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SECTION 3 
Special Techniques 

 
This section (based on Chapter 3 of Griffiths) extends the concepts of the previous section by covering some 
special techniques that are useful in electrostatics. The topics are: 

• Laplace’s equation 
• The method of images 
• Separation of variables 
• Multipole expansion 

 
Laplace’s Equation  

In Section 2, we used Coulomb’s Law as a way to find the electric field from a given charge distribution: 

          
Although we can use this in simple situations, the integral rapidly becomes intractable for many situations. The 
potential integral is usually easier to solve, being a scalar function  − but this can still be a difficult integral to 
solve.  

     
Sometimes, it is easier to look at the differential form of the potential equation (Poisson’s equation): 

           
If we have information about the boundaries (i.e., we are given boundary conditions for V), we can solve this 
differential equation. 
 

A simpler situation occurs if we only want to find the potential in a region where there are no charges (naturally 
there must be charge somewhere, otherwise the problem would be trivial; there is just an absence of charge in 
the region we are interested in).  
In this case, the potential is given by Laplace’s equation:      ∇2V   =   0       
In Cartesian coordinates it is:      

      
(and other coordinate systems will be considered later). 
 
Laplace’s equation in one dimension 

We start with a very simple case (not corresponding to any useful real situation):	
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2V
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We can deduce some basic facts from the one-dimensional solution which will carry over to higher dimensions 
as well: 
 

1. The value V(x) at any x is just the average of V(x+a) and  V(x−a), for any interval a. The function never does 
anything exciting between two points. 
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V Integrating twice gives 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
where m and b are constants of integration. 
If we are given some boundary conditions, like V(0) = 1 and V(4) = 3, we 
can find m and b. 
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2.  Because of this, there are no local maxima or minima in the solutions to Laplace’s equation. There can only 
be maxima or minima on the boundary. 
 
Laplace’s equation in two dimensions 
A more realistic case is when two dimensions have variations. Laplace’s equation is: 

     
Since this is a partial differential equation rather than an ordinary differential equation, there is no completely 
general solution, like in one dimension (1D).  
 

Still, we can state some general properties of the solution by analogy with the 1D case:  
 

1.  The value of V at any point (x, y) is the average of all the points around the chosen point. For example, if we 
take a circle of radius R around the point, the average value on the circle is equal to the value at the centre. 

         
2.  The function V has no local maxima or minima: all of the extrema occur on the boundaries.  
 
Laplace’s equation in three dimensions 

     
For the general 3D case, we again do not have an explicit solution of the partial differential equation.  
It can be shown that we still have the same general properties for the solutions as in 1D and 2D: 
 

1. The value of V at a given point is the average of the values around that point: 

     
2. Again, V cannot have local maxima or minima: these can only occur on the boundaries. 
 
Boundary conditions and uniqueness 
In solving Laplace’s equation for V, the question arises: If we find a solution that satisfies the equation and 
its boundary conditions, is that solution unique? 
 

In 1D it’s easy to see the boundary conditions that will give us a unique solution: 
• The values of V at each end of the line, or alternatively 
• One value of V and its derivative.  

Note that giving the derivative at 2 points would be redundant (because the gradient is the same everywhere) 
and does not give information to determine a unique solution. 
 

In 2D or 3D it is not so obvious what the conditions are for uniqueness (or if there are any at all)  –  in fact, 
there are two useful results telling us about uniqueness of the solutions. 
 
First Uniqueness Theorem 
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Suppose we want to solve for the potential V inside some arbitrary 
volume, given a boundary condition that specifies V(x,y,z) on the 
surface of this volume.  
The	
  first	
  uniqueness	
  theorem	
  states	
  that	
  the	
  solution	
  inside	
  the	
  
volume	
  must	
  be	
  unique.	
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Proof:  Assume that for a given set of boundary conditions, there are two correct solutions: 
   !2V1 = 0   and  !2V2 = 0  
If we can prove that V1 must be equal to V2, then we will have a contradiction, meaning that there is only one 
possible solution. 
We define the difference between the 2 functions by   V3 =V1 !V2   
It follows that V3 must also obey Laplace’s equation, since !2V3 =!

2V1 "!
2V2 = 0 . In addition, V3 must be 

zero on the boundary, since the two solutions agree there.  
 

We had the result that solutions to Laplace’s equation have no local maxima or minima, so both the maximum 
and absolute minimum of V3 must be zero. This means that V3 is identically zero, so we have proved the result. 
 

We can extend the proof to show that the uniqueness theorem still applies to regions with some charge density: 

  !2V1 = "
!
"0

     and     !2V2 = "
!
"0

      and       V3 =V1 !V2    

Obviously, V3 still satisfies Laplace’s equation because       !2V3 = !2V1 "!
2V2 = "

!
"0
+
!
"0

= 0  

Again, the two solutions must be the same on the boundary, so the difference V3 must be zero there and hence 
everywhere, and so V1 =V2  
 

Second Uniqueness Theorem 
 

  

 
 

This theorem states the electric field is uniquely determined (which means also that there’s only one way the 
charge can distribute itself over the conductors). 
 

Proof: As before, we assume there are two electric fields (E1 and E2) that satisfy the problem. For each, in the 
volume between the conductors, we use Gauss’s Law: 

    
Over a surface Si enclosing each conductor i: 

    
Also, at the outer boundary B: 

    
Like we did in the last case, we look at the difference E3 = E1 !E2 and we quickly conclude that 

    !"E3 = 0    between conductors,           and                E!! 3
"da = 0     across all surfaces 

An additional piece of information is that the surface of each conductor is an equipotential, so V3 must be a 
constant over each conductor. 

  

Outer 
boundary ! (known) 
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Q3 

Inner boundary 

!"E1 =
1
!0
" and !"E2 =

1
!0
"

E1 !daSi!" =
1
!0
Qi and E2 !daSi!" =

1
!0
Qi

E1 !daB!" =
1
!0
Qtot and E2 !daB!" =

1
!0
Qtot

!" (V3E3) = V3(!"E3)+E3 " (!V3) = # (E3)
2

This applies to situations where we have a 
region of known charge density ρ interspersed 
by some conductors. Each conductor i can 
have a net charge Qi on it, but the distribution 
over the conductor is not known. 
 

The outer boundary can be either another 
conducting surface or just infinity. 
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where we used the product rule for differentiation and then the fact that the divergence of E3 is 0 and the 
gradient of potential is related to the electric field. 
  

Now , we can apply the divergence theorem to the left side (integrating over the volume between conductors): 

  
BUT  the surface integral on the left must vanish, because the potential is constant over each surface and so we 
can bring it outside the integral, and we know from a previous result that the integral of the electric field over 
any boundary is zero, so: 

    
Since the integrand here is never negative, the only way for it to vanish is that it is zero everywhere.   This 
means that E1 = E2 as required.  
 

The method of images 
 

Image method for infinite flat conductor 
 

 
The “direct” approaches are either to solve Poisson’s equation in the half-plane z > 0, with boundary condition 
V = 0 at z = 0 and V → 0 far from the charge or to solve first for induced charge distribution on the plate and 
then find V. 
 

A much easier approach is to use the image method (which employs symmetry). 
 

          
This is exactly the same physical system in the upper half plane (so Poisson’s equation is the same there, and 
also the plane z = 0 is an equipotential with V = 0.  
So the solution must be the same in the physical region.  
 

Now it’s easy to work out the distance from any point (x, y, z) to charge q at (0, 0, d) and image charge −q at  
(0, 0, −d). The potential due to the 2 charges is 

   
From this, we could work out the electric field from the gradient of V.    
 
Induced surface charge 
We might want to know how the induced charge is distributed on the conducting plate. An earlier expression for 
the surface charge was:   
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Suppose we consider a point charge q held a distance d above 
a flat, infinite, grounded conducting plate.  
 
We want to find the potential V(x,y,z) in the region z > 0 above 
the plate, which will include the potential of the positive 
charge and from any negative charges induced on the plate 
below the charge. 

In	
  this	
  approach	
  we	
  use	
  the	
  first	
  uniqueness	
  theorem,	
  which	
  tells	
  
us	
  that	
  if	
  we	
  find	
  another	
  potential	
  which	
  has	
  the	
  right	
  behaviour	
  
for	
  z	
  >	
  0	
  and	
  satisfies	
  the	
  same	
  boundary	
  conditions,	
  then	
  it’s	
  the	
  
correct	
  potential,	
  no	
  matter	
  how	
  we	
  found	
  it.	
  	
  
	
  

With	
  that	
  in	
  mind,	
  we	
  find	
  the	
  potential	
  for	
  a	
  different	
  charge	
  
configuration:	
  two	
  charges	
  placed	
  above	
  and	
  below	
  the	
  z	
  =	
  0	
  plane	
  
as	
  shown.	
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where in the last step we use the fact that the normal to the plate is the z direction. 
   

We can calculate the derivative: 

   
which leads to the following result for the surface charge: 

   
We can also find the total induced charge on the plate by integrating over the total surface. It’s slightly easier in 
polar coordinates: 

       Q = ! da!                        and          ! (r) =
!qd

2" (r2 + d 2 )3/2
      

Therefore       Q =
!qd

2! (r2 + d 2 )3/20

"

#0

2!
# r d" dr =

qd
(r2 + d 2 )1/2 0

"

= ! q  

So the total induced charge is –q (as expected). 
 
Force and energy in the image system 
The negative charge induced on the plane attracts the point charge. The potential at the position of q is the same 
as for the two-charge problem; so the field must also be the same and therefore the force must be the same. 

   
For the energy, however, we have to be more careful. The energy for the image system of two point charges is: 

   
However, for the real system of a single charge near a conducting plane, we need to multiply this energy by a 
factor of one half in order to get the correct result, which is: 

   
To see why this is so, we look at the energy stored in the fields. In each case this is given by 

  W =
!0
2

E 2! d"  

In the case with the conducting plate, the field only extends over the upper half-space (z >0), whereas for the 
image system it is symmetrically over all space. Hence the one-half factor. 
 

Separation of variables 
 

Separation of variables in Cartesian coordinates 
Suppose we have the potential V or the charge density specified over the boundaries of some region, and we 
want to solve for V in the interior. 
 

A method that sometimes works is to look for separable solutions of the form (taking Cartesian coordinates): 

    
i.e., the potential is written as the product of three functions, where each is a function of a single coordinate 
only. There are no guarantees that this works, but we can try it and see. 
 

In a region with no charge, the potential obeys Laplace’s equation: 
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V (x, y, z) = X(x)Y (y) Z(z)
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  !2[X(x)Y (y)Z(z)]
!x2

+
!2[X(x)Y (y)Z(z)]

!y2
+
!2[X(x)Y (y)Z(z)]

!z2
= 0   

Doing the partial differentiation, this becomes: 

  Y (y)Z(z) d
2X(x)
dx2

+ X(x)Z(z) d
2Y (y)
dy2

+ X(x)Y (y) d
2Z(z)
dz2

= 0    

Now divide through by V: 

  1
X(x)

d 2X(x)
dx2

+
1

Y (y)
d 2Y (y)
dy2

+
1
Z(z)

d 2Z(z)
dz2

= 0    

The only way that this can be possible is if each term on the left (one is a function of x only, one of y only, and 
one of z only) is a constant. We call them c1, c2, and c3, respectively, and they add up to zero (c1 + c2 + c3 = 0). 

Then we have:  d 2X
dx2

= c1X  and similarly for the other parts. 

Each part is now an ordinary differential equation and can be solved in the usual way. 
 
The solution of the above equation depends on whether c1 is positive or negative (which we usually know from 
the boundary conditions).     
If c1 is positive (and we denote c1 = α2, with α real), then the solutions have the form 

   
If c1 is negative (and we denote c1 = −β2, with β real), then the solutions have the form 
  	
    
 

Special case of two dimensions 
Sometimes only 2 of the 3 dimensions are involved, e.g., if only x and y variables are involved and there is no z 
dependence. Then 

   
and the separate equations for X(x) and Y(y) involve constants such that  c1 + c2  = 0, so one is positive and the 
other is negative.  
Taking the case where c1 = α2 > 0 and c2 < 0, we have solutions like 
 V (x, y) Ae!!x +Be!x"# $% C sin(!y)+Dcos(!y)[ ]  
 

The rest of the calculation involves applying the boundary conditions.  
 
Case of spherical coordinates 
If the system has spherical symmetry, it may be easier to use separation of variables in spherical coordinates: 

   
Laplace’s equation becomes 
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For applications that are important for this course, we will assume there is no ϕ dependence of V. The equation 
reduces to: 
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and we look for solutions of the form: V (r,!,") = R(r)!(! )    
Substituting this, simplifying, and dividing through by V gives: 

 1
R(r)

d
dr

r2 dR(r)
dr

!

"
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$
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1
'(! )sin!

d
d!

sin! d'(! )
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!

"
#

$

%
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Since the first term only depends on r and the second only on θ, both must be constants. 

X(x) = Ae!!x +Be!x

X(x) = C sin(!x)+Dcos(!x)

V (x, y) = X(x)Y (y)

V (r,!,") = R(r)!(! )"(")
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Next it can be proved (but not here) that the θ equation has unphysical divergences at θ = 0 and π, UNLESS c is 
an integer taking the form  
   
 

Now we solve the separate equations:  

First, there is the radial equation which becomes                d
dr

r2 dR
dr

!

"
#

$

%
& = ! (! +1)R      

To solve we might guess a power law like R = r n.  Substitution gives    n(n+1)rn = ! (! +1)rn  
which has 2 solutions as n = !  and n = !(! +1)  

The general radial solution is    R(r) = Ar! + B
r! +1

    

Next, the angular equation is more complicated:  1
!sin!

d
d!

sin! d!
d!

"

#
$

%

&
' = ( ! (! +1)        

The solutions to this equation are special functions known as Legendre polynomials. They are polynomials in 
powers of cosθ: 
   !(! ) = P! (cos! )   
There are general formulas to find these polynomials, but the first few are: 
 P0 (cos! ) =1  ,   P1(cos! ) = cos!  ,    P2 (cos! ) = (3cos

2! !1) / 2  ,    P3(cos! ) = (5cos
3! !3cos! ) / 2  . 

        

The basic solution for V is therefore 

    
In general, there might be several values of l (depending on the boundary conditions), so  

   
 
Case of cylindrical coordinates 
We now look for a solution with separation of variables like 

   
For simplicity, we will take the case where there is no z dependence. Laplace’s equation is: 

  1
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We substitute in V(s, ϕ) = S(s) Φ(ϕ) and rearrange to get: 

  s
S
d
ds

s dS
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!

"
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1
'
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Again, each term must be a constant. Consider first the angular term: it will either have sin and cos solutions (if 
its constant is negative) or it will have real exponential solutions (if its constant is positive).  
Only the first case is physically possible because the solution must repeat (be periodic) for intervals of 2π for 
the angle ϕ.  
 

We therefore take the constant to be negative: 

  d 2!
d! 2

= " k2!    
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  !(!) = Asink! +Bcosk!   where k is an integer = 0, 1, 2, 3, …   
The radial equation is now: 

  s d
ds

s dS
ds

!

"
#

$

%
& = k2S    

We can try to solve by guessing; take as a trial solution:   S  =  s n          where n is unknown 
Substituting it into the differential equation gives: 
  n2sn!1 = k2sn!1    
Therefore n is k or −k, and the solution is of the form 
  S(s) = Csk +Ds!k    
The only exception is when k = 0, which is a special case. 
 

When k = 0 the differential equation is: 

  s d
ds

s dS
ds

!

"
#

$

%
&= 0    which gives  dS

ds
=
C
s

  
 

So  S = C ln s+D   

We can also check on the angular part when k = 0:        d
2!
d! 2

= 0   

Although this has the solution  Φ = B ϕ + A we are forced to put B = 0, leaving only a constant (remember that 
Φ must be periodic).           
 

The general solution becomes: 

 V (s,!) = a0 + b0 ln s+ [sk (ak cosk! + bk sink!)+ s
!k (ck cosk! + dk sink!)]

k=1

"

#  

  

Multipole expansion 
Electric dipoles 
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  and	
  we	
  assume	
  large	
  distances	
  r	
  >>	
  d. 

Then, using the Binomial expansion 
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and the approximate result for the potential becomes  
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V (r) =
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If	
  we	
  are	
  very	
  far	
  away	
  from	
  a	
  charge	
  distribution,	
  eventually	
  the	
  field	
  can	
  be	
  
approximated	
  as	
  if	
  it	
  is	
  due	
  to	
  a	
  point	
  charge	
  Q,	
  where	
  Q	
  is	
  the	
  total	
  charge	
  in	
  
the	
  distribution.	
  
	
  

But	
  what	
  if	
  the	
  net	
  Q	
  =	
  0?	
  	
  We	
  start	
  by	
  considering	
  a	
  dipole	
  of	
  2	
  charges	
  q	
  and	
  
−q	
  at	
  a	
  distance	
  d	
  apart.	
  
	
  

The	
  potential	
  at	
  P	
  is:	
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Note that the potential of a dipole falls of as 1/r2, instead of 1/r as in the case of a point charge.  
 
Series of multipoles 
Monopole             Dipole                    Quadrupole                   Octopole 

                  and so on. 

                                 
  
General multipole expansion 
Suppose we have a general charge distribution ρ and we want to calculate the potential V at a distant point P: 

 
 

  
 

After a lot of math (doing substitutions and using the Binomial expansion) without making any approximations, 
it can eventually be proved that 

  1
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!r
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#
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(

)
n

Pn (cos !! )   

where we have the same Legendre polynomials as before. Now we can express V at a given position as: 

    

  
   monopole         dipole   quadrupole 
   potential       potential     potential 
 

The first term dominates at large distances if the total charge Q is nonzero: 

       Vmon (r) =
1
4!"0

Q
r

  where   Q = !( !r )d !!"   

If the total charge is 0, the next term (dipole term) dominates: 

   
We can reorganize this expression using:      

   
Finally, we can rewrite the result by defining the dipole moment as:     p = !r !( !r )d !!"         which gives us: 
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where 
 

Therefore  

 

or	
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For n point charges the general definition of p becomes 

     
In the special case of two opposite charges  (like before) separated by distance d: 
   
Notes: 

• Vdip is a good approximation far away from a physical dipole (or when d tends to 0); but closer to the 
dipole there are higher order correction terms. 

•  Dipole moments add as vectors, so the total dipole moment of a quadrupole is 0. 
•  The dipole moment, as well as all higher moments, typically depends on the choice of origin of the 

coordinate system (except in the special case of 2 charges as above). 
 
Electric field of a dipole 
We can use the results for the potential to work out the electric field. We take a dipole, located at the origin and 
pointing in the z direction. 

   
We now take the gradient of V to get the electric field (choosing to use spherical polar coordinates): 

                                    
The total electric field can be written as 

   
Note that the field components go like 1/r3.  The above results could also be worked out directly for a dipole of 
2 charges q and −q. 
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