

## The Acceleration of Gravity (g)

- Galileo showed that $g$ is the same for all falling objects, regardless of their mass.


Apollo 15 demonstration

### 4.1 Describing Motion

- Our goals for learning:
- How do we describe motion?
- How is mass different from weight?

The Acceleration of Gravity

- All falling objects accelerate at the same rate (not counting friction of air resistance).
- On Earth, $g \approx 10$ $\mathrm{m} / \mathrm{s}^{2}$ : speed increases $10 \mathrm{~m} / \mathrm{s}$ with each second of falling.



## Momentum and Force

- Momentum $=$ mass $\times$ velocity
- A net force changes momentum, which generally means an acceleration (change in velocity)
- Rotational momentum of a spinning or orbiting object is known as angular momentum

How is mass different from weight?

- Mass - the amount of matter in an object
- Weight - the force that acts upon an object



## What have we learned?

- How do we describe motion?
- Speed = distance $/$ time
- Speed \& direction => velocity
- Change in velocity $\Rightarrow>$ acceleration
- Momentum = mass $x$ velocity
- Force causes change in momentum, producing acceleration


### 4.2 Newton's Laws of Motion

Our goals for learning:

- How did Newton change our view of the universe?
- What are Newton's three laws of motion?



## What have we learned?

- How is mass different from weight?
- Mass $=$ quantity of matter
- Weight $=$ force acting on mass
- Objects are weightless in free-fall




## Newton's third law of motion:

For every force, there is always an equal and opposite reaction force.


## What have we learned?

- How did Newton change our view of the universe?
- He discovered laws of motion \& gravitation
- He realized these same laws of physics were identical in the universe and on Earth
- What are Newton's Three Laws of Motion?
-1 . Object moves at constant velocity if no net force is acting.
-2. Force $=$ mass $\times$ acceleration
- 3. For every force there is an equal and opposite reaction force


### 4.3 Conservation Laws in Astronomy:

Our goals for learning:

- Why do objects move at constant velocity if no force acts on them?
- What keeps a planet rotating and orbiting the Sun?
- Where do objects get their energy?

Conservation of Momentum


- The total momentum of interacting objects cannot change unless an external force is acting on them
- Interacting objects exchange momentum through equal and opposite forces

What keeps a planet rotating and orbiting the Sun?


## Conservation of Angular Momentum

angular momentum $=$ mass X velocity X radius

- The angular momentum of an object cannot change unless an external twisting force (torque) is acting on it
- Earth experiences no twisting force as it orbits the Sun, so its rotation and orbit will continue indefinitely

Angular momentum conservation also explains why objects rotate faster as they shrink in radius:


## Thermal Energy:

the collective kinetic energy of many particles (for example, in a rock, in air, in water)

Thermal energy is related to temperature but it is NOT the same.
Temperature is the average kinetic energy of the many particles in a substance.



## Gravitational Potential Energy

- On Earth, depends on:
- object's mass (m)
- strength of gravity $(g)$
- distance object could potentially fall

Thermal energy is a measure of the total kinetic energy of all the particles in a substance. It therefore depends both on temperature AND density
Example:


## Gravitational Potential Energy

- In space, an object or gas cloud has more gravitational energy when it is spread out than when it contracts.
$\Rightarrow$ A contracting cloud converts gravitational potential energy to thermal energy.



## Conservation of Energy

- Energy can be neither created nor destroyed.
- It can change form or be exchanged between objects.
- The total energy content of the Universe was determined in the Big Bang and remains the same today.


## What have we learned?

- Why do objects move at constant velocity if no force acts on them?
- Conservation of momentum
- What keeps a planet rotating and orbiting the Sun?
- Conservation of angular momentum
- Where do objects get their energy?
- Conservation of energy: energy cannot be created or destroyed but only transformed from one type to another.
- Energy comes in three basic types: kinetic, potential, radiative.


## What determines the strength of gravity?

## The Universal Law of Gravitation:

1. Every mass attracts every other mass.
2. Attraction is directly proportional to the product of their masses.
3. Attraction is inversely proportional to the square of the distance between their centers.


### 4.4 The Universal Law of Gravitation

Our goals for learning:

- What determines the strength of gravity?
- How does Newton's law of gravity extend Kepler's laws?


## How does Newton's law of gravity extend Kepler's laws?

- Kepler's first two laws apply to all orbiting objects, not just planets
- Ellipses are not the only orbital paths. Orbits can be:
- Bound (ellipses)
- Unbound
- Parabola
- Hyperbola



## Newton and Kepler's Third Law

His laws of gravity and motion showed that the relationship between the orbital period and average orbital distance of a system tells us the total mass of the system.

Examples:

- Earth's orbital period (1 year) and average distance (1 AU) tell us the Sun's mass.
- Orbital period and distance of a satellite from Earth tell us Earth's mass.
- Orbital period and distance of a moon of Jupiter tell us Jupiter's mass.


## Newton's Version of Kepler's Third Law

$$
p^{2}=\frac{4 \pi^{2}}{G\left(M_{1}+M_{2}\right)} a^{3} \quad \text { OR } \quad M_{1}+M_{2}=\frac{4 \pi^{2} a^{3}}{G} \frac{p^{2}}{p^{2}}
$$

$p=$ orbital period
$a=$ average orbital distance (between centers)
$\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)=$ sum of object masses

## What have we learned?

- What determines the strength of gravity?
- Directly proportional to the product of the masses ( $\mathrm{M} \times \mathrm{m}$ )
- Inversely proportional to the square of the separation
- How does Newton's law of gravity allow us to extend Kepler's laws?
- Applies to other objects, not just planets.
- Includes unbound orbit shapes: parabola, hyperbola
- Can be used to measure mass of orbiting systems.

How do gravity and energy together allow us to understand orbits?

### 4.5 Orbits, Tides, and the Acceleration of Gravity

Our goals for learning:

- How do gravity and energy together allow us to understand orbits?
- How does gravity cause tides?
- Why do all objects fall at the same rate?


More gravitational energy;
Less kinetic energy


Less gravitational energy More kinetic energy

- Total orbital energy (gravitational + kinetic) stays constant if there is no external force
- Orbits cannot change spontaneously.



How does gravity cause tides?


- Moon's gravity pulls harder on near side of Earth than on far side
- Difference in Moon's gravitational pull stretches Earth


Tides and Phases


Why do all objects fall at the same rate?

$$
\begin{gathered}
a_{\text {rock }}=\frac{F_{\mathrm{g}}}{M_{\text {rock }}} \quad F_{\mathrm{g}}=G \frac{M_{\text {Earth }} M_{\text {rock }}}{R_{\text {Earth }}^{2}} \\
a_{\text {rock }}=G \frac{M_{\text {Earth }} M_{\text {rock }}}{R_{\text {Earth }}^{2} M_{\text {rock }}}=G \frac{M_{\text {Earth }}}{R_{\text {Earth }}^{2}}
\end{gathered}
$$

- The gravitational acceleration of an object like a rock does not depend on its mass because $M_{\text {rock }}$ in the equation for acceleration cancels $M_{\text {rock }}$ in the equation for gravitational force
- This "coincidence" was not understood until Einstein's general theory of relativity.


## What have we learned?

- How do gravity and energy together allow us to understand orbits?
- Change in total energy is needed to change orbit
- Add enough energy (escape velocity) and object leaves
- How does gravity cause tides?
- Moon's gravity stretches Earth and its oceans.
- Why do all objects fall at the same rate?
- Mass of object in Newton's second law exactly cancels mass in law of gravitation.

