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The origins of interstellar material and the details
of its transport throughout the Galaxy are
unknown but have wide-ranging implications. This
material could seed the formation of planets in
newly forming planetary systems while also
dispersing chemical elements, organic molecules,
or even life between star systems. This work
models stellar systems ejecting macroscopic
material within a simulated Milky Way. We
analyze the motion of the ejecta as the material
evolves into galactic “meteoroid streams” and
then disperses, for hypothetical disk, bulge, and
halo sources.

Provide a qualitative discussion of the
behaviour of galactic meteoroid streams
developing from a disk, bulge, and halo star
Establish the time it takes for the stream to
extend over a scale comparable to the Galaxy
(the “development time”)

Compute the stream lifetime (the “dispersal
time"), that is, how long a stream maintains
its coherence before dispersing into the
background “sporadic” population

The development and dispersal times may not
have unambiguous definitions, we seek here
primarily order of magnitude estimates:
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Table 1. The Origin Systems Used in The Simulations.
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BS's orbit about the Galactic Centre projected on the xy, and yz

planes.

BS ejects 50,000 particles and is advanced 1 Gyr with a time step

of 1000 yr. Quickly after the stream reaches development, it

diverges and begins to envelop the majority of it’s orbital space in
an increasingly incoherent way. The ejected material quickly
become a part of the background population of interstellar objects

in the bulge.

HS's orbit about the Galactic Centre projected on the xy, and yz

planes.

HS ejects 50,000 particles and is advanced 5 Gyr with a time step
of 4000 yr. We see development and dispersal times of the same
order of magnitude, meaning that coherent streams are not likely in
the halo, at least not at these ejection speeds. Material ejected

from halo stars quickly becomes a part of the background
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Conclusions

This work examines the basic evolution of
galactic meteoroid streams originating from disk,
bulge and halo stars. Time scales needed for the
development of Galaxy-spanning meteoroid
streams, as well as for their dispersal, are
determined. For disk stars, their cloud of ejected
particles develops in a manner analogous to
what is seen for cometary-produced meteoroid
streams in the Solar System.

Implications

For near-circular orbits in the disk, coherent
meteoroid streams can be long lived.
Mismatched galactic frequencies, kK and v, result
in a variety of different radial and vertical
oscillatory periods and create a banded structure
within the stream. Material ejected in the distant
past can return to the vicinity of its origin system
and could in principle even be observed as an
"interstellar” visitor.

Bulge and halo star systems primarily contribute
to the "sporadic” population of interstellar
objects.

Though the flux of interstellar material into our
Solar System may be low, it is not zero. And as
global observational capabilities grow, the
number of known interstellar objects will only
increase, particularly with new large-scale
surveys like the Vera C. Rubin Observatory
coming online. This work is only a very early step
in understanding what will undoubtedly become
a rich field of exploration in the near-future.
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