  a	  negative	  net	  surface	  charge	  on	  the	  left	  face	  of	  the	  cylinder,	  and	  a	  
positive	  net	  surface	  charge	  on	  the	  right	  face.	  The	  total	  charge	  is	  not	  changed,	  
only	  redistributed	  (if	  the	  material	  was	  neutral,	  the	  total	  charge	  is	  still	  zero).	  
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Next, consider a sphere whose polarization is radially outwards (along the r direction): 

 
Electric displacement 

 

Total electric field around dielectrics 
In the general case where a material is present, we want to calculate the total potential and the electric field that 
include the bound charges on a dielectric material as well as any other charges in the region (we will call them 
free charges to distinguish them from the induced or bound charge). 
 

We can rewrite Gauss’s law in terms of the total (volume) charge as  

      
Combining the terms with divergence, we have: 

     
We can define a new vector D, called the electric displacement, which is the expression in parentheses: 

     
Gauss’s law then becomes: 

          
where  Qf-enc is the total free charge in our chosen volume.  
 

This is Gauss’s Law in the presence of dielectrics. We can use it to find the electric displacement in exactly the 
same way as we find electric field with the standard Gauss’s law. 
 
Problem 4.15 (from Griffiths) – for discussion in class 
A thick spherical shell (inner radius a, outer radius b) is made of dielectric material with a “frozen-in” 
polarization 

    
where k is a constant and r is the distance from the centre. (There is no free charge in the problem). Find the 
electric field E in all 3 regions by two different methods: 
(a) Locate all bound charge and use Gauss’s law (as in chapter 2) to calculate the field. 
(b) Use the modified Gauss’s law (this chapter) to find D, and then deduce E. (The second method is much  
     quicker). 
 
Note of caution! 
From Gauss’s law it looks like the electric displacement D and the electric field E are analogous. However, we 
need to be careful because there is no analogue of Coulomb’s law for D. This is because while the divergence of 
D looks similar to the divergence of E, the curls are not the same! 
The curl of E always vanishes (and this property allowed us to define a scalar potential), but the curl of D can 
sometimes be nonzero. In fact: 
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Taking into account which way the dipoles point, it follows that here will be 
an excess of negative charge inside the sphere, where the polarization is 
large (theoretically it diverges near the centre), while the surface will have 
an excess of positive charge.  
 

Again, if the material is neutral, the positive and negative charges will 
cancel overall.  
	  

or	  
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The outcome is that you cannot always just use Gauss’s law to calculate D (because it gives you the effect 
coming from the free charge, but doesn’t tell you about the curl of P). 
  

The rule-of-thumb is that, if the problem has spherical, cylindrical or plane symmetry, the curl of D vanishes 
and you can use the usual Gauss’s law methods to solve it: in other situations it is more complicated. 
 
Boundary conditions 
Previously we looked at how the electric field changes at a surface where there is a charge per unit area: 

     
   
Recall that the first result came from using Gauss’s law and the second came from the vanishing of curl of E. It 
follows that the generalization of the boundary conditions in the case of D is  

   

   
 

Linear dielectrics 
For many materials, if the field is not too strong, the polarization is proportional to the electric field; these are 
called linear dielectrics. If P and E are in the same direction (parallel vectors), we can write 

   
where the proportionality factor χe is called the electric susceptibility of the medium; it is dimensionless. 
Here E is the total electric field; it includes parts coming from the free charge and from the bound charge 
induced in the dielectric.  
 

We can now find some relationships involving D: 

   
This is often written as 
      where ε is the permittivity of the material. 
The relationship between parameters is  

     
 Sometimes it is useful to write  so that εr is dimensionless. 

Then we have  
    
and εr is called the relative permittivity (or the dielectric constant). 
 

                 
 
Fields in linear dielectrics 
Inside a linear dielectric, the curl of P (and also of D) must vanish, since P is proportional to E. This argument 
does not hold at the boundary of a linear dielectric, and the curl of P may be nonzero there. 
 

Nevertheless, there are cases where we can take advantage of the lack of curl of P inside the linear dielectric: if 
the dielectric is much larger than the region we’re interested in, or completely fills the space we’re considering, 
we can use all the simplifications (because the surface becomes unimportant). 
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Vacuum 0 8.85x10-12 1 

Air 5.4x10-4 8.85x10-12 1.00054 

Salt 4.9 5.22x10-11 5.9 

Ice 98 8.67x10-10 99 

Some common linear dielectrics, 
compared to vacuum: 
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In the case that our space is entirely filled with a homogenous linear dielectric, we have: 
!"D = ! f       and      !"D = 0      

 

These are exactly the equations for electric field in a vacuum, except for a factor of ε0. It means that D can be 
found from the free charges, just as though the dielectric were not there. So, if we define Evac as the electric 
field that the same free charges would produce in the absence of any dielectric, then: 

     and 

   
For example, a point charge embedded in a large dielectric has a field: 

   
This modification to Coulomb’s law means that the field is reduced compared to the vacuum case; the point 
charge is now “shielded” by induced charges in the polarized dielectric.  
 
Most gases, liquids and amorphous solids (e.g., glasses) are approximately isotropic in their properties; so P is 
in the same direction as E and they have a single scalar constant susceptibility.  
Crystalline solids, on the other hand, may polarize more easily in one direction (usually a crystal axis of 
symmetry) than another. In that case, the polarization is given by: 
    P = !0"eE         
where χe is now a susceptibility tensor (or 3×3 matrix) for the crystal, by analogy with the polarizability tensor 
for an asymmetric molecule, discussed earlier. 
 
Boundary conditions with linear dielectrics 
The bound charge density inside a linear dielectric is easily found: 

    
i.e., it is just proportional to the free charge. 
 

In particular, the bound (or induced) charge density vanishes if the local free charge density is zero (no 
embedded charges in the dielectric). Then the only charge is on the surface of the dielectric (sort of like in the 
case of a conductor). 
We could go ahead by using Laplace’s equation to solve for the potential inside the dielectric  –  but first we 
would need the new boundary conditions to be able to solve Laplace’s equation. 
 

For the electric field, assuming there are now free charges σf  at the surface, we have: 

    (Note the permeability factors).  
In terms of the potential we have 
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And, as before, the potential must be continuous across the boundary: 
   Vabove =Vbelow   
 
Energy in linear dielectrics 
First we need to know how the capacitance changes when the capacitor is filled with a linear dielectric instead 
of vacuum. It is easy to see that the new capacitance is 

    
(We use the definition C = Q/V and the fact that E, and hence V, are scaled by a factor of 1/εr). 
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Since the energy of a capacitor (for any given voltage V) is W = 1
2CV

2  it follows that W also is also increased 
by a factor of εr 
In terms of the electric field the energy becomes 

  
 
Forces on dielectrics 
We now show that dielectrics are attracted into regions of high electric fields; but it can be complicated to 
calculate the force on a dielectric.  
 

 
(Note: by considering the slab part way out, we are avoiding any difficulties with the fringing fields near the 
edges). 
 

To find the force F we consider the work done dW when x is increased infinitesimally to x + dx. We will assume 
that the total charge on each plate stays constant at Q and −Q. 
For the energy stored in the capacitor, we can write  

   
So, for the infinitesimal change: 

   
In terms of the voltage V = Q/C, this becomes: 

   
We need an expression for C. The basic result for a simple parallel plate capacitor is that the capacitance is 
εA/d, where A is the area of the plates.  
In our example, area A varies as a function of x : we have one capacitor with area wx filled with vacuum and 
another with area w(l − x) filled with dielectric, where w is the other dimension of the plate, so 

   
This gives 

   
So the force is related to the susceptibility of the dielectric by 
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We can take a shortcut by considering a 
simple example, i.e., slab of dielectric 
partially inside a parallel plate capacitor. 
	  


