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Abstract: This thesis is a multilateral and multiscale study of the structure of molecular clouds
and the importance of magnetic fields in shaping them. First, we concentrate in the translucent
parts of molecular clouds where elongated, quasi-periodic, magnetic-field aligned structures, termed
“striations”, have been recently discovered. We perform a series of numerical experiments and we find
that striations are formed due to compressible fast magnetosonic waves. Using the properties of these
magnetohydrodynamic waves revealed by the presence of striations in an isolated molecular cloud we
reconstruct its 3D shape through a normal-mode analysis.

Turning our attention to the smallest, densest parts of molecular clouds we study the relation
between the magnetic field and gas density in contracting prestellar cores. We find that previous
studies severely underestimated the observational uncertainties in gas density. By properly accounting
for these uncertainties and performing an independent analysis of the projected shapes of cores, we show
that the data are in agreement with the predictions of the ambipolar diffusion theory of star formation.
Driven by the need for accurate density estimates we have also performed numerical simulations of
collapsing prestellar cores coupled with non-equilibrium chemical modelling and we have developed a
method for probing the 3-dimensional shapes of cores using two-dimensional molecular column density
maps. Finally, in order to directly compare our numerical models to observations we have developed
a state-of-the-art, non local thermodynamic equilibrium (non-LTE) line radiative transfer code.
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Περίληψη: Η παρούσα διατριβή είναι μία πολύπλευρη και σε πολλές διαφορετικές χωρικές κλίμακες,

μελέτη των δομών των μοριακών νεφών και της σημασίας του μαγνητικού πεδίου στο σχηματισμό τους.

Αρχικά μελετούμε τη δημιουργία νεοανακαλυφθέντων, νηματοειδών, ημιπεριοδικών δομών, ονόματι “stria-
tions”, οι οποίες απατούνται στις περιοχές των μοριακών νεφών με χαμηλή πυκνότητα και είναι παράλληλες
με το μαγνητικό πεδίο. Μέσω δισδιάστατων και τρισδιάστατων προσομοιώσεων μαγνητοϋδροδυναμικής,

εξετάσαμε όλα τα πιθανά ενδεχόμενα για τη δημιουργία των “striations” και βρήκαμε ότι η μόνη δόκιμη
εξήγηση για το σχηματισμό τους, προκύπτει μέσω της διέγερσης γρήγορων μαγνητοακουστικών κυμάτων.

Στη συνέχεια, αξιοποιώντας το αποτελεσμά μας και δια μέσου της πρώτης στα χρονικά ανακάλυψης μας μιας

περιοχής συντονισμού κυμάτων και των αρμονικών της συχνοτήτων σε ένα μοριακό σύννεφο, αναπαράγουμε

την τρισδιάστατη δομή του.

Κατόπιν, στρέφουμε την προσοχή μας στην δυναμική εξέλιξη των πιο πυκνών σημείων των μορια-

κών νεφών και τη σχέση ανάμεσα στο μαγνητικό πεδίο και στην πυκνότητα του αερίου σε καταρρέοντες

προαστρικούς πυρήνες. Βρίσκουμε ότι οι παρατηρησιακές αβεβαιότητες στην πυκνότητα του αερίου είχαν

υποτίμηθεί σε προηγούμενες μελέτες. Λαμβάνουμε υπόψη τις αβεβαιότητες σε αυτές τις μετρήσεις και

αναλύοντας ανεξάρτητα τις δισδιάστατες προβολές των προαστρικών πυρήνων, βρίσκουμε ότι τα τα δεδο-

μένα συμφωνούν με τις προβλέψεις της θεωρίας της αμφιπολικής διάχυσης. Με αφορμή την ανάγκη για

ακριβείς εκτιμήσεις της πυκνότητας, προσομοιώνουμε επίσης την κατάρρευσης προαστρικών πυρήνων σε

συνδυασμό με μοντελοποίηση της χημείας που τους συνοδεύει και αναπτύσουμε μία μέθοδο ανέυρεσης

των τρισδιάστατων σχημάτων τους, χρησιμοποιώντας χάρτες πυκνότητας στήλης συγκεκριμένων μορίων.

Τέλος, για να μπορούμε να συγκρίνουμε άμεσα τα αριθμητικά μας μοντέλα με τις παρατηρήσεις, αναπτύσ-

σουμε έναν σύγχρονο κώδικα μεταφοράς διάδοσης της ακτινοβολίας μοριακών και ατομικών γραμμών σε

συνθήκες μη-τοπικής θερμοδυναμικής ισορροπίας.
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Chapter 1

Introduction

Stars, the building blocks of the cosmos, and planets, the hosts of life, are born inside molecular clouds.
How stars are formed is an important question not only for the interstellar medium community but also
for galaxy evolution astrophysics and cosmology. However, due to the complicated nature of molecular
clouds conclusive answers to this question remain elusive.

The temperature of molecular clouds is T ∼ 10 K (see Juvela et al. 2012 for a recent survey).
They mainly consist of molecular hydrogen H2 which however we cannot observed since electronic,
vibrational and rotational excitations all require temperatures ≥ 100 K. Thus, in order to observe
molecular clouds, we either rely on other molecules, such as CO, which have rotational transitions
with lower excitation temperatures, or on thermal radiation from dust particles. The translucent parts
of molecular clouds have number densities nH2 ∼ 100 cm−3 and exhibit supersonic linewidths whereas
dense prestellar cores have densities nH2 ∼ 106 − 107 cm−3 and the gas appears to have subsonic
velocities (Goodman et al. 1998).

The Herschel Space Observatory has provided dust emission maps of unprecedented detail of all
nearby star forming regions. These maps have highlighted anew the fact that morphologically, molec-
ular clouds consist of filamentary structures which often lie parallel to each other (Myers 2009; for a
review see André et al. 2010). Usually, the term filament is reserved for dense (nH2 = 104− 106 cm−3)
elongated (aspect ratios = 1:3 - 1:10) structures although it is more loosely used throughout the litera-
ture. The common assumption about these structures is that they can be approximated by isothermal
cylinders. Statistical studies have shown that prestellar cores lie within filaments (Men’shchikov et al.
2010; Konyves et al. 2015). Thus, filaments have attracted a lot of attention during the last decade.

Molecular clouds are highly non-linear systems with many physical processes (gravity, magnetic
fields, thermal pressure, turbulence, interstellar radiation field) involved, none of which is negligible.
During the early stages of star formation, the energy density associated with the related forces is
approximately in equipartition (Draine 2011). Projection effects on the plane-of-the-sky complicate
the picture. Overall, the complications that enter into the study of molecular clouds have led to a large
number of questions being unanswered the most important of which are summarized bellow:

• why is the star formation efficiency so low?

• how do molecular clouds lose angular momentum?

• what is the origin of the initial mass function?

The low star formation efficiency : the total mass of molecular clouds in the Milky Way is estimated
to be ∼ 109M� (McKee & Williams 1997, Bronfman et al. 2000). If gravity and thermal motions
were the only relevant forces, stars would form in the free-fall time of molecular clouds and the star
formation rate would be of the order 200 M�yr−1. However, the most recent observational estimates
place its value at only ∼1.3 M�yr−1 (Murray & Rahman 2010). These values results in a star formation
efficiency of the order of ∼ 1% (Mooney & Solomon 1988; Gao & Solomon 2004; Krumholz & Tan
2007). Thus, additional forces that oppose gravity and support the clouds from collapsing have to be
present.
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The angular momentum problem: it was also recognized early on (Spitzer 1968) that a mechanism
that reduces the angular momentum of clouds by several orders of magnitude has to be in operation.
From the theoretical perspective it can be shown that the centrifugal forces would shred a molecular
cloud apart if the angular momentum was conserved from the initial galactic rotation (Mouschovias
1991). Observationally, the rotation of molecular clouds and that of dense cores within them is almost
never measured to be greater than that of the background medium (Goldsmith & Arquilla 1985).
Furthermore, the angular momentum is observed to be inversely proportional to the size of the cloud
in the different phases of star formation. The angular momentum per mass of the Sun and that of
protostellar disks is reduced by 7 and 5 order of magnitude respectively compared to the angular
momentum of dense cores (Goodman et al. 1993; Chen et al. 2007; Pinto et al. 2011).

The initial mass function: observations have shown that the initial distribution of masses of young
stars, known as the initial stellar mass function (IMF), can be approximated by a power law as
dN/dm ∝ mα where N is the number of stars and m is the mass (for a review on different methods
of the determination of the IMF see Krumholz 2014). The IMF has a peak at masses of ∼ 0.5 · M�
and the value of the exponent from the turnover up to the high-mass end is approximately constant
and equal to α = 2.3 (Salpeter 1955). What determines the slope of the IMF, why is there a peak and
what is its relation with its progenitor, the distribution of masses of prestellar cores (i.e. the initial
core mass function) are still hotly debated subjects.

Like in many other phenomena in astrophysics, progress in the field of star formation has been
achieved following the reasoning bellow:

“one observed certain phenomena, and one investigated what part of the phenomena could
be explained; then the unexplained part was taken to show the effects of the magnetic
field. It is clear in this case that, the larger one’s ignorance, the stronger the magnetic
field.” (Woltjer 1967)

1.1 Magnetic fields in molecular clouds

Zeeman observations towards molecular clouds have shown that magnetic fields have values ranging
from a few µG to mG (see Crutcher et al. 2010 for a summary of Zeeman measurements). Furthermore,
ultraviolet radiation and cosmic rays penetrating the clouds ionize the translucent and dense gas with
typical ionization fractions values of the order of 10−4 and 10−7 respectively (Caselli et al. 1998;
Goicoechea et al. 2009). The neutral, bulk molecular gas then indirectly experiences the Lorentz force
through collisions with the ions. Recent observational studies have also shown that the turbulent to
order component of the magnetic field is less than unity (Planck Collaboration et al. 2016a; Panopoulou
et al. 2016). These results indicate that the magnetic field is dynamical important compared to
supersonic motions (i.e. turbulence).

Magnetic fields provide a solution to the problem of low star formation efficiency. Magnetic pressure
and tension forces can provide support against the cloud’s self-gravity. The fate of the cloud is then
determined by the mass-to-magnetic flux ratio which quantifies the importance of magnetic fields
compared to gravity (Mouschovias & Spitzer 1976). If the mass-to-flux ratio of a cloud is above a
critical value (i.e. supercritical), gravity dominates, overcomes the support provided by the magnetic
field and the cloud collapses. Vice versa, if the value of the mass-to-flux ratio is bellow this critical
value (i.e. subcritical) the cloud is supported against its self-gravity.

However, there are two shortcomings with this simplified picture. The first problem is how are
fragments and cores with supercritical mass-to-flux ratios formed when the parent cloud is subcritical.
The second is that the magnetic flux of a prestellar core exceeds that of young stars by several order
of magnitude (Babcock & Cowling 1953). For example, if magnetic field lines are frozen-in the gas
(i.e. ideal MHD), a prestellar core with radius 0.1 parsecs threaded by a magnetic field of 5 µG should
result in a young star with a magnetic field of the order of 108G. This value is 4 orders of magnitude
greater than the largest magnetic field value ever detected in a star (Wade et al. 2012).

Both these problems are solved by the ambipolar-diffusion theory of star formation: low ionization
fractions inside molecular clouds lead to infrequent collisions and imperfect coupling between the ions
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and the neutrals, i.e. the two species are advected with different velocities. Neutral species “slip
past” magnetic field lines and fall towards the centre of gravity faster than the magnetic flux which is
advected with the velocity of the charged species (Ciolek & Mouschovias 1993; Tassis & Mouschovias
2007). This leads to redistribution of magnetic flux and an initially subcritical cloud can become
supercritical while its envelope remains supported.

Molecular clouds are surrounded by atomic gas (Wannier et al.1983; van der Werf & Goss 1989;
Andersson & Wannier 1993; Boulanger et al. 1998) with the two media being linked by magnetic field
lines. Since the two media are connected, rotation of a molecular cloud will result in the external
medium also being set into motion through the propagation of torsional Alfvén waves (Mouschovias &
Paleologou 1979; Mouschovias & Paleologou 1980). This mechanism, referred to as “magnetic braking”,
has been shown analytically to efficiently transport angular momentum from the molecular to the HI
cloud in short timescales of much less than 1 Myr. Numerical calculations by Basu & Mouschovias
(1994) and Mellon & Li (2008) have also confirmed that magnetic braking reduces centrifugal forces
early on in a cloud’s life.

A number of observational evidence suggest that the initial stellar mass function and the core mass
function share similarities both in the shape of the distribution and the value of the exponent at the
high mass end (Motte et al. 1998; Testi & Sargent 1998; Johnstone et al. 2000; Alves et al. 2007;
Nutter & Ward-Thompson 2007; Sadavoy et al. 2010). Thus, the IMF should be a natural consequence
of any successful star formation theory. Mouschovias (1991) introduced three natural length scales in
molecular clouds:

• the Alfvén length scale: the length scale bellow which ambipolar diffusion prevents Alfvén waves
from being transmitted to the neutrals

• the critical thermal length scale: the length scale above which thermal-pressure forces are not
transmitted fast enough to prevent gravitational collapse

• the critical magnetic length scale: the length scale above which gravitational forces dominate
over magnetic forces and the cloud collapses (in absence of any other forces)

These length scales have as a result the formation of fragments with masses preferentially ≤ 3 M�
but in the range 1 - 30 M�. If the thermal length scale was the only relevant one in the selection of
the mass spectrum then a very narrow IMF would emerge since the initial stages of star formation are
isothermal. Kunz & Mouschovias (2009) included the effects of ambipolar diffusion and by assuming
a flat distribution for the initial mass-to-flux ratio they showed that the resulting probability density
function of the core mass function was in excellent quantitative agreement with observations. Bailey
& Basu (2013) performed Monte Carlo simulations considering various cases (magnetic, non-magnetic,
flux-freezing and non-ideal MHD models) and different distributions for the initial mass-to-flux and
column density and also showed that the inclusion of the magnetic field broadens the core mass function.

1.2 Magnetic field orientations

Radio emission observations by Goldsmith et al. (2008) have revealed the presence of yet another
type of filamentary structures in the low-column density parts of molecular clouds. These elongated,
quasi-periodic structures, termed striations, are either seen to be associated with denser structures
(Hennemann et al. 2012; Palmeirim et al. 2013; Alves de Oliveira et al. 2014; Cox et al. 2016) or as
standalone features (Goldsmith et al. 2008; Miville-Deschenes et al. 2010). Observations of 12CO and
13CO of the J =1 - 0 and J = 2 - 1 transitions by Heyer et al. (2016) also seem to suggest velocity
variations along the long axis of striations. Although striations are not cites of star formation, they
encode invaluable information about the initial and boundary conditions of molecular clouds.

All-sky maps of polarized emission from Planck satellite have also revealed an interesting finding
about the orientation of the magnetic field with respect to both filaments and striations (Planck
Collaboration et al. 2016b). Magnetic field lines are consistently found to be parallel to the low-
column density elongations whereas dense filaments lie perpendicularly to the magnetic field. This
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findings are confirmed by additional studies with higher spatial resolution than that of Planck (Koch
et al. 2015; Malinen et al. 2015; Panopoulou et al. 2016). At the same time, polarization observations
from Planck have shown that magnetic fields are ordered (Planck Collaboration et al. 2016c). This
further strengthens the case that they are dynamically important, since in the opposite case flows
would drag along magnetic field lines which would then appear tangled (Ostriker et al. 2001).

The observational fact that magnetic fields lie perpendicularly to filaments is in contradiction with
the view that filaments are formed due to compressions from shocks from super-Alfvénic turbulence
(e.g. Padoan et al. 2001). Li et al. (2013) proposed a new scenario in which dense filaments form
from the gravitational contraction along field lines while strong magnetic fields also act as the guiding
channels of sub-Alfvénic flows which in turn result in striations. Based on the transport equations
of MHD turbulence Soler and Hennebelle (2017) showed that φ = ±90 and φ = 0 where φ is the
angle between density gradients and the magnetic field constituted attractors. Thus, the magnetic
field evolves either perpendicularly or parallel to elongated structures.

1.3 Outline

In this work we extend the range of physical phenomena that can be explained by the magnetic field.
In chapter 2 we concentrate on the formation mechanism of striations. We have performed 2D and
3D ideal magnetohydrodynamic (MHD) simulations testing all possible formation mechanisms. We
have found that the only viable explanation for the appearance of striations is their formation by fast
magnetosonic waves.

In the presence of boundaries fast magnetosonic waves can be trapped and set up normal modes. By
identifying these normal modes the intrinsic dimensions of clouds, including their previously inaccessible
by any means line-of-sight dimension, can be found. We report the first-ever discovery of these normal
modes and find the intrinsic dimensions of Musca molecular cloud in chapter 3.

In chapter 4 we revisit the relation between the magnetic field strength and gas density in collapsing
prestellar cores. We find that the data are consistent with the ambipolar diffusion theory of star
formation and that previous studies severely underestimated the observational uncertainties in gas
density.

In chapter 5 we develop a method for probing the intrinsic shape of prestellar cores based on a
metric that quantifies whether molecular column density profiles are centrally peaked, depressed or
flat, or by a simple comparison of 2D emission maps of specific molecules. Finally in chapter 6 we
present a non-LTE line radiative transfer code which we plan to use in order to improve and extend
our method for accessing the shapes of cores.
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Chapter 2

The structure of the translucent parts
of molecular clouds

In the work presented bellow, we have carried out numerical experiments testing possible mechanisms
for the formation of striations. Simulation results from each model were then compared against ob-
servations of the striations region in Taurus molecular cloud (Goldsmith et al. 2008) based on four
criteria: a) whether the model could reproduce the observed contrast between adjacent striations b)
whether the model could account for the observed spatial power spectrum in velocity slices and velocity
integrated emission c) whether the observed velocity range could be reproduced from the model and
d) whether CO abundance followed the total density. In contrast to the commonly accepted premise
in which striations are gas flows along field lines, we have singled out a model which involves the
excitation of compressible fast magnetosonic waves as the only one able to reproduce the observed
properties of striations.
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ABSTRACT

Dust continuum and molecular observations of the low column density parts of
molecular clouds have revealed the presence of elongated structures which appear to
be well aligned with the magnetic field. These so-called striations are usually assumed
to be streams that flow towards or away from denser regions. We perform ideal magne-
tohydrodynamic (MHD) simulations adopting four models that could account for the
formation of such structures. In the first two models striations are created by velocity
gradients between ambient, parallel streamlines along magnetic field lines. In the third
model striations are formed as a result of a Kelvin-Helmholtz instability perpendicu-
lar to field lines. Finally, in the fourth model striations are formed from the nonlinear
coupling of MHD waves due to density inhomogeneities. We assess the validity of each
scenario by comparing the results from our simulations with previous observational
studies and results obtained from the analysis of CO (J = 1 - 0) observations from
the Taurus molecular cloud. We find that the first three models cannot reproduce the
density contrast and the properties of the spatial power spectrum of a perpendicular
cut to the long axes of striations. We conclude that the nonlinear coupling of MHD
waves is the most probable formation mechanism of striations.

Key words: ISM: clouds – ISM: molecules – ISM: magnetic fields – methods: nu-
merical –methods: observational

1 INTRODUCTION

Star formation occurs in condensations located within the
dense elongated structures of molecular clouds. These struc-
tures, referred to as filaments, have been extensively studied
both observationally and theoretically (see review of André
et al. 2014). Although the role of the magnetic field in the
evolution of filaments is still a topic of debate, its topology
with respect to these filaments is well established. Polari-
metric studies (Moneti et al. 1984; Pereyra & Magalhães
2004; Alves et al. 2008; Chapman et al. 2011; Sugitani et
al. 2011; Palmeirim et al. 2013; Planck Collaboration et al.
2014) have revealed that the magnetic field is well ordered
near dense filaments and perpendicular to their long axis.

Elongated structures, called striations, are also seen
in the low column density parts of molecular clouds. De-
spite the fact that striations are not sites of star forma-
tion they are of high importance for interstellar medium
(ISM) studies since they can reveal the dynamics of molecu-
lar clouds, and the early stages of star formation. However,
there is yet no theoretically established physical mechanism

⋆ Institute for Theoretical and Computational Physics, formerly
Institute for Plasma Physics

explaining their formation. Understanding how striations
form, whether they are long-lived or transient features and
their role in star formation are important open questions.

Striations were first observed in 12CO and 13CO by
Goldsmith et al. (2008) at the northwest part of the Taurus
molecular cloud where they appear as autonomous struc-
tures. Striations were also observed by Herschel in dust
emission. One of the most representative examples is the
Polaris flare where well ordered, low density elongations are
seen throughout the cloud (Miville-Deschênes et al. 2010).
Like in Taurus, striations in the Polaris flare do not appear
to be associated with the denser parts of the cloud. How-
ever, in certain clouds, striations are connected to denser
filaments. Hennemann et al. (2012), Palmeirim et al. (2013)
and Alves de Oliveira et al. (2014) analysed Herschel dust
emission maps from DR21, Taurus and Chamaeleon molec-
ular clouds respectively. In all of these studies, striations
were interpreted as streamlines in which material flows into
or out from more dense filaments and/or clumps.

Malinen et al. (2015) compared Herschel dust emission
maps and Plank polarization data from the cloud L1642 in
order to quantify the relative angle between the plane-of-
the-sky component of the magnetic field and the long axes of
striations. Using the Rolling Hough Transform (RHT) algo-
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2 Tritsis and Tassis

rithm (Clark et al. 2014) they concluded that striations were
in excellent alignment with the magnetic field. Panopoulou
et al. (2016b) also used RHT to compare the orientation of
the plane-of-the-sky (POS) magnetic field with linear struc-
tures in the Polaris flare and reported that the majority of
striations were aligned with the projected magnetic field.
The alignment between these structures and the magnetic
field has also been pointed out in all clouds by all relevant
studies in the literature (Goldsmith et al. 2008; Chapman
et al. 2011; Hennemann et al. 2012; Palmeirim et al. 2013;
Alves de Oliveira et al. 2014).

Li et al. (2013) considered the overall morphology
of the magnetic field with respect to both filaments and
striations. They concluded that besides the formation of
dense filaments from the gravitational contraction along field
lines, strong magnetic fields could also act as the guiding
channels of sub-Alfvénic flows, thus forming striations. In
this mass-accretion/flows-along-field-lines paradigm, which
is currently the most common interpretation of such struc-
tures, density fluctuations are presumably caused by pres-
sure differences which are in turn caused by fluctuations of
the streaming speed as expected by Bernoulli’s principle.

A shear velocity between ambient streamlines would
normally lead to a Kelvin-Helmholtz instability. However,
the presence of the magnetic field can stabilize the flow as
long as the velocity difference between ambient streamlines
is less than two times the Alfvén speed (Frank et al. 1996).
In an early theoretical work, Frank et al. (1996) performed
2D simulations in ideal magnetohydrodynamics (MHD) as-
suming super-Alfvénic velocities with opposite signs on ei-
ther side of a shear layer and an initially ordered magnetic
field. They showed that although a Kelvin-Helmholtz insta-
bility occurred early on, a stable, laminar flow was quickly
developed due to the presence of the magnetic field. The
final density configuration in their simulations was parallel
elongated structures aligned with the magnetic field.

Supersonic motions and other kinematic properties of
molecular clouds have often been interpreted in terms of
the presence of hydromagnetic waves (Arons & Max 1975;
Zweibel & Josafatsson 1983). Specifically, the linewidth-size
relation is attributed to Alfvén waves with long wavelengths
and large amplitude (Mouschovias & Psaltis 1995). These
findings suggest that striations may also be connected to
MHD waves.

In the present paper we explore four possible physical
mechanisms that could create striations. Since flows along
magnetic field lines have been proposed by previous obser-
vational studies and are currently considered to be the most
plausible mechanism for the formation of striations, we ex-
plore two models involving such flows. In the first model, we
assume a sub-Alfvénic bulk flow and sub-Alfvénic velocity
gradients between ambient streamlines. In the second sce-
nario, we repeat the super-Alfvénic simulations performed
by Frank et al. (1996) by adopting values for the parameters
involved appropriate for molecular cloud conditions. In the
third model, sub-Alfvénic flows perpendicular to the mag-
netic field cause a Kelvin-Helmholtz instability which in turn
produces striations. Finally, we consider an entirely different
scenario in which striations are formed from the excitation
of compressional magnetosonic waves. In this model, fluctu-
ations of magnetic pressure create striations. Magnetosonic
waves are naturally excited from Alfvén waves due to den-
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Figure 1. CO integrated intensity map of the striations observed
in Taurus molecular cloud. The integration was performed only
in the velocity range where the striations appear (4.76 ∼ 7.55
km/s).

sity inhomogeneities. The values adopted in our models are
driven from observational results from the literature and
analysis of observational data presented here. We find that
in the first three models the density contrast between the
linear structures that are formed is so low that essentially
flows along or perpendicular to magnetic field lines fail to
create striations. In contrast, the model including coupling
of MHD waves successfully reproduces most of the observa-
tional properties of striations.

In section § 2 we quantify the observed properties of
striations to facilitate a quantitative comparison to simula-
tions. Numerical simulations of models involving streamers
and corresponding results are described in § 3.1, § 3.2 and
§ 3.3. In § 4 we provide some theoretical background for
our fourth physical model (MHD waves) and describe our
results. We summarize and discuss our conclusions in § 5.

2 OBSERVATIONS

In order to observationally quantify the properties of the
striations we use 12CO (J = 1 - 0) line emission data of the
Taurus molecular cloud from the FCRAO survey (Goldsmith
et al. 2008). The velocity resolution in the CO data cube is
δvch= 0.266 km/s. FCRAO’s telescope beam size at 12CO
(J = 1 - 0) emission frequency (115 GHz) is 45” which at
the distance of the Taurus cloud (140 pc) yields a spatial
resolution of 0.013 pc. An integrated intensity map of the
region of interest is shown in Figure 1.

In the observational data we define a cartesian coordi-
nate system where the x and y axes are respectively perpen-
dicular and parallel to the largest dimension of the striations
as projected on the plane of the sky. Thus, the z axis is par-
allel to the line-of-sight (LOS). In the left panel of Figure 2
we show an averaged perpendicular cut of the integrated in-
tensity of the striations (solid black line) to which we have
applied a low pass filter (smooth dashed red line). In order
to increase the signal to noise ratio in our analysis we first
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Table 1. Parameters used in each run.

Model density (cm−3) By0 (µG) δ (%) Chemistry z dimension (pc) resolution

sub-Alfvénic
streamers

200 15 10 ✗ ✗ 128×128

200 15 100 ✗ ✗ 128×128
200 15 100 ✗ ✗ 256×256

super-Alfvénic
streamers

200 15 ✗ ✗ ✗ 128×128

200 15 ✗ ✗ 0.5 128×128×64
200 15 ✗ ✗ ✗ 256×256

sub-Alfvénic
flows ⊥ to ~B

200 15 ✗ ✗ 0.5 128×128×64††

MHD waves
coupling

200 15 15 X ✗ 256×256

100 15 15 ✗ ✗ 256×256
400 15 15 ✗ ✗ 256×256
200 30 15 ✗ ✗ 256×256
200 7.5 15 ✗ ✗ 256×256
200 15 30/15 ✗ ✗ 256×256†

200 15 30/15 ✗ ✗ 256×256‡

100 30 15 ✗ 0.125 256×256×64
100 30 15 ✗ 0.25 256×256×64
200 15 15 ✗ ✗ 512×512

† The perturbation amplitude (δ) is 30% for the magnetic field and 15% for the density and thermal pressure.
‡ Same as in † but with a spectrum of Alfvén waves initially present in the system.
†† The value for the magnetic field strength refers to its z component. In this model, By0 = Bx0 = 0.
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Figure 2. Left panel: A cut perpendicular to the long axis of the
striations (black line) and a low pass noise filter (smooth dashed
red line). Right panel: The power spectrum in 4 velocity channels
(given in km/s in the legend). All velocity channels exhibit the
same dominant frequency with other wavelengths also present,
thus suggesting a creation mechanism involving superposition of
waves.

consider three adjacent cuts along the x direction and then
average the intensity of their corresponding y pixel values. In
the right panel of Figure 2 we show the spatial power spectra
in 4 velocity channels. In the power spectrum there is un-
ambiguously a dominant frequency with other wavelengths
also present. To compute the power spectrum in each ve-
locity slice we have again averaged pixel values from three
adjacent cuts. The full velocity range where striations are
visible is ∼ 2.5-3.0 km/s. Observations also suggest multiple

velocity components along the LOS (Heyer & Brunt 2012).
From Figure 2 it is clear that both the integrated intensity
cut and intensity cuts in velocity slices are quasi-periodic.

Due to the quasi-periodicity of the integrated intensity
cut there is no unique contrast between maxima and min-
ima. We thus need a method to robustly and systematically
compute the contrast. To do so, we first consider all perpen-
dicular cuts to the long axis of the striations and identify
where each intensity cut has extrema. We compute the con-
trast between successive extrema and take the mean of all
contrast values. To avoid confusion caused by point to point
variations, extrema were identified from the low pass filter
rather than the actual cut. However, the contrast was prop-
erly computed from the values of the actual intensity cut.
The mean contrast, adopting a low pass filter such as the
one shown in the left panel of Figure 2 (red dashed line)
which reasonably follows the intensity profile, is ∼ 25%. For
direct comparison with observations we will use the same
method of computing the contrast throughout this paper.

3 STREAMERS

We performed 2D and 3D numerical simulations in carte-
sian coordinates using the astrophysical code FLASH 4.0.1
(Fryxell et al. 2000; Dubey et al. 2008). We used the unsplit
staggered mesh algorithm (Lee 2013) to solve the equations
of ideal MHD without gravity. For the Riemann problem
we used Roe’s solver which accounts for all waves that can
arise in the MHD equations. We used van Leer’s flux limiter
and third order interpolation to reduce numerical diffusion
as much as possible.

In the simulations we adopted magnetic field and den-
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sity values driven from observational estimates from the
same region in Taurus. Chapman et al. (2011) used po-
larization data to map the POS component of the mag-
netic field at the northwest part of Taurus molecular
cloud where striations were first observed. Using the Chan-
drasekhar & Fermi (1953) method they found a value of
Bpos = 17± 1 µG whereas using Hildebrand’s et al. (2009)
method they found Bpos = 31± 4 µG. Despite the fact that
the intrinsic magnetic field value would be even higher than
these observational limits, we adopted a conservative ref-
erence value of 15 µG. Chapman et al. (2011) also used
CO data from the FCRAO survey (Goldsmith et al. 2008)
to constrain the number density. They reported a value of
ρ = 200± 10 cm−3. This was the value used for the back-
ground number density in our reference runs. A constant
temperature of 15 K was adopted for all of our models.
Thus, the sound speed is ∼ 0.35 km/s, the Alfvén speed
(va = B/

√
4πρ) is ∼ 1.58 km/s and the plasma β parame-

ter (β = 8πPth/B
2 where Pth is the thermal pressure) is ∼

0.1.
In our simulations, we define a cartesian coordinate sys-

tem such that the direction of the magnetic field is along
the y axis and the z axis represents the LOS dimension. The
physical dimensions of the computational area in our 2D
simulations are 1 pc in each direction. Driven from recent
observational results (Qian et al. 2015), in 3D simulations,
the LOS dimension is taken to be smaller than the other
two. We terminate each simulation after 5 Myrs. A list of
all runs is given in Table 1.

3.1 sub-Alfvénic flow along field lines

In this model we test the premise that sub-Alfvénic velocity
differences between ambient streamlines can form striations.
In principle, velocity differences cause a pressure gradient
in the perpendicular to the magnetic field direction which
is in turn expected to create compressions and rarefactions
in density. These shear flows are stabilized against Kelvin-
Helmholtz instabilities due to the presence of the magnetic
field. The stability condition for the Kelvin-Helmholtz in-
stability assuming an inviscid, incompressible magnetized
plasma is:

1

4π
[(~k · ~B1)

2 + (~k · ~B2)
2] >

ρ1ρ2
ρ1 + ρ2

[~k · (~v1 − ~v2)]
2 (1)

(Chandrasekhar 1961) where ~k is the wavenumber, ~Bi is the
magnetic field value and ~vi (i=1, 2) is the velocity on either
side of the shear layer. In this sub-Alfvénic flow along field
lines model, the stability condition of Equation 1 is satisfied
at all times.

Initially, we assume a sub-Alfvénic, constant flow along
the direction of the magnetic field. We then introduce per-
turbations in the velocity field along the x direction. Thus,
at the beginning of the simulation, the only non-zero com-
ponent of the velocity is along the y axis and is given by:

vy(x) = vy0 + δvy(x) (2)

where δvy(x) is random and positive. We run simulations
with two different amplitudes for the velocity perturbation,
10% and 100% of the unperturbed velocity. The unperturbed
value of the y velocity component is 0.65 km/s. Thus the
bulk velocity of the flow is sub-Alfvénic, yet supersonic. The

magnetic field, density and thermal pressure are left unper-
turbed.

The boundary conditions are periodic in the y axis (i.e.
along field lines) and reflective in the x direction. Simu-
lations for this model were performed on a uniform grid
with 128×128 grid points. Therefore, our spatial resolution
is ∼ 7.8× 10−3 pc. An additional simulation was performed
on a 256 × 256 grid to ensure convergence (see Table 1).

In Figure 3 we show density maps for the simulations
with 10% (upper row) and 100% (lower row) perturbation
amplitudes in the y velocity component. Different columns
represent different times. From left to right the time is 0
Myrs (i.e. the initial condition), ∼ 1Myr and ∼ 5 Myrs.
The mean contrast in density between adjacent striations is
extremely low. In fact the mean contrast in density for the
simulation in which the velocity difference between ambient
streamlines can be up to 100% is just ∼ 4× 10−4%. The
situation could not have been improved in a column density
map if we had performed a 3D simulation. Projection effects
from the 3D geometry would not increase the contrast since,
due to the small size of the striation region in Taurus we can
make the reasonable assumption that the LOS dimension
has a constant thickness. As a result, the contrast in column
density would roughly be the same as the contrast in density.

In Figure 4 we show perpendicular cuts to the long axis
of these streamlines (left column) and the spatial power
spectrum (right column). We plot the results for the sim-
ulation with 10% perturbation in the upper row and results
for the simulation with 100% perturbation in the lower row.
The two power spectra have peaks in the same spatial fre-
quencies. Neither the profiles nor the power spectra resem-
ble observations, but instead they are consistent with white
noise. The features seen in all panels of Figure 4 originate
from the random number generator with which we set up
the velocity perturbations.

Despite the fact that the x boundary conditions for this
model are reflective no waves are excited. Instead, magnetic
field lines are “pushed” until the condition Π1 = Π2 is sat-
isfied in every interface between adjacent streamlines. Here,

Π = P + B2

8π
is the total pressure. Furthermore, since the re-

gion is magnetically dominated, thermal pressure is not suf-
ficient to cause large gradients in magnetic pressure in the x
direction. As a result, B1 ≈ B2, which for an isothermal gas
leads to ρ1 ≈ ρ2.

3.2 super-Alfvénic flow along field lines

For the initial conditions in this model we partly follow
Frank et al. (1996). The magnetic field is again directed
along the y axis and the y component of the velocity is given
by:

vy = −v0tanh(
x− Lx/2

a
) (3)

where v0 equals 1.2 times the Alfvén speed, Lx is the size of
the computational area in the x direction and a is a param-
eter that quantifies the width of the shear layer. The value
of a is set at 4% of the size of the x dimension. We further
introduce a small velocity perturbation on the x component
of the velocity with amplitude 10−3 the Alfvén speed. We do
not perturb the magnetic field, thermal pressure or density.

The boundary conditions are periodic in the y direction

c© 0000 RAS, MNRAS 000, 000–000



striations: streamers or MHD waves? 5

0.0 0.25 0.5 0.75 1.0

x (pc)

0.0

0.25

0.5

0.75

1.0

y
 (

p
c
)

time=0.0 Myrs

0.0 0.25 0.5 0.75 1.0

x (pc)

0.0

0.25

0.5

0.75

1.0

y
 (

p
c
)

time=1.08 Myrs

0.0 0.25 0.5 0.75 1.0

x (pc)

0.0

0.25

0.5

0.75

1.0

y
 (

p
c
)

time=5.07 Myrs

0.0 0.25 0.5 0.75 1.0

x (pc)

0.0

0.25

0.5

0.75

1.0

y
 (

p
c
)

time=0.0 Myrs

0.0 0.25 0.5 0.75 1.0

x (pc)

0.0

0.25

0.5

0.75

1.0

y
 (

p
c
)

time=1.08 Myrs

0.0 0.25 0.5 0.75 1.0

x (pc)

0.0

0.25

0.5

0.75

1.0

y
 (

p
c
)

time=5.07 Myrs

2×102

2×102

2×102

2×102

2×102

1.9999996×102

1.9999999×102

2.0000002×102

1.9999996×102

1.9999999×102

2.0000002×102

2×102

2×102

2×102

2×102

2×102

1.999995×102

2.000000×102

2.000005×102

1.999995×102

2.000000×102

2.000005×102

Figure 3. Slice density maps from our 2D simulations for the sub-Alfvénic flow along field lines model. In the upper row we plot our
results from the simulation where the amplitude of the perturbation is 10% and in the lower row results where the amplitude of the
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(i.e. along magnetic field lines) and outflow in the x direc-
tion. The 2D simulation for this model was performed on
a 128×128 uniform grid and an additional simulation with
twice that resolution was performed in order to check for
convergence.

In Figure 5 we show density maps (upper row) and mag-
netic pressure maps (lower row) for the same timesteps as
in the previous model. As in the simulations by Frank et
al.(1996) the flow is ordered due to the magnetic field de-
spite the fact that the Kelvin-Helmholtz stability condition
(Equation 1) is not satisfied. Intriguingly, the final configu-
ration is parallel elongated structures which resemble obser-
vations. What is more, magnetic pressure fluctuations follow
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Figure 7. Left panel: perpendicular column density cuts to the
striations for ∼ 1 Myrs (solid red line) ∼ 5 Myrs (dashed black
line) as projected along the z axis from our 3D simulation adopt-
ing the super-Alfvénic flow along field lines model. Right panel:
The corresponding spatial power spectrum for the same two
timesteps.

overdensities and rarefactions very well while magnetic field
lines have been pivoted with respect to the initial configu-
ration. Consequently, it seems that qualitatively this model
may resemble observations. However, as in the case of the
sub-Alfvénic streamers, the mean density contrast is very
low, just ∼ 7.5× 10−3%.

In Figure 6 we show perpendicular cuts for each of the
timesteps of Figure 5 and the corresponding spatial power
spectra. In contrast to sub-Alfvénic streamers, clear struc-
tures are created when the flow is super-Alfvénic. However,
neither the perpndicular cut nor the power spectrum can re-
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right the time is 0.004 Myrs (i.e. the initial condition), ∼ 0.03 Myr and ∼ 0.09 Myrs. As in the two previous models the contrast between
adjacent striations is extremely low.

produce observations. Here, power is distributed differently
than observations in the sense that larger spatial frequen-
cies have more power than the small ones. This is because
the power is concentrated in the smallest ellipsoidal features
seen in the density maps.

Even though the density contrast and power spectrum
cannot reproduce observations, no reliable conclusions can
yet be drawn from the 2D simulations alone since in three
dimensions the magnetic field could affect the flow in a dif-
ferent manner. The possibility also exists that in 3D the
magnetic field can no longer stabilize the flow, which would
lead to turbulence. We thus run an additional 3D simulation
where the shear layer is a sheet-like structure that extends
along the LOS. The y component of the velocity is still given
by Equation 3, but now, we also perturb v0 along the z di-
rection, i.e. v0(z) = v0 + δv(z). In 3D, in the z direction, we
choose outflow boundary conditions, the physical length is
1/2 shorter than that of x and y and the resolution of the
grid is 128×128×64.

In Figure 7 we show the results from our 3D simula-
tion for ∼ 1 Myr and ∼ 5 Myrs. In the left panel we plot
the profiles across projections along the z axis, and in the
right panel the corresponding power spectra. Introducing a
velocity profile along the z-axis does not lead to turbulence
but instead, the magnetic field can still stabilize the flow.
However, as can be seen from the left panel of Figure 7 the
contrast is still very low, even in a column density map. The
low contrast remains regardless of the projection angle. In
fact, when we consider a projection along the z-axis which
for the intended purposes of these simulations represents the
LOS, the mean contrast is ∼ 7.8× 10−3%, just barely larger
than the mean contrast in density maps.

Column density maps from our 3D simulations resemble
the density maps from our 2D simulations shown in Figure 5
quite well. However, there are differences amongst the power
spectra in 2D and 3D. These differences originate from two
distinct effects. First, since in our 3D simulations the term v0
in Equation 3 is a function of the LOS, different structures
are formed in different density slices along the z direction.
Although, in average, these density slices are similar to the
ones shown in Figure 5 there are deviations which will ap-
pear in the power spectrum. The second reason is due to
the integration along the LOS. In a column density map

the bulges seen in the upper panel of Figure 5 are enhanced
whereas other features are even fainter. Finally, in 3D, mag-
netic field lines are pivoted to a larger angle with respect
to the initial configuration. In our 2D simulations the an-
gle between the magnetic field at later times and the initial
magnetic field is ∼ 18◦ whereas the same angle in our 3D
simulations is ∼ 40◦.

From the stability condition of Equation 1 when the
density and magnetic field values are equal on either side
of an interface, a Kelvin-Helmholtz instability occurs only
if the velocity difference between the two layers is twice the
Alfvén speed. However, no such extreme velocity gradients
have ever been observed in molecular clouds. Heyer & Brunt
(2012) did a careful analysis of the velocity field in Taurus
using the same observational data used here and concluded
that in the striations region the motions of the flow were
trans-Alfvénic. As a result, such a mechanism of produc-
ing striations in the diffuse ISM, requiring so large velocity
gradients, would be unphysical even if it could reproduce
observations.

3.3 sub-Alfvénic flow perpendicular to field lines

Periodically spaced, elongated structures, referred to as Rip-
ples, have also been observed in the south-west part of Orion
molecular cloud (Berné et al. 2010). Berné et al. 2010 at-
tributed the formation of Ripples to a Kelvin-Helmholtz
instability. Berné & Matsumoto (2012) and Hendrix et al.
(2015) performed 2D and 3D MHD simulations respectively
with flows perpendicular to the magnetic field and with the
shear layer parallel to the field lines. They found that with
this configuration periodically spaced, elongated structures
were created. Although the physical conditions in these Rip-
ples are very different from the physical conditions in regions
where striations are observed, it is possible that the same
formation mechanism is in operation. The possibility that
Ripples and striations are created through the same phys-
ical process has been recently pointed out by Heyer et al.
(2016).

In order to test for this scenario, we performed a 3D
simulation adopting the same values for the density and
magnetic field strength as in the previous two models. The
direction of the magnetic field was taken to be along the LOS
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(i.e. along the z axis) and the x component of the velocity
was given by:

vx = −v0tanh(
y − Ly/2

a
) (4)

where similarly to Equation 3 the width of the shear layer
is taken to be 4% the size of the y dimension. In equiva-
lence with our 3D super-Alfvénic simulations v0 was also
perturbed along the z axis. With this configuration, the
shear layer extends along the LOS and is thus parallel to
the magnetic field.

Super-Alfvénic flows perpendicular to field lines would
lead to distortions of the magnetic field. However, the mag-
netic field in the regions where striations appear is well
ordered. Thus, such flows must be sub-Alfvénic and the
value of v0 in Equation 4 was taken to equal 0.45 times
the Alfvén speed. Small amplitude perturbations were fur-
ther introduced in the y velocity component. Apart from
the velocity field, all other quantities were left unperturbed.
Boundaries were periodic in all directions, the length of the
LOS was half that of the other two directions and the reso-
lution of the grid was 128×128×64.

In Figure 8 we plot column density maps for 3 timesteps,
early in the simulation before turbulence is developed. Simi-
larly to the two previous models involving flows, the contrast
between adjacent striations is extremely small. Applying the
same method as in observations in the column density map
shown in the right panel of Figure 8 results in a mean con-
trast of just 0.004%.

In this model, the direction of the magnetic field is per-
pendicular to the planes shown in Figure 8. As a result, this
viewing angle would not result in elongated structures par-
allel to the magnetic field since the observed polarization
intensity would be zero. Moreover, if the magnetic field is at
an angle with respect to the z axis the growth of the insta-
bility would decrease or even halted for large angles. Thus,
there is a limited range of viewing angles for which the depo-
larization factor due to projection effects is small and these
structures appear as elongations. Furthermore, elongations
formed via this mechanism are only transient features lasting
just a few 104 years. At later times, turbulence develops and
these structures are no longer recognizable. Consequently
there are at least two additional shortcomings in terms of
matching the observations.

4 MHD WAVES

The equations of ideal MHD can be linearised by considering
small amplitude perturbations. If we then assume that the

perturbed quantities vary as ei(k̃·̃r−ωt) and substitute the
expressions that arise for the perturbed quantities in the
linearised equation of motion we get:

[ω2 − (~k · ~B0)
2

4πρ0
]~v = (5)

{[c2s +
B2

0

4πρ0
]~k − (~k · ~B0)

4πρ0
~B0}(~k · ~v)− (~k · ~B0)(~v · ~B0)

4πρ0
~k

where ~k is the wavenumber, ~B0 is the unperturbed mag-
netic field, ρ0 is the unperturbed density, ω is the angular
frequency and ~v is the perturbed velocity. When the direc-
tion of propagation of the waves is parallel to the magnetic

Figure 9. Left panel: cartoon representation of the final config-
uration from the excitation of magnetosonic waves in both di-
rections perpendicular to the magnetic field. The red cylinders
represent density enhancements. Right panel: sausage waves in
each cylindrical-like structure of the left panel. Black arrows de-
note the direction of the ordered magnetic field and the red line
represents the morphology of the resulting magnetic flux tube due
to perturbations.

field (i.e. ~k ‖ ~B), Equation 5 leads to the dispersion relation

of Alfvén waves. In the situation with ~k ⊥ ~B, Equation 5
leads to the dispersion relation of compressive magnetosonic
waves which however, in the general case, can propagate at
other angles as well.

In the linear regime Alfvén and fast magnetosonic waves
propagate independently. However, when nonlinear terms
are non-negligible, plasma density inhomogeneities across
the direction of the magnetic field lead to phase mixing of
Alfvén waves (Heyvaerts & Priest 1983). As a result, fast
magnetosonic waves can be excited even if they are not origi-
nally present in the system. Due to density inhomogeneities,
there are also regions of varying Alfvén speed where fast
magnetosonic waves get refracted and thus, they naturally
get trapped inside overdensities or, in other words, in regions
of low Alfvén speed.

We now consider an Alfvén wave of the form Acosω(t−
y/va(x)), where va is the Alfvén speed and A is the ampli-
tude of the wave, travelling along the direction of the unper-
turbed magnetic field which, as in the previous models, we
assume is directed along the y axis. Then, the wave equation
for fast magnetosonic waves can be written as:

∂2vx
∂t2

− v2a(x)
(∂2vx
∂x2

+
∂2vx
∂y2

)
=

ωA2

v2a

dva(x)

dx
×

×
[
ωycos

(
2ω(t− y

va(x)
)
)
− va(x)sin

(
2ω(t− y

va(x)
)
)]

(6)

where we have ignored variations along the z direction. From
Equation 6 it can be seen that magnetosonic waves pro-
duced due to phase mixing will have twice the wavelength
of Alfvén waves. Finally, fast magnetosonic waves travelling
across magnetic field lines can get further refracted at the
edges of the cloud, at sharp density gradients. For an exten-
sive analytical discussion of the coupling between Alfvén and
fast magnetosonic waves we refer the reader to Nakariakov
et al. (1997).

When the direction of propagation of the waves is per-
pendicular to the magnetic field (~k ⊥ ~B), Equation 5 can be
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Figure 10. Slice density maps from our 2D simulations for the fourth model. From left to right column the time is 0 Myrs (i.e. the
initial condition), ∼ 1Myr and ∼ 5 Myrs. The contrast is drastically increased compared with the previous three models.

written in component form as:

ω2vx = (c2s + v2a)(kxvx + kzvz)kx (7)

ω2vy = 0 (8)

ω2vz = (c2s + v2a)(kxvx + kzvz)kz (9)

where cs is the sound speed. Consequently, magnetosonic
waves travelling in both directions perpendicular to the mag-
netic field are also coupled to each other. In 3D, the final
configuration will be cylindrical-like structures parallel to
the magnetic field (left panel of Figure 9).

From the linearized MHD equations in cylindrical coor-
dinates it follows that:

Bc =
B0c

ωc

1

rc

∂(rcA(rc))

∂rc
sin(kcz − ωct) (10)

Pc = − ωcρ0cc
2
s

(c2sk2
c − ωc)

∂(rcA(rc))

∂rc
sin(kcz − ωct) (11)

(Freij et al. 2016). Here, rc is the radius of each cylindrical-
like structure, A(rc) is the area and Pc, and Bc are the per-
turbed pressure and magnetic field respectively. As a result,
for a cylindrical-like structure, the magnetic pressure and
thermal pressure will be out of phase. This excites sausage
waves (right panel of Figure 9) along with the other two
MHD wave modes.

From the right panel of Figure 9 it can be seen that the
cross-sectional area of each flux tube changes. Thus, from
Bernoulli’s principle, there will be a velocity gradient along
the long axis of each streamline. Ignoring gravity and as-
suming isothermal processes arises:

(v21 − v22) = 2c2sln(
ρ2
ρ1

) (12)

where the subscripts denote the velocity and density in dif-
ferent positions along one streamline. Although this is a sec-
ond order effect, we should expect density and velocity fluc-
tuations along the long axis of the striations.

In order to test if the coupling of Alfvén and fast mag-
netosonic waves can lead to the formation of striations we
perturb the x component of the magnetic field while the
ordered component is again towards the y direction. Addi-
tionally, we introduce random perturbations in density and

thermal pressure in all directions in a self-consistent manner
such that isothermality is never violated. All velocity com-
ponents are initially set to zero. The initial conditions for
this model are:

vx = vy = vz = 0 (13)

ρ(x, z) = ρ0 + δρ(x, y, z) (14)

P (x, z) = P0 + δP (x, y, z) (15)

By(x, z) = B0 (16)

Bx(y) = Bz(y) = δBsin(kyy) (17)

where ky = π/Ly. This setup implies an Alfvén wave passing
through the computational region with wavelength twice the
length of the simulated region in the y direction. For these
simulations we used a fixed resolution grid with 256×256
cells. Since matter can flow easily along magnetic field lines,
the boundary conditions along the direction of the ordered
component of the magnetic field are outflow. On the other
hand, since magnetosonic waves can get reflected at the
edges of the cloud, we use reflective boundaries in the x
direction.

Using Hildebrand’s et al. (2009) method, a number of
authors (e.g. Eswaraiah et al. 2013; Franco & Alves 2015)
have found that the ratio of the random component of the
magnetic field to the ordered component is of the order of
10% and can be up to 17%. Likewise, using the same method
and the results presented in Chapman et al. (2011) it is
found that in the northwest part of the Taurus molecular
cloud the ratio of the turbulent to the ordered component
of the magnetic field is ∼ 11%. In general, the ratio of the
ordered to turbulent component in molecular clouds can be
up to ∼ 75% (Houde et al. 2016) and, within uncertainties,
it can also be up to 40% in regions where striations appear
(Panopoulou et al. 2016b). For the strength of the magnetic
field in the striations region in the Polaris flare, Panopoulou
et al. (2016b) reported values that ranged up to ∼ 80 µG.
Since striations appear in regions of well ordered magnetic
field our reference value for the amplitude of the perturba-
tion is 15% the background value of each perturbed quantity.
However, we further explore how our results depend on this
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Figure 11. Perpendicular density cuts (left panel) and the spa-
tial power spectrum (right panel) for the timesteps shown in the

middle and right panel of Figure 10. The power spectrum resem-
bles observations extremely well.
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Figure 12. Slice density map from our 2D simulation for the
fourth model and for 1 Myr adopting a higher perturbation am-
plitude of 30%.

parameter by performing a run in which the ratio of the tur-
bulent to ordered component of the magnetic field is 30%. In
this run, the amplitude of the perturbation for the density
and thermal pressure is still 15% and reference values were
adopted for the density and the magnetic field.

Density maps for the fourth model and for our reference
run are shown in Figure 10. Not only can this model qualita-
tively reproduce observations but the contrast is drastically
improved compared to the previous models. In fact, follow-
ing the exact same procedure as in observations where we
compute the contrast between adjacent maxima and min-
ima for all perpendicular cuts, the mean contrast is ∼ 4.8%.
A noticeable feature in the middle panel of Figure 10 is
the mirror symmetry between the upper and lower half of
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Figure 13. Evolution of the velocity range in the direction per-
pendicular to the unperturbed magnetic field in the simulation
shown in Figure 12. No significant energy decay is seen in this
simulation.

the computational region. The reason behind this symme-
try is that the derivatives in the nonlinear terms above and
bellow the line y = Ly/2 appear in opposite signs. Further-
more, the region close to the line y = Ly/2 is where phase
mixing mainly occurs. Then magnetosonic waves travel to-
wards the lower and upper parts where the Alfvén speed
is lower. These features are not so prominent in the right
panel due to the outflow boundary conditions. After mag-
netosonic waves get excited they propagate in all directions,
not just perpendicularly to magnetic field lines, and thus
escape the computation region. This effect smoothens sharp
density gradients and eliminates the mirror symmetry. We
find that numerical diffusion does not significantly affect our
results (see Apendix A).

In Figure 11 we show perpendicular density cuts (left
panel) and the spatial power spectrum (right panel). The
solid red and dashed black lines correspond to the middle
and right panel of Figure 10 respectively. The power spec-
trum resembles observations remarkably well. Most of the
power is distributed in larger wavelengths and, like observa-
tions, there are smaller peaks at larger spatial frequencies.
These peaks correspond to the thinner structures seen in the
middle and left panels of Figure 10. In agreement with the
analytical result from Equation 6, the dominant frequency in
the right panel of Figure 11 corresponds to a magnetosonic
wave with wavelength two times that of the Alfvén wave
initially present in the system.

A density map from our simulation in which the ampli-
tude of the perturbation is 30% is shown in Figure 12. The
mean contrast in this simulation is 7.7%. In Figure 13 we
show the evolution of the maximum range of the x velocity
component for 5 Myrs from the same run. When the am-
plitude of the Alfvén wave initially present in the system is
large compared to the ordered component there is no sig-
nificant energy decay. Basu & Dapp (2010) were the first
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Figure 14. Left panel: mean contrast as a function of plasma β
for our fourth model. The time in all parameter runs is ∼ 5 Myrs.

In the simulations with lower plasma β the contrast is larger.
Right panel: Velocity range as a function of plasma β for our
fourth model. The lower the plasma β the greater the velocity
range reached throughout the simulation.

to report long-lived MHD modes without any dissipation
in their simulations. The evolution of the maximum range
of the x velocity component for the simulation with lower
perturbation amplitude is given in Appendix A.

Since for this model results adopting reference param-
eters were in fairly good agreement with observations we
additionally explored how the density contrast and velocity
range changed by altering the initial density and the mag-
netic field strength a factor of two above and bellow the ref-
erence values. Furthermore, since striations are also observed
in CO emission lines we couple one of our 2D runs with a
non-equilibrium chemical model and investigated the cor-
relation between CO abundance and the total density. Our
chemical network consists of 13967 reactions that govern the
evolution of 214 gas-phase species and 82 dust grain species.
For the chemical modelling we assume a mean molecular
weight of ∼ 2.4, a standard value of ζ = 1.3× 10−17 s−1

for the cosmic-ray ionization rate, the visual extinction is
Av = 1 mag and the temperature is constant and equal to
15 K. A list of the species included in the chemical network
and values for the initial elemental abundances are given in
Tritsis et al. (2016).

In the left panel of Figure 14 we show the mean con-
trast as a function of the mean plasma β for a time of 5
Myrs. The contrast has again been computed in the exact
same manner as in observations. We find that the contrast
is affected by both the value of the magnetic field and den-
sity independently, although the highest values are obtained
for low plasma β. In the right panel of Figure 14 we plot
the maximum velocity range reached throughout each sim-
ulation in our parameter study as a function of the mean
plasma β. The lower the plasma β, the greater the velocity
range. The velocity range has a clear relation with plasma
β. In fact, it scales as ∼ 1/

√
β.

In Figure 15 we show a CO abundance map from the 2D
simulation in which we have included chemical modelling.
The time is 1 Myr and thus it corresponds to the middle
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Figure 15. CO abundance map for 1 Myr adopting our fourth
model. In comparison to the middle panel of Figure 10 striations

are more prominent when seen through the chemical lens.
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Figure 16. Slice density map from our 2D simulation with 30%
perturbation amplitude and a spectrum of Alfvén waves initially
present in the system. The time is 1 Myr. The final density con-
figuration is eve more realistic.

panel of Figure 10. Striations seen in the CO abundance
map are more prominent than the ones seen in the total
density map. The differences seen in the two maps are not
just qualitative. The mean contrast that arises from the CO
abundance map is 6.3 % in comparison to 4.8 % from the
density map. The reason behind this discrepancy is the dif-
ference between dynamical and chemical timescales.

In the setup adopted so far for the 2D simulations we
only considered one Alfvén wave passing through the com-
putational area with wavelength two times the length of
the y direction. In nature, we should expect a spectrum of
Alfvén waves. Smaller and sharper distortions of the mag-
netic field would lead to larger gradients which would in
turn make non-linear terms even more significant and lead
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to larger velocity ranges. We thus performed an additional
2D simulation where a superposition of three Alfvén waves
with random phases was initially present in the system.
The total amplitude of the perturbation in this simulation
was 30% with the amplitude of each Alfvén wave decreas-
ing with wavelength. Specifically, the ratio of amplitudes of
the longest and intermediate wavelengths with respect to
the shortest wavelength was three and two respectively. A
density map from this simulation is shown in Figure 16.
The final configuration is even more realistic and the sim-
ilarity with dust continuum observations of the striations
region in the Polaris flare (Miville-Deschênes et al. 2010) is
remarkable. The maximum velocity range along the x direc-
tion achieved throughout this simulation was ∼0.53 km/s,
i.e more than a factor of two larger than in the simulation
with the same total perturbation amplitude and just one
Alfvén wave.

In order to examine the properties of striations in ve-
locity slices we run additional 3D simulations of the same
model considering two different lengths for the LOS dimen-
sion, 0.25 pc and 0.125 pc. In these simulations we adopt
values for the unperturbed density and magnetic field that
best agree with observations as these have arisen from the
parameter study in our 2D simulations. The unperturbed
magnetic field is 30 µG and the number density is set at
100 cm−3. These values are still well within observational
limits. We also perturb the z component of the magnetic
field along with the x component. In equivalence to our ref-
erence 2D simulation of the same model we only consider
one Alfvén wave with wavelength twice the length of the y
direction. The boundary conditions along the z axis are re-
flective and along the other two directions are kept as in our
2D simulations.

The velocity range along the LOS in both our 3D sim-
ulations is ∼ 0.9 km/s. In the simulation where the LOS
dimension is 1/4 that of the other two the maximum ve-
locity range is obtained for ∼ 0.95 Myrs whereas when the
LOS is even shorter the maximum range is achieved later
on during the evolution. We find that the simulation where
the length of the z dimension is 0.25 pc can better repro-
duce observations. In the left panel of Figure 17 we show a
perpendicular cut from a column density map. In the right
panel we plot the spatial power spectra of two velocity slices
which are 0.2 km/s apart. In complete analogy with obser-
vations the two slices exhibit the same spatial frequencies
with respect to each other.

Secondary effects associated with the excitation of
sausage MHD wave modes were also retrieved in our 3D
simulations. In the data cube we first identified a continu-
ous elongated structure and then examined the correlation
between the velocity and density along that structure. In
Figure 18 we plot the volume density (black dashed line)
and the velocity (red line) throughout this striation. As ex-
pected from Bernoulli’s principle the variation of density is
in antiphase with the variation in velocity. A noticeable fea-
ture seen in Figure 18 is that a spectrum of sausage waves
is excited, the superposition of which determines the final
velocity and density variations. In this particular striation
the effect is small compared to other regions inside the com-
putational box. However, we chose to present results for this
structure since it was one of the most clear cases and free
of other effects, such as Alfvén waves, that could lead to a
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Figure 17. Left panel: A perpendicular cut to the long axis of
the striations. The cut has arose from a column density map from
the simulation where z=0.25 pc and when the time is 0.95 Myrs.
Right panel: spatial power spectra of two velocity slices. The ve-
locity slices are ∼ 0.2 km/s apart. In absolute agreement with
observations the two velocity slices exhibit the same spatial fre-
quencies.

more complicated interpretation as to why these density and
velocity variations occur.

Even for the example shown in Figure 18 where the
change in velocity due to the excitation of sausage MHD
waves is marginal, the effect may be observable. The velocity
resolution of ALMA at a frequency of 110 GHz is 0.01 km/s.
Thus, the velocity resolution from observations of C18O (J
= 1 → 0) emission at 109.78 GHz should be sufficient for
the effect to be observed. Volume density variations could
be derived by observing an additional C18O transition and
examining the line ratio.

The change in the cross sectional area of the striations
is also of interest. If variations of the width along a single
striation are found to be statistically significant, then the
ratio of widths could be used to constrain the turbulent to
ordered component of the magnetic field. The ratio of the
width variance and the mean width should be proportional
to the ratio of the turbulent and ordered component of the
magnetic field:

A(rc)

A(rc0)
= − Bc

Bc0
(18)

(Grand et al. 2015) where A(rc), A(rc0), Bc and Bc0 are
defined as in Equations 10 and 11. Variations of the width
along a single striation could be measured with an algorithm
such as FilTER (Panopoulou et al. 2016a) although, due to
projection effects, this relation should be used with caution.

5 SUMMARY AND DISCUSSION

The current picture for the formation of striations includes
streams that flow along magnetic field lines. We performed
numerical simulations adopting two models involving such
streamers, a model in which elongated structures are created
as a result of a Kelvin-Helmholtz instability perpendicular

c© 0000 RAS, MNRAS 000, 000–000



striations: streamers or MHD waves? 13

0.5 0.6 0.7 0.8 0.9 1.0

y (pc)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

v
e
lo

c
it

y
 (

k
m

/s
)

90

95

100

105

110

115

Ü

 c
m

-3

Figure 18. Density (black dashed line) and velocity variation
(red line) along one continuous structure from our 3D simula-
tions with z=0.25 pc in our fourth model. In agreement with
Equation 12 an increase in velocity results in a decrease in den-
sity. These variations can be realized through the excitation of
sausage MHD wave modes.

to field lines and a new model in which striations are formed
from the excitation of magnetosonic waves. We assessed the
validity of each of our models by comparison between simu-
lated and observational results based on four criteria:a) the
contrast between minima and maxima in density and column
density maps b) the spatial power spectrum in each velocity
slice and in column density c) the kinematic properties (i.e.
velocity range) d) whether the abundance of CO follows the
total density and the contrast in abundance is significant for
striations to be observed. We proved that flows, either sub-
Alfvénic or super-Alfvénic, cannot reproduce the observed
contrast even for huge velocity differences between ambient
streamlines. The maximum possible contrast in the simu-
lations involving flows is ∼ 0.03 %. The mean contrast in
observations is ∼ 25 %.

In our second model in which super-Alfvénic streamers
flow along magnetic field lines, the contrast is low in both
the 2D and 3D models. That is because the thickness of
the LOS dimension is constant and thus cancelled out when
computing the contrast in column density maps. As a result,
projection effects are of minor importance and the observed
contrast is an intrinsic density contrast rather than a geo-
metrical effect.

Flows perpendicular to field lines is a mechanism that
can also qualitatively produce elongated structures. How-
ever, due to development of turbulence, these structures are
not long-lived. Furthermore, specific projection angles are
required so that these structures are seen parallel to the
magnetic field. A scenario in which this mechanism can si-
multaneously produce low density striations parallel to field
lines and dense filaments perpendicular to the magnetic field
is also difficult to realize. Finally and most importantly, such
flows fail to reproduce the observed contrast of striations by
more than three orders of magnitude. Overall, this mecha-
nism cannot account for the formation of striations.

In the low column density parts of molecular clouds
there is good coupling between matter and magnetic field
since the degree of ionization is large. Hence, in a paradigm
where magnetic field lines act as flux tubes and striations
are formed from flows along field lines there must also be
regions of stronger and weaker magnetic field. By definition
however, such a configuration is equivalent to a wave trav-
elling perpendicular to the long axis of the striations. The
quasi-periodicity seen in perpendicular cuts in observations
also suggests a formation mechanism which includes super-
position of waves.

In contrast to streamers, a model including coupling of
MHD waves is physical and can naturally explain the forma-
tion of striations. Furthermore, for a certain set of parame-
ters the contrast can be up to 7 %. Besides the large number
of combinations (length of LOS dimension, density and mag-
netic field values) that can be realized and could alter this
value, it would certainly be enhanced due to chemical ef-
fects. Radiative transfer effects might also be important in
an intensity map. Therefore, we conclude that this model
can account for the observed contrast.

However, even in the 3D simulations performed here the
total velocity range over which striations appear is a factor
of ∼3 smaller compared to observations. There is a number
of possibilities to explain this shortcoming. First, intrinsic
magnetic field and density values in Taurus could be outside
the parameter space considered. From the right panel of Fig-
ure 14 it can be seen that the lower the plasma β the larger
the velocity range. The amplitude of the perturbation is also
a key parameter that affects both the maximum range and
the evolution of each velocity component. A second possibil-
ity is the existence of multiple sheet-like resonant structures
along the LOS which move with respect to each other. In
such a picture all of these sheet-like structures should have
approximately the same boundaries in order for the same
dominant frequency to be present in the spatial power spec-
trum in all velocity slices. We have demonstrated that when
we consider a spectrum of Alfvén waves initially present in
the system results are even more realistic and the velocity
range increases by more than a factor of two compared to
the simple case of having one Alfvén wave. Altering the dis-
tribution of power could further increase the velocity range.
Although numerical dissipation does not significantly affect
the velocity range (see Appendix A), the growth of transver-
sal gradients could be affected by the boundary conditions.

In a recent paper Hacar et al. (2016) presented a thor-
ough analysis of the CO data also used in this paper. They
concluded that suprathermal CO linewidths could be ex-
plained from optical-depth effects and multiple narrow com-
ponents the superposition of which act as a broadening
mechanism. Based on this interpretation of CO linewidths
they suggested that intrinsic gas motions were transonic. As
a result, the velocities found for the majority of the simula-
tions in the parameter study could be within observational
ranges.

Despite the observational features for which our fourth
model can account for, the question arises why we considered
incompressible Alfvén waves initially present in the system
rather than directly setting up compressible magnetosonic
waves. Alfvén waves are exact solutions of the equations of
ideal MHD and are thus longlived. Zweibel & Josafatsson
(1983) studied the damping mechanisms of MHD waves and
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naturally found that Alfvén waves were the longest lived
mode. Alfvén waves can also act as the energy carriers from
remote regions than the ones where striations are formed
and are ultimately observed. Hence, in this model, they
arise naturally as the source from which magnetosonic waves
pump energy. The spectrum of Alfvén waves passing through
an inhomogeneous region is of great importance. The en-
ergy distribution in the power spectrum will ultimately be
a function of the properties of Alfvén waves initially present
in the system. Consequently, the power spectrum of stria-
tions could be used to study the spectrum of Alfvén waves
present in that region. We intend to return to the problem
in follow-up publication with more 3D simulations and a
larger parameter space. The effect that different dimensions
and projection angles have on the power spectrum is also
left for future study.

Mouschovias (1987) predicted that torsional
Alfvén waves can naturally be generated by the ro-
tation of a clump and can also be trapped between
magnetically linked clumps. Just as linear Alfvén waves,
in the non-linear regime, torsional Alfvén waves can also
excite fast magnetosonic waves (Tirry & Berghmans 1997).
As a result, striations connected to denser filaments could
also be explained through the same mechanism. Thus, the
interplay between Alfvén and magnetosonic waves along
with acoustic waves and gravitational contraction along
magnetic field lines is a promising scenario for explaining
the overall gas-magnetic field morphology. Additional 3D
simulation including gravity, will determine if the phase
mixing between torsional Alfvén waves and fast magne-
tosonic waves can reproduce the observed properties of
striations associated with denser parts of molecular clouds.

Elongated structures, usually referred to as fibers, have
also been observed at high Galactic latitudes in the diffuse
interstellar medium (see Clark et al. 2015 and references
therein). Similar to striations, the magnetic field in these
regions is well ordered and parallel to fibers which again
exhibit quasi-periodicity. Thus, it is possible that striations
and fibers share a common formation mechanism.
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Figure A1. Evolution of the maximum contrast as a function of
time for the two streamer models. With the solid black line we

plot our result from the simulation with 128×128 grid points and
with the dashed red line the results from the simulation with a
resolution of 256 × 256 points.
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APPENDIX A: CONVERGENCE TESTS

In Figure A1 we show the contrast as a function of time for
both models involving flows along magnetic field lines for
two different resolutions. In the left panel we plot our re-
sults for the sub-Alfvénic streamers and in the right results
for the super-Alfvénic flow along field lines model. Because
of the random number generator we used to initialize both
problems different velocity values were assigned to grid cells
which in turn led to the minor differences seen in both pan-
els. However, in both cases, the lines follow the same trend
and our results converge. The contrast has not be computed
as described in § 2. Instead, it is the maximum contrast
inside the entire computation region.

In principle, numerical dissipation can stop the growth
of transversal gradients very fast. If so, magnetosonic waves
do not have time to pump enough energy from Alfvén waves
for the observed velocities to be reached. However, as can
be seen in Figure A2 where we show the evolution of the
maximum velocity in the x direction for our fourth model
and for two different resolutions, results converge. Therefore,
numerical diffusivity does not significantly affect the velocity
range. Even so, the growth of transversal gradients may still
be affected by the boundary conditions.
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Figure A2. Evolution of the x velocity component as a function
of time. With the solid black line we plot our result from the
simulation with 256 × 256 grid points and with the dashed red
line the results from the simulation with a resolution of 512×512
points.
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Chapter 3

The global structure of a molecular
cloud

Based on the result that striations are formed due to waves (Chapter 2) it is expected that normal
modes should be establish in the case of an isolated cloud. We have examined dust emission maps
from Herschel and we have identified such an oscillating region towards the Musca molecular cloud.
This is the first-ever discovery of normal modes in an interstellar cloud. The Musca molecular cloud
is considered to be the most representative example of an interstellar filament. Due to the fact that it
is isolated and it exhibits a well ordered morphology the predictions of theoretical models of filament
formation are preferentially tested against observational surveys conducted towards Musca (see for
example Myers 2017). It consists of a moderately dense, continuous elongated structure with perpen-
dicularly orientated striations. The magnetic field is oriented perpendicularly to the dense main body
of the cloud and parallel to striations. Our discovery has allowed us to reconstruct the 3D shape of
the cloud. We have found that, contrary to common wisdom, Musca is not in fact a filament. It is a
sheet-like structure with its line-of-sight dimension being comparable to its largest dimension as this
is projected on the plane-of-the-sky.

This result is theoretically expected in a magnetically dominated cloud evolution scenario. Magnetic
pressure forces are exerted on the direction perpendicular to the magnetic field, while along field lines
the cloud is allowed to collapse freely under its self-gravity, until thermal pressure becomes important.
Thus, the resulting configuration will be that of a sheet-like, oblate or disk-like structure with an
ordered magnetic field oriented parallel to the shortest axis of the cloud (Mouschovias 1987).
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Stars, planets, and ultimately life all
trace their origin to interstellar clouds.
Despite its significance, the physics
that controls the evolution of these
clouds and the formation of stars is
still poorly understood and hotly de-
bated. This physics, which involves
gravity, turbulence, magnetic fields and
complex chemical and radiative pro-
cesses, is imprinted in the 3D shape
of clouds. Unfortunately, one of the
most fundamental constraints in astro-
physics is that astronomical objects are
seen as two-dimensional projections on
the plane of the sky. For the first time
ever, we solve this problem by iden-
tifying resonant magnetohydrodynamic
(MHD) “ringing” in an isolated inter-
stellar cloud and analysing its normal

∗Institute for Theoretical and Computational
Physics, formerly Institute for Plasma Physics

modes. This is the first cloud found to
be vibrating globally, and the largest
structure in the Galaxy to which a
normal-mode analysis has been success-
fully applied to date. This discovery al-
lows us to precisely determine the phys-
ical dimensions of the cloud and recon-
struct its physical properties through
3D MHD simulations.

Normal modes have been used extensively
to describe and analyse various systems in
the entire spectrum of physical sciences, from
quantum mechanics and helioseismology, to
geophysics and structural biology. With the
exception of a small pulsating condensation
inside a molecular cloud1, normal modes have
been underexplored in interstellar medium
(ISM) studies. This is not due to oversight,
but rather because molecular clouds usually
exhibit a “messy” morphology with complex
networks of filamentary structures, as a result
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of turbulent mixing2.
In contrast to this general trend, recent

wide-field radio observations of molecular
clouds3 have unveiled the presence of a new
type of structure in their low column density
parts: well-ordered, quasi-periodically spaced
elongations, termed striations. The state-
of-the-art thermal dust continuum emission
survey of nearby molecular clouds by the
Herschel Space Observatory has shown that
striations are a common feature of clouds4−8.
In these Herschel observations, striations are
often associated with denser filaments5−8, in-
side which stars are formed. Complementary
polarimetric studies have revealed that stri-
ations are always well-aligned with the mag-
netic field3,5−9.

From a theoretical perspective, the only vi-
able mechanism for the formation of stria-
tions involves the excitation of fast magne-
tosonic waves10. Compressible fast magne-
tosonic waves can be excited by their non-
linear coupling with Alfvén waves and/or
from perturbations created by self-gravity in
an inhomogeneous medium. These waves
compress the gas and create ordered struc-
tures parallel to magnetic field lines, in agree-
ment with observations.

Once magnetosonic waves are excited,
they can be reflected in regions of vary-
ing Alfvén speed, setting up normal modes,
just like vibrations in a resonating cham-
ber. In regions where striations appear to
be autonomous structures, this resonating
chamber may be the result of external pres-
sure confinement by a more diffuse, warmer
medium. However, boundaries can also be
naturally created in the case of a contract-

ing self-gravitating cloud as a result of steep
changes in density and magnetic field that in
turn lead to sharp variations in the velocity of
propagation of these waves (see Methods sec-
tion ‘3D model of Musca’). Any compressible
fast magnetosonic waves excited during the
collapse will then be trapped, thus resulting
in striations in the vicinity of denser struc-
tures.

Fast magnetosonic waves travelling in both
directions perpendicular to the magnetic field
are coupled10. By considering a rectangular
box the spatial frequencies of normal modes
are given by:

kmn =

√
(πn
Lx

)2
+

(πm
Ly

)2
(1)

where the ordered component of the magnetic
field is considered to be along the z direction,
and Lx and Ly are the sizes of the box in the
x and y directions respectively. In Eq. (1)
n and m are integers ranging from zero to
infinity. By considering a rotation matrix it
is trivial to show that the spatial power spec-
trum should be independent of the projection
angle.

Here, we analyse this magnetohydrody-
namic “song” seen at Musca, a molecular
cloud located at ∼ 150 parsecs from Earth11.
Due to its very elongated and strikingly or-
dered morphology and its low column den-
sity, Musca is considered to be the proto-
type of a filamentary/cylindrical molecular
cloud7,12−15 against which many theoretical
models are put to test. For this reason,
a robust reconstruction of its 3D structure
would have a wide-range significance in in-
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Figure 1 | The observed and simulated Musca molecular cloud Upper panel:
Herschel 250 µm dust emission map of the Musca molecular cloud depicting both stria-
tions and the dense elongated structure. The green rectangle marks the region where we
have performed our normal-mode analysis and the blue arrow shows the mean direction of
the magnetic field. Grid lines show the sky equatorial coordinates. Lower panel: Edge-on
view of the molecular gas column density from our MHD simulation of a sheet-like structure.
The color bar shows the logarithm of the column density. The magnetic field is along the z
axis.
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Figure 2 | Comparison of observed normal modes with analytical solution Left
panel: Normalized power spectra of cuts perpendicular to the striations (black lines) along
with the identified peaks marked with red dots. Right panel: Distribution of peaks at
different spatial frequencies. The red lines depict the values used to derive the dimensions
of the cloud. The blue dashed lines show the rest of the normal modes (up to n, m =
2), predicted analytically from Eq. (1) given the cloud dimensions derived from the first
two peaks. Shaded regions indicate the 1σ regions of the analytical predictions due to
uncertainties in the determination of the location of the first two peaks, propagated through
Eq. (1). The bin size is comparable to the standard deviations of the points comprising the
first two peaks.
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terstellar medium physics. Musca has been
mapped by Herschel as part of the Gould
Belt Survey7 and exhibits clear striations ori-
ented perpendicularly to the main body of
the cloud. In the upper panel of Fig. 1 we
show the Herschel-SPIRE 250 µm dust emis-
sion map of Musca. The blue arrow marks the
mean direction of the magnetic field7. The
green rectangle marks the region inside which
we have considered cuts perpendicular to the
long axis of striations in order to study their
spatial power spectra (see the Methods sec-
tion ‘Observations’ for details on the selec-
tion of the green region). We have verified
that our selection of the green rectangle does
not introduce biases by performing the same
analysis in other regions as well. The spa-
tial frequencies that appear in these regions
are practically identical to the ones presented
here. This further strengthens the theoretical
prediction that striations are normal modes.

The normalized power spectra from all cuts
and the distribution of the identified peaks
are shown in the left and right panels of Fig. 2
respectively. The value of the first peak in the
left panel of Fig. 2 has to correspond to (n,
m) = (1, 0) which, assuming Lx is the largest
dimension of the cloud, yields Lx = 8.2±0.3
parsecs. This value is in excellent agreement
with the observed size of the cloud on the
plane of the sky7,13,16. The second peak could
correspond to either (n, m) = (0, 1) or, in
the case of a cylindrical cloud with Lx � Ly,
to (n, m) = (2, 0). However, with Lx ∼ 8
parsecs, the (n, m) = (2, 0) peak lies at k
∼ 0.8 (parsec)−1, much higher than the ac-
tual location of the second peak. Thus, this
second peak has to correspond to (n, m) =

(0, 1). Inserting (n, m) = (0, 1) and the
value of the second peak in Eq. (1), the hid-
den, line of sight dimension Ly is revealed to
be equal to 6.2±0.2 parsecs, comparable to
the largest dimension of the cloud. The rest
of the normal modes with their uncertainties
determined through error propagation (blue
dashed lines and blue shaded regions in right
panel of Fig. 2) are predicted analytically
by inserting these values for Lx and Ly into
Eq. (1) and, as is visible from Fig. 2 (right),
are in excellent agreement with observations.
Thus, in contradiction to conventional wis-
dom, Musca, once considered to be the pro-
totypical cylindrical/filamentary cloud, is in
fact a sheet-like structure seen edge-on.

In Fig. 2 we plot all the normal modes up
to m, n = 2. In reality, the shape of the cloud
is more complicated than a rectangle, exhibit-
ing higher order anomalies on smaller scales,
and the normal modes may be better fitted
considering a rectangle with rounded edges
or an ellipse. Thus, Eq. (1) will be an ade-
quate fit only to the normal modes in small
spatial frequencies, i.e. large physical scales.
Distinct peaks in the histogram of the spatial
frequencies are recovered in smaller scales as
well, up to the point where the density of nor-
mal modes becomes so high that any discrim-
inating power is lost.

Through ideal MHD simulations with self-
gravity, we proceed to construct a 3D model
of Musca, including the dense structure and
striations in the low-density parts. In the
lower panel of Fig. 1 we show the column
density map from the simulation that repro-
duces the observed dimensions of the cloud.
A 3D representation of the volume density of
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the model of Musca is shown in Fig. 3. As
intuitively expected from the analysis of the
observations, the shape of the cloud is that of
a rectangle with rounded edges.

The maximum column density in the simu-
lation, assuming an edge-on view like the one
presented, is 1.9 ·1022 cm−2. For comparison,
the maximum column density as derived ob-
servationally from dust emission maps7 is ∼
1.6 · 1022 cm−2. The maximum number den-
sity in the simulation is ∼ 2 · 103 cm−3, high
enough for molecules to be collisionally ex-
cited and observed. To date, molecular line
observations conducted towards the Musca
molecular cloud are limited to CO and its
isotopologues, and NH3

12−15, which is how-
ever only observed towards the densest core of
Musca. The number densities required to ex-
cite CO and NH3 lines are ∼ 102 and 103 cm−3

respectively17 which are well within the densi-
ties reached in the simulation of the model of
the cloud. In contrast, in order to reproduce
the observed column density in any filament-
like simulation, the number density has to be
of the order of ∼ 5 ·104 cm−3 or higher. If the
3D shape of Musca was that of a filament,
strong NH3 lines should be easily observed
throughout the ridge of the dense structure,
in contradiction to observations15. This could
be further tested with radio observations of
molecular lines with higher excitation den-
sities (or higher transitions of the molecules
mentioned above) or, better yet, with multi-
ple transitions of the same molecule.

We validate our analysis and verify that
Eq. (1) can be used to extract the correct
cloud dimensions with a suite of simulations
of clouds of different shapes. In all of our

simulations, the dimensions of the simulated
clouds are recovered by the normal-mode
analysis with excellent precision. In contrast
to the distribution of peaks seen in Fig. 2
(right panel), in cylindrical clouds (Ly� Lx)
the first few peaks in the low spatial fre-
quency part are all multiples of the first peak.
These first few peaks are only due to the
largest dimension of the cloud, resulting in a
much more sparse distribution of peaks (see
Extended Data Fig. 2). This is a quanti-
tatively and qualitatively different behaviour
than that seen in the Musca data (see Fig. 2),
further strengthening the case that the intrin-
sic shape of Musca is sheet-like.

The determination of the 3D shape of
clouds has been for decades a “holy grail”
for interstellar medium physics and has been
aggressively pursued through primarily sta-
tistical studies18−25 which however, do not
provide information on a cloud by cloud ba-
sis. Truly innovative methods previously pro-
posed to access the true shape of regions
inside clouds26−27 have relied on complex
chemical and/or radiative processes and thus
their results depend on many assumptions.
With our novel and robust result, Musca
can become the largest laboratory to a) de-
velop our theoretical models of star formation
and molecular cloud evolution b) expand our
knowledge on entire astronomical branches
such as astrochemistry and the properties of
interstellar dust grains and c) perform high-
precision observational measurements. This
discovery paves the way to unveil the 3D
shape of any isolated cloud where associ-
ated striations have been observed in its low-
density parts.

6



Figure 3 | 3D model of Musca molecular cloud The logarithm of volume density of
Musca in 3D as this is reproduced from our MHD simulation. Density isosurfaces are set
at 90%, 75%, 70% and 55% of the logarithm of the maximum number density. Black lines
represent the magnetic field.
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1 Methods

Observations In the observations we define
a cartesian coordinate system where the z
axis is aligned with the long axis of the stri-
ations and thus the magnetic field, as this is
probed by polarization measurements7, the y
axis is parallel to the line-of-sight (LOS), and
the x axis is perpendicular to the striations
on the plane-of-the-sky (POS). For deriving
the normal modes we select a region south of
the main filamentary structure (green rect-
angle in Fig. 1) and consider cuts along the
x axis. Gravity and other effects such as
shocks resulting from the collapse will im-
pact the structure of regions adjacent to the
dense filament. For this reason, the green re-
gion has been selected based on three criteria:
a) it is as far away from the dense filamen-
tary structure as possible so that additional
forces can be ignored compared to the effect
of MHD waves b) it has the largest possible
length so that we can retrieve all spatial fre-
quencies and c) the cuts are perpendicular
to striations throughout, so that small varia-
tions in the orientation angle of striations do
not affect our results. In order to increase the
signal-to-noise ratio in our analysis we aver-
age the intensity of z pixel values in every
three adjacent cuts along the x direction. We
then compute the spatial power spectrum of
each averaged cut using the Lomb-Scargle pe-
riodogram technique30−31. We have verified
that increasing the size of the region, select-
ing a region north of the main filamentary
structure and the uncertainties in the orien-
tation of striations results in only small vari-
ations in the derived dimensions. The uncer-
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tainty in the derived dimensions and in the
analytically predicted normal modes is cal-
culated from the uncertainty in the spatial
frequencies of the first two peaks through er-
ror propagation. For the uncertainty of these
spatial frequencies we take the standard de-
viations of the points comprising each of the
first two peaks. The adopted distance of
Musca in our analysis is 150 parsecs11. Ear-
lier estimates placed Musca at 200 parsecs32.
Adopting this larger estimate has no effect
on the quality of the fitting of normal modes
from Eq. (1) since this only depends on the
relative distance between peaks. However,
because angular size translates to a different
physical scale the derived dimensions change
to Lx = 10.4±0.4 and Ly = 8.3±0.2 parsecs.

More disk-like rather than triaxial oblate
clouds should exhibit normal modes given by:

kmn =
jmn

R
(2)

where R is a mean radius and jmn are the
roots of the derivative of the Bessel func-
tion of first kind. In the case of Musca, un-
like Eq. (1), Eq. (2) fails to fit the observed
modes, thus suggesting a more triaxial shape.
Simulations We have used the astrophysi-
cal code FLASH 4.433−34 to perform three di-
mensional, ideal MHD simulations with self-
gravity in Cartesian coordinates. To solve the
equations of ideal MHD we use the unsplit
staggered mesh algorithm35. This scheme
has distinct advantages over truncation-error
methods and ∇· ~B = 0 is satisfied at all times
to machine precision. In the interest of re-
ducing computational expenses and since we
are not interested in the fragmentation of any

dense structures created within the cloud we
use the standard FLASH multipole algorithm
to solve Poisson’s equation. To account for all
waves that can arise in the MHD equations
we use Roe’s solver for the Riemann prob-
lem. To minimize numerical diffusivity we
use van Leer’s flux limiter and third order in-
terpolation. Since Musca is an isolated cloud,
we model it as such by forcing normal veloc-
ity components to zero in guard cells. This
is achieved by setting all boundary types to
diode, i.e. non-reflective type of boundaries.
Thus, our choice ensures that any reflection of
waves occurs at boundaries naturally created
due to the contraction of the cloud and not
at the edges of our simulation box. Finally,
diode boundary conditions ensure there is no
mass influx during the evolution of our simu-
lations. All simulations have been performed
on a fixed resolution grid with 256×256×256
cells.

In our simulations we again define a Carte-
sian coordinate system such that the direc-
tion of the ordered field is along the z di-
rection and y represents the LOS dimension.
Through the Chandrasekhar-Fermi method36

and its more updated interpretation37, the
ordered value of the POS magnetic field to-
wards the Musca molecular cloud has been
observationally determined to be 12 ± 5 and
27 ± 11 µG respectively38. The number den-
sity value assumed in these estimates is 100
cm−3. Here, we adopt a conservative value
of 7 µG as an initial condition for our sim-
ulations which is within observational limits.
In all simulations, we additionally introduce
a perturbation in the x and y components of
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the magnetic field as:

Bx(z) = By(z) = δB−δBsin(kzz) (3)

where kz = π/Lz and δB was set equal to 10%
of the value of the unperturbed field. This
setup implies an Alfvén wave passing through
the computational box with wavelength twice
the size of the z direction. A constant temper-
ature of 14 K is used in all simulations. Ran-
dom perturbations with maximum amplitude
40% that of the background value are intro-
duced in density and thermal pressure in a
self-consistent manner such that isothermal-
ity is never violated. All velocity components
are initially set to zero in all simulations.

3D model of Musca The initial num-
ber density in our simulation of the model
of Musca is set equal to 100 cm−3. The di-
mensions of our simulation box are Lx = 10.0,
Ly = 8.0 and Lz = 3.5 parsecs. The x and y
dimensions of the simulation box are thus
higher than the values we have derived ob-
servationally. However, because of contrac-
tion due to self-gravity and pinching of the
field lines, the region where fast magnetosonic
waves are trapped is smaller than the simu-
lation box.

In Extended Data Fig. 1 we show the nor-
malized power spectra (left) and the his-
togram of the identified peaks (right) from
striations in this 3D model of Musca. The
derived Lx and Ly dimensions are 7.7±0.1
and 5.6±0.1 parsecs respectively, in agree-
ment with the dimensions of the resonating
region. Since the morphology of the dense
structure is that of a rectangle with rounded
edges (see Fig. 3), similar to the observations,

Eq. (1) is a good fit only to large physical
scales.

In Extended Data Fig. 2 we show the veloc-
ity of propagation of fast magnetosonic waves
in a mid-plane along the y direction. Changes
of magnetic field strength along the x direc-
tion due to pinching of field lines result in
clear variations in the propagation speed and
thus define boundaries where magnetosonic
waves are reflected. In 3D the boundaries re-
semble a square bowl with rounded edges.
The green rectangle in Extended Data Fig. 2
marks the region where we performed our
normal-mode analysis, at a comparable dis-
tance from the main dense structure as in
observations.

Benchmarking We have additionally per-
formed a large number of numerical simula-
tions considering various shapes and initial
conditions for density, in order to benchmark
our analysis. We demonstrate our results us-
ing a simulation of a filament-like structure
which however does not match Musca. The
dimensions of the box of this filament simu-
lation are Lx = 6.0, Ly = 2.0 and Lz = 2.0 par-
secs and the unperturbed value of density is
set equal to 200 cm−3. The column density
map as well as the normalized power spectra
are shown in top and bottom panels of Ex-
tended Data Fig. 3 respectively. All peaks
are due to and can be fitted by the largest di-
mension of the cloud alone, since the modes
from the shortest direction lie at much higher
spatial frequencies (k > 6). Thus, all the
peaks shown in the bottom panel of Extended
Data Fig. 3 correspond to m = 0 in Eq. (1).
The normal-mode analysis of striations in the
simulation yields Lx = 4.2± 0.1 parsecs and
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Ly� Lx, again in agreement with the size
of the resonating region. No normal modes
could be retrieved in simulations of a more
precisely cylindrical cloud (not shown). Due
to fragmentation at its rims39−40, pronounced
overdensities are also created at the edges of
vertical cuts to the striations which leads to
leakage instead of trapping of waves. None of
our cylindrical-like simulations could match
observations qualitatively or quantitatively.
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Chapter 4

The structure of prestellar cores

Observations have shown that the majority of dense prestellar cores lie within filaments (Men’shchikov
et al. 2010; Konyves et al. 2015). However, how prestellar cores are formed and the role that magnetic
fields have in their evolution is still a topic of hot debate. In a magnetically driven core formation
scenario prestellar cores are expected to have oblate shapes (Basu & Ciolek 2004; Ciolek & Basu 2006)
and magnetic field lines are expected to have an hourglass morphology and to be aligned with the
minor axis of symmetry of the core (see Chapman et al. 2013 for an observational survey on single
protostellar cores). Of central importance in distinguishing between opposing star formation theories
is the relation between magnetic-field strength (B) and gas density (ρ) in contracting prestellar cores
(B ∝ ρκ). Bayesian statistical modelling of magnetic field strength measurements through the Zeeman
effect (including detections and nondetections) from a large sample of cores have yielded a value for the
exponent κ equal to 2/3. However, this value can only be realized if the shapes of cores are spherical,
a scenario not favoured neither by observations nor by theoretical arguments. We have traced the
inconsistency to simplifying assumptions and especially to an underestimation of density uncertainties
and show that the available data do not support κ = 2/3. Additionally, we have analysed projected
shapes of cores from the same sample. Our results show that the shapes of the cores also do not
reconcile κ = 2/3 but are instead consistent with an ensemble of oblate cores projected randomly on
the plane-of-the-sky. Our results add to a body of evidence supporting that the evolution of individual
cores is controlled by magnetic fields (Mouschovias & Ciolek 1999).
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ABSTRACT
We revisit the relation between magnetic-field strength (B) and gas density (ρ) for
contracting interstellar clouds and fragments (or, cores), which is central in observa-
tionally determining the dynamical importance of magnetic fields in cloud evolution
and star formation. Recently, it has been claimed that a relation B ∝ ρ2/3 is statis-
tically preferred over B ∝ ρ1/2 in molecular clouds, when magnetic field detections
and nondetections from Zeeman observations are combined. This finding has unique
observational implications on cloud and core geometry: The relation B ∝ ρ2/3 can
only be realized under spherical contraction. However, no indication of spherical ge-
ometry can be found for the objects used in the original statistical analysis of the B−ρ
relation. We trace the origin of the inconsistency to simplifying assumptions in the
statistical model used to arrive at the B ∝ ρ2/3 conclusion and to an underestimate
of observational uncertainties in the determination of cloud and core densities. We
show that, when these restrictive assumptions are relaxed, B ∝ ρ1/2 is the preferred
relation for the (self-gravitating) molecular-cloud data, as theoretically predicted four
decades ago.

Key words: diffusion – ISM: magnetic fields – ISM: clouds – MHD – stars: formation
– methods: statistical

1 INTRODUCTION

Whether interstellar magnetic fields play a role in the for-
mation of clouds and stars or are affected by cloud and/or
star formation are old questions that predate the discovery
of molecular clouds. Mestel & Spitzer (1956) were concerned
that the estimated very high electrical conductivity of the
interstellar gas implies that the magnetic flux is frozen in the
matter and, in the then prevailing picture of star formation
(Hoyle’s spherical collapse and hierarchical fragmentation),
magnetic fields would prevent fragmentation and star for-
mation. For this reason, they suggested that ambipolar dif-
fusion (the motion of electrons and ions together with mag-
netic flux relative to the neutrals) would set in at some stage
and allow a cloud to reduce its magnetic flux and thereby
fragment and collapse to form stars.

The first testable prediction of magnetic-field strengths
in clouds destined to form stars was given by Mestel (1965).
A cloud collapsing spherically and isotropically while con-
serving its mass (M) and magnetic flux (ΦB) implies a re-
lation between the magnetic-field strength and gas density:
M ∝ ρR3 = const, ΦB ∝ BR2 = const′. Hence, eliminating
the cloud radius R in favor of the density ρ from the two

conservation laws yields a scaling between the field strength
B and the density: B ∝ ρ2/3.

Verschuur (1969) summarized the results of Zeeman
measurements of the field strength in nine HI clouds
on a log(B) – log(n) plot, where n is the number density
(particles/cm3) and concluded, as did other workers, that the
measurements were in agreement with that theoretical prediction
– without, however, performing an actual fit to those data.

Mouschovias (1976a, b) provided the first self-consistent for-
mulation and solution of the problem of the equilibrium of self-
gravitating, isothermal, magnetic clouds embedded in a hot and
tenuous intercloud medium. He also considered the implication
of the contraction of such clouds (or fragments) on the B – ρ
relation. In the deep interior of each cloud, he found that the
ratio of magnetic and gas pressures, α ≡ B2/8πP , tends to re-
main constant during contraction. In fact, it tends to retain a
value near unity. For isothermal contraction, P = ρnC2, where
C = (kBT/m̄)1/2 is the isothermal speed of sound at tempera-
ture T and mean mass per particle m̄; the quantity kB is Boltz-
mann’s constant. Hence, Mouschovias’ result α ≈ 1, specialized to
isothermal contraction, yields B ∝ ρ1/2. For an equation of state
P ∝ ργ , the relation between B and ρ becomes B ∝ ργ/2 (see
review by Mouschovias 1991b). An analysis by Crutcher (1999) of
a larger sample of clouds than that used by Verschuur, with mea-
sured magnetic-field strengths and number densities (greater than
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Figure 1. Different geometries of contracting clouds and magnetic fields examined in §2.1. Black arrows represent the direction of the
magnetic field and bold red arrows the direction of contraction. The B ∝ ρ2/3 relation is uniquely associated with spherical contraction
and, therefore, has unique observational implications.

100 cm−3), found a best-fit exponent of 0.47 for the B−ρ scaling,
in agreement with the theoretical prediction. Detailed numerical
simulations by Fiedler & Mouschovias (1992, 1993) predicted a
slope κ = 0.47 for contracting cores formed by gravitationally-
driven ambipolar diffusion and evolving from initially magneti-
cally subcritical to supercritical states. More recently, Li et al.
(2015) inferred κ = 0.41 from observations in the massive star
forming region NGC 6334. For lower densities, although the the-
oretical prediction for an evolving cloud was κ ≈ 0 (because self-
gravity is not strong enough to compress the cloud perpendicular
to the field lines), the observational picture has generally been
less clear, with various scaling exponents derived empirically (see
Vallée 1997 and references therein; Marchwinski 2012) for sets of
clouds observed at the same time.

Crutcher et al. (2010, hereinafter referred to as CWHFT10)
revisited the scaling between B and ρ for a yet larger sample
of both low-density (primarily HI) and high-density (primarily
molecular) clouds. They used a Bayesian statistical analysis that
allowed them to treat nondetections and varying angles between
the magnetic field and the line of sight, and they optimized a fam-
ily of models consisting of a uniform distribution of magnetic-field
values between some minimum and maximum, with the maxi-
mum having two distinct branches in its behavior (on a logB –
logρ plot): a flat part at low densities (B independent of ρ), and
a power-law scaling at higher densities (B ∝ ρκ), with the expo-
nent κ, the break density ρ0, and the width of the magnetic-field
strength distribution being the free parameters of their model.
Their conclusion was that the data prefer κ ≈ 2/3 and reject
κ ≈ 1/2. They took this result to be an indication of “isotropic
contraction of gas too weakly magnetized for the magnetic field
to affect the morphology of the collapse.”

In this work, we examine more closely the observational im-
plications of different geometries of contraction on the B – ρ rela-
tion. The distribution of forces in a cloud determines its evolution,
including its geometric shape and the associated B – ρ relation.
Although a given (or observed) B – ρ relation does not necessarily
imply a unique geometric shape of a cloud, it is nevertheless the
case that a given (or observed) B – ρ relation can only be found
in a very restricted set of geometric shapes, which in turn re-
strict the kind of motions capable of producing those shapes and
the B – ρ relation. Here, we test whether the observed shapes of
the objects (clouds and cores) on which the latest B – ρ relation
study (that of CWHFT10) has been based are consistent with the

underlying geometries in which the claimed scaling (B ∝ ρ2/3)
could develop.

In §2.1 we summarize the B – ρ relations implied by different
cloud geometries that could be established by the evolution of
molecular clouds with frozen-in magnetic fields (no significant
ambipolar diffusion). Density maps of clouds and cores used in
CWHFT10 are examined in §2.2, testing for consistency between
geometry and the exponent κ. The value κ = 2/3 claimed by
CWHFT10 cannot be reconciled with the observed cloud shapes.
The source of the discrepancy lies in various assumptions of the
CWHFT10 analysis, as we show in §3. Relaxing the problematic
assumptions, we reconcile the observed shapes and the B – ρ
relation in §4, and we show that the value κ = 1/2 is preferred by
the data over the value κ = 2/3. We summarize the conclusions
in §5.

2 CLOUD GEOMETRY AND THE B – ρ
RELATION

In this section we address the connection between the slope of
the B – ρ relation and the cloud geometry. First, in §2.1, we
investigate theoretically the B – ρ relation implied by different
geometries of clouds and magnetic fields. Then, in §2.2, we exam-
ine the shapes of objects in the CWHFT10 sample and whether
they are consistent with the claimed slope κ = 2/3.

2.1 B – ρ Relations Implied by Different
Geometries

2.1.1 Disklike or Slab Cloud with B in the Plane of the
Disk

We first consider an oblate (disklike) cloud of half-thickness Z0

and arbitrarily large radius R0, uniform density ρ0, threaded by
a uniform magnetic field B0 in the plane of the disk (see Fig.
1a). A slab-shaped cloud is a special case of this. Contraction
perpendicular to the plane of the disk to a new half-thickness Z
increases the density and the magnetic field by the same factor,
Z0/Z; hence, B ∝ ρ. One should note that, for this kind of con-
traction, the gravitational force per unit mass perpendicular to
the plane of the disk on a fluid element initially at z depends only
on the column density ρz, which does not change upon contrac-
tion. However, the magnetic-pressure force per unit mass on that
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same fluid element, |−∇B2/8π|/ρ, increases upon contraction as

(Z0/Z)2. Consequently, even if such contraction sets in for some
reason, magnetic forces will eventually stop it.

We now consider the same oblate cloud, threaded by the
same magnetic field, but now the cloud is allowed to contract
only along the field lines (see Fig. 1b); i.e., the half-thickness (or
polar radius) Z0 does not change, but the local extent of the
cloud along field lines (∝ R0 cos θ, where θ is the angle between
the field lines and a line from the cloud’s centre to the point of
interest on the rim of the cloud) decreases such that the density
increases uniformly in the cloud model. The ultimately resulting
shape is in general one of a prolate, triaxial object, a “filament”
perpendicular to the field lines. The motions that created this fil-
amentary cloud do not by themselves change the strength of the
magnetic field; hence, B ∝ ρ0, i.e., B is independent of ρ. How-
ever, the increased density in the filamentary structure implies a
stronger gravitational field along the filament, toward the centre
of the original oblate cloud. Will this filament fragment along its
length to form at least one more-or-less spherical core?

If this filament contracts as a whole along its length, an
argument similar to the one in Mouschovias (1976b) shows that
the magnetic-tension force near the ends of the filament increases
more rapidly than the gravitational force, so such contraction
(perpendicular to the field lines) can more easily take place in the
central part of the filament. If a fragment (or core) is to separate
out and contract gravitationally in this region, its mass-to-flux
ratio must exceed the critical value for collapse,

µcr ≡
(

M

ΦB

)

cr

=
( σ

B

)
cr

≈ 1√
63G

(1)

(Mouschovias & Spitzer 1976). The quantity σ is the column den-
sity along field lines (in g cm−2), and B is the magnetic field
strength. (The constant on the right-hand side of eq. [1] has a
slight dependence on the geometry of the cloud.) If the original
size of the cloud, both parallel and perpendicular to the field lines,
is very large, then the resulting filament will also be very long,
and it is possible for several fragments to separate out along its
length, provided that criterion (1) is satisfied for each. The ther-
mal critical mass per unit length of a filament, 2C2/G (Ostriker
1964), is not a relevant quantity for the fragmentation of a fila-
ment threaded by a magnetic field perpendicular to its long di-
mension. For each fragment, B ∝ ρ1/2 for as long as the magnetic
field remains frozen in the matter. Detailed numerical simulations
(Fiedler & Mouschovias 1992, 1993) showed that ambipolar diffu-
sion sets in in the interiors of initially subcritical molecular clouds
and leads to an increase in the mass-to-flux ratio toward its criti-
cal value for collapse (see eq. [1]). Prior to establishment of critical
conditions, the magnetic-field strength increases by at most 30%
while the density can increase by a very large factor; hence, κ ≈ 0.
After the mass-to-flux ratio reaches its critical value, contraction
accelerates and proceeds with balance of forces along field lines
and as rapidly as magnetic forces allow perpendicular to the field
lines. These are the sufficient conditions for establishment of the
relation B ∝ ρκ with κ = 1/2. (Actually, the numerical sim-
ulations show that κ = 0.47, meaning that flux-freezing is not
perfect; some ambipolar diffusion takes place even during the dy-

namical stage of contraction – see Fiedler & Mouschovias 1993,
Fig. 9c.)

2.1.2 Disklike or Slab Cloud with B Perpendicular to the
Plane of the Disk

We now consider the same disklike cloud, threaded by the same
magnetic field as above, but now the field is perpendicular to the
plane of the disk (see Fig. 1c), with field lines “fanning out” out-
side the cloud, acquiring a characteristic hour-glass shape (not
shown in Fig. 1c because it is not essential for the present pur-
poses). Such oblate clouds are unavoidable if they form out of

lower-density interstellar gas in which the magnetic field has an

ordered component and, locally, the magnetic force is nonnegli-
gible relative to the gravitational force. The B ∝ ρ1/2 relation
implied by the gravitational, isothermal contraction of such a
cloud (both along and perpendicular to the field lines) as well
as its physical origin were described above in the Introduction
and at the end of the preceding subsection and they need not be
repeated here. Fragments can separate out in the interior of the
cloud and contract dynamically if their mass-to-flux ratio exceeds
the critical value for collapse given by equation (1). A magnet-
ically subcritical cloud can reach critical conditions because of
gravitationally-driven ambipolar diffusion, whose modern under-
standing is that it redistributes mass in the central flux tubes
of molecular clouds, where the degree of ionization is relatively
small (< 10−7), but it does not lead to flux loss by a cloud as a
whole (Mouschovias 1979).

2.1.3 Cylindrical or Filamentary Cloud with B Along the
Cylinder

Cylindrical model clouds threaded by a magnetic field along
the axis of symmetry of the cylinder (see Fig. 1d) were stud-
ied exhaustively by Mouschovias & Morton (1991, 1992a, 1992b).
During lateral contraction (perpendicular to the symmetry axis
and the magnetic field), both the instantaneous density ρ and
magnetic-field strength B of a fluid element at instantaneous
cylindrical polar radius r increase as 1/r2; hence, B ∝ ρ. The
gravitational force per unit mass at the position of the fluid el-
ement increases as 1/r, while the magnetic force per unit mass
increases as 1/r3. Consequently, the magnetic forces will stop
such contraction at some stage. There is neither a critical mass
per unit length nor a critical mass-to-flux ratio per unit length for
such self-gravitating filaments to suffer collapse (see Mouschovias
& Morton 1991, discussion following eq. [38]). The evolution of
such model clouds was followed numerically by Mouschovias &
Morton (1992a, b); the density quickly acquires a spatial profile
approximated by 1/r2.

2.1.4 Cylindrical or Filamentary Cloud with B
Perpendicular to the Cylinder

The case in which the magnetic field is perpendicular to the axis of
the cylinder (Fig. 1e) is similar to the one discussed in §2.1.1 above
– the object that started as an oblate (disklike) cloud threaded
by a magnetic field in the plane of the disk and then contracted
primarily along the field lines to acquire a triaxial, prolate shape
perpendicular to the field lines.

2.1.5 Cylindrical or Filamentary Cloud with B at an
Angle with respect to the Cylinder

If the magnetic field is at an angle with respect to the axis of the
cylindrical cloud, one might think that its component along the
axis would ensure that there is no critical mass or mass-to-flux
ratio for lateral collapse, while its component perpendicular to
the axis would bring in the Mouschovias & Spitzer (1976) critical
mass-to-flux ratio for collapse and/or fragmentation of the cloud
in both directions. Then the longitudinal component of B would
tend to increase as ρ, while the lateral component would tend to
increase as ρ1/2. Unfortunately, the effect of the magnetic field
on the evolution of a cloud cannot be deduced correctly by con-
sidering separately the effect of each of its components and then
superimposing the two results. To visualize the behavior of a pro-
late cloud threaded by a magnetic field at an angle with respect
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to its length, we consider two cases: (a) B is almost perpendicu-

lar to the axis of the cylinder (see Fig. 1f), and (b) B is almost
parallel to the axis (see Fig. 1g).

In case (a), motions along the field lines can, in principle,
take place and make the extent of the cloud along B as small as
thermal-pressure and/or turbulent-pressure forces allow. If only
this evolution took place, B would be independent of ρ. How-
ever, for self-gravitating fragments (or cores) to form, destined
to collapse and form stars, contraction perpendicular to the field
lines has to take place as well. This brings in the critical mass-
to-flux ratio given by equation (1), and the relation B ∝ ρ1/2 is
established again.

In case (b), motions along field lines can transform the cylin-
der into an oblate (disklike) object or even break it up into sev-
eral such oblate objects, with hardly affecting the magnetic-field
strength. However, as we have already seen, for an oblate object
to collapse its mass-to-flux ratio has to exceed the critical value.
Evolution beyond that state results in the relation B ∝ ρ1/2.
How the fragmentation of an initially critical magnetic flux tube
affects the B – ρ relation depends on the number of fragments
that may form along the flux tube, and is discussed in detail in
Mouschovias (1991c; see § 2.4 and Fig. 1 therein).

2.1.6 Spherical Cloud

TheB – ρ relation implied by spherical, isotropic contraction (Fig.
1h) was discussed in §1. The relation B ∝ ρ2/3 is unique among
B – ρ relations in that only spherical contraction can cause it. If
contraction along field lines is more rapid than perpendicular to
the field lines, the exponent κ in the relation B ∝ ρκ becomes
less than 2/3. If the opposite is true, the exponent κ becomes
greater than 2/3. Thus the recent claim by CWHFT10 that Zee-
man and density observations, taken in aggregate, yield B ∝ ρ2/3

has unique, observationally testable implications on the shapes of

the observed objects (clouds or cores): they must be spherical.
The severe constraint on the geometry that can produce the

B ∝ ρ2/3 relation does not get relaxed by a random compo-
nent of B dominating its ordered (or mean) component inside
the observed object (cloud or core)1 . While a completely ran-
dom component of the magnetic field does not introduce a spatial
anisotropy that would tend to destroy the spherical geometry and
the B ∝ ρ2/3 relation, it does not enter the B – ρ relation, and
it also does not contribute to the observed line-of-sight B. The
B – ρ relation refers to the mean B, and Zeeman observations
measure that field’s component along the line of sight.

2.2 Observational Determination of CWHFT10
Cloud Shapes

The conclusion that the exponent κ = 2/3 requires spherical
clouds and cores is difficult to reconcile with the CWHFT10 re-

1 In any case, at core scales (smaller than about 0.1 pc), the mag-
netic field is both observed (e.g., Girart et al. 2006, Chapman et
al. 2013) and theoretically expected (Mouschovias 1987a) to be
dominated by an ordered component. The reason is that, because
of magnetically-driven ambipolar diffusion, a random component
ofB cannot be sustained on scales smaller than the Alfvén length-
scale, λA = πvAτni, where vA = B/(4πρ)1/2 is the Alfvén speed
in the neutrals, and τni is the slowing-down time of a neutral
particle due to collisions with ions; for typical molecular clouds,
λA = 0.1 pc (Mouschovias 1987a; 1991a). The timescale for
straightening out field lines that are tangled on a scale l is propor-
tional to l2 and, for typical molecular cloud densities (103 cm−3),
magnetic fields (30µG), and core sizes (0.1 pc), is much smaller
than the free-fall time. (e.g., see Mouschovias et al. 2011).
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Figure 2. ArchivalHerschel-SPIRE 250µm dust continuum emis-
sion map of the core NGC2024. The star represents the coordi-
nates of the core as reported by Falgarone et al (2008). The inset
image is the outcome of our data processing and the black lines
represent the principal axes of the core.

sult at high densities. Although the shapes of molecular clouds
and their fragments are an important part of the debate on the
process that regulates cloud evolution and star formation, spher-
ical clouds and cores are not a contender in either the theoretical
or the observational arguments.

According to theory, if ambipolar diffusion is the agent
mainly responsible for core formation, then the cores are ex-
pected to be flattened along the magnetic field because magnetic
forces act only perpendicular to the field lines. Thus, the expected
shapes are oblate (Mouschovias 1976b; Fiedler & Mouschovias
1993), although not necessarily axisymmetric (Basu & Ciolek
2004; Ciolek & Basu 2006; Kudoh & Basu 2011). If cores form as
the result of converging turbulent flows (e.g., see review by Mac
Low & Klessen 2004), then they are expected to have random,
triaxial shapes, with a slight preference for prolateness (Gammie
et al. 2003; Li et al. 2004). Predominantly spherical cores and
clouds are not expected by any formation mechanism.

Observationally, the issue is how to distinguish between
oblate and prolate intrinsic shapes from two-dimensional pro-
jections. Spherical clouds and cores are straightforward to spot
even in projection: their two-dimensional projections are circles
and the aspect ratio of the projected shapes is very sharply
peaked at 1. Early work on core shapes, assuming axial symmetry,
seemed to favour prolate cores (Myers et al. 1991; Ryden 1996).
However, subsequent investigations which relaxed the axisymme-
try assumption have consistently yielded triaxial, preferentially
oblate core shapes (e.g., Jones, Basu & Dubinski 2001; Jones &
Basu 2002; Goodwin, Ward-Thompson & Whitworth 2002), in-
dependently of tracer or core sample. Tassis (2007) and Tassis
et al. (2009) found strong indications for triaxial, preferentially
oblate cores. Spherical cores and clouds on the other hand are not
common in nature.

However, it may still be possible that the molecular sam-
ple used in the CWHFT10 study does contain an unusually high
fraction of spherical objects, which would be consistent with their
finding of B ∝ ρ2/3. To test for this possibility, we have calcu-
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Figure 3. 250µm dust continuum emission maps from the Herschel Science Archive. Black lines represent the principal axes of the cores.
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Figure 4. 500µm dust continuum emission maps from the Herschel Science Archive. Black lines represent the principal axes of the cores.
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Figure 5. 13CO line emission maps of the J=1-0 transition from the FCRAO survey. Black lines represent the principal axes of the
cores.

lated aspect ratios of plane-of-the-sky maps for as many of the
objects of CWHFT10 as we could find appropriate data.

We used dust continuum emission images from the online
data archive of the Herschel Space Telescope (Pilbratt et al. 2010)
observed with SPIRE at 250 µm and 500 µm to create maps of
18 of these objects, and 13CO line emission data of the J=1-
0 transition from the FCRAO survey of the Taurus molecular
cloud (Goldsmith et al. 2008) for another 9 of them. The maps
were centered on the coordinates given by Troland & Crutcher
(2008) and Falgarone et al. (2008) as referenced by CWHFT10.
The angular sizes of the maps were 3 to 4 times the typical sizes
of cores. The method we used to calculate the aspect ratios is
based on the first and second moment of the flux density and
is described in detail by Tassis et al. (2009). In certain cases,
cores, as projected on the plane of the sky, are closely spaced;
for this reason, flux from a nearby core can severely affect the
aspect ratio of the object under examination. To avoid this, we
performed a visual inspection to select a region that contains
only one core. Finally, in order to remove the background which
can also affect the analysis, we set a threshold and calculated the
aspect ratio only from the pixels whose intensity was greater than
the mean intensity of the final region (e.g., see Fig. 2 and inset).
The resulting maps of the cores, along with their principal axes
and their aspect ratios, are presented in Figures 3 - 5.

Even visual inspection of these maps reveals that these ob-
jects do not appear to be spherical. Indeed, only 4 of these ob-

jects have an aspect ratio consistent with a spherical geometry.
The mean value of the aspect ratios as computed here is 0.63,
suggesting that in our sample of cores the preferred geometry is
a flattened, oblate one (Fig. 6). We therefore conclude that the
shapes of the cores in the CWHFT10 sample are not consistent
with the spherical geometry implied by the B ∝ ρ2/3 relation.

In our theoretical analysis of shapes, we considered only the
case of a pure dataset following a specific geometry and evolution-
ary path. It is also conceivable that a mixture of different object

geometries, each with its own B – ρ relation, could yield a value
of κ different from the values characterizing the individual ob-
jects, including possibly κ = 2/3. In order for such a scenario to
be realized, objects with both smaller values of κ (i.e., 1/2 or 0)
and greater values of κ (i.e., 1) need to be present in the sample.
As discussed in §2.1, values of κ greater than 2/3 can be pro-
duced by one-dimensional contraction of a disklike (oblate) cloud
with its magnetic field parallel to the plane of the disk, or the
lateral contraction of a long cylindrical cloud with its magnetic
field along the cylinder (see § 2). Both of these cases were found
to be unlikely in a combined study of cloud shapes and magnetic
fields using data for 32 clouds surveyed by the Hertz polarimeter
(Tassis et al. 2009, see their Figs. 2b and 2e). The latter possi-
bility is also contradicted by our study of the CWHFT10 core
shapes alone, as it would require a different aspect ratio distribu-
tion than the one shown in Figure 6. The CWHFT10 aspect ratio
distribution is similar in shape to the one of the sample studied
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Figure 6. Distribution of the aspect ratios of the cores for which
we could find observational data. The distribution peaks away
from unity, in contradiction to what is expected from spherical
geometry.

by Tassis (2007), and which was shown to be strongly peaked
around intrinsically oblate cores. Even a uniform shape distribu-
tion (equal number of oblate and prolate objects) would require
a much greater fraction of aspect ratios between 0 and 0.4. It
is therefore unlikely, given what we know regarding core shapes
and the orientation of their magnetic fields, that the CWHFT10
sample contains enough cores that evolve either as B ∝ ρ2/3 or
as B ∝ ρ to effectively “pull” the observed logB – logρ relation
away from a slope of 0.5.

3 TRACING THE SOURCE OF THE
DISCREPANCY BETWEEN
NONSPHERICAL SHAPES AND
CWHFT10’S κ = 2/3

We have found in §2 that the preferred model in CWHFT10 would
require spherical shapes, which are very rare among their observed
objects. In this section, we focus on tracing the cause of the dis-
agreement between the results of the CWHFT10 analysis and the
results of our own tests.

3.1 A joint treatment of HI and molecular clouds?

One likely culprit is the set of assumptions regarding the family
of models CWHFT10 used to describe their data. The conclu-
sion of CWHFT10 about the B − ρ relation is obtained through
a careful Bayesian analysis. Despite the important conceptual
and methodological advantages of Bayesian statistics in treat-
ing diverse datasets, Bayesian analyses are necessarily model-
dependent: they select the best parameter values in a specific
family of models to treat the data at hand; but they do not con-
vey information on how good a fit to the data the adopted family
of models is as a whole. For example, a Bayesian analysis can
always find a set of parameters of a normal distribution that best
describe a specific dataset, even if the data are not distributed

normally. However, that “best description” is actually a very poor

representation of reality.
A central assumption in the CWHFT10 family of models

that could be affecting their findings on the value of the expo-
nent κ is that concerning low densities (HI data), namely, that
the average magnetic field remains constant with density. This as-
sumption is problematic for two reasons. First, observationally, it
is not consistent with our empirical understanding of the behav-
ior of magnetic fields with density for HI clouds. Several values
of κ have been proposed, but the value κ = 0 has not been one
of them (e.g., see review by Vallee 1997). This has also been re-
ported by Marchwinski et al. (2012), who explicitly contrasted
their results to the model adopted by CWHFT10 at low densi-
ties. Second, if one forces data on the B – ρ plane on a horizontal
line at low densities and demands continuity of the B – ρ relation
between low- and high-density datapoints, one necessarily sets a
pivot point for the high-density part of the relation. If the value
of the magnetic field at the “transition density” n0 (the density
which separates the low-density and high-density branches of the
model) is too low, the value of κ for the high-density part of the
B – ρ relation will be forced to acquire greater values in order to
accommodate the magnetic fields at the highest densities.

We devise a “goodness of fit” test to quantify whether indeed
the assumption that the average magnetic field in HI clouds is
independent of density is consistent with the data, and whether
this assumption can affect the global model fit.

We start with the set of observed number densities for the
objects used in the CWHFT10 analysis. For each number density
ni, we randomly select a magnetic field according to the best
generalized model by CWHFT10. First we calculate the Bmax

value appropriate for ni through,

Bmax(n) =

{
B0, n < n0

B0(
n
n0

)α, n > n0
(2)

where B0 = 10 µG, n0 = 300 cm−3, α = 0.65. We then select
a total magnetic field Bi of the cloud from a uniform distribu-
tion with boundaries between f · Bmax and Bmax, as prescribed
by CWHFT10. To account for various orientations we multiplied
each Bi by cos(φ) randomly drawn from a uniform distribution be-
tween −1 and 1, to obtain the line-of-sight magnetic field BLOS,i.
We then “observed” this BLOS,i by drawing a random value from
a normal distribution with mean equal to BLOS,i and standard de-
viation equal to the actual observational uncertainty σB recorded
by CWHFT10 for the cloud with density ni.

In this way, we produce “mock” magnetic field observations
at the same densities as the CWHFT10 dataset that are consis-
tent with the CWHFT10 model for the magnetic field. We then
compare the mock data with the actual magnetic field measure-
ments through a Kolmogorov-Smirnov test. We perform the test
for (i) the entire dataset, (ii) just HI observations, and (iii) just
molecular observations. When we treat the entire dataset (HI and
molecular observations), the K-S p-value for the α = 0.65 case

was 19.7% - the model is acceptable. However, when we treat the
HI and molecular data separately, the picture changes: for the
molecular observations alone (where B is dependent on ρ accord-
ing to the CWHFT10 model), the p-value for α = 0.65 is only
5.2% - only marginally consistent with the data. In the case of
HI data, the K-S test p-value is only 0.35%: B ∝ ρ0 is not a good
description of the low-density data.

Figure 7 shows the cumulative distribution functions (CDFs)
of the measured line-of-sight value of the magnetic field, for the
different datasets, and demonstrates what happens when we com-
bine HI and molecular data: both HI and molecular datasets are
in poor agreement with the model, but in opposite directions: one
produces too few low values of B (data CDF starts out below the
model), and the other produces too many (data CDF starts out
above the model). Adding the two datasets together moves the
data CDF closer to the model.
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Figure 7. Cumulative distributions of the actual observations (dashed blue lines) and mock-observed values drawn from the CWHTF10
“best-fit” model (green solid lines) of each of the following cases: entire dataset (left), just molecular observations (middle), and just HI
observations (right).

We have therefore shown quantitatively in this section that
treating HI and molecular clouds jointly can affect the accept-
ability of a value of κ for the molecular branch of the model. For
this reason, for the remainder of this work, we treat the molecular
data by themselves.

3.2 An uncertainty of only a factor of 2 in volume
densities?

An additional potentially problematic issue in the CWHFT10
analysis is the estimate of uncertainties in the density of each
cloud/core. In CWHFT10 the issue is stated as follows: “Based
on our experience in making such estimates, we choose to trust
the inferred value within a factor of two, although the actual
degree of uncertainty is not precisely known” (Cructher et al.
2010). However, the uncertainty in the data is an important fac-
tor in any statistical analysis. Underestimated uncertainties can
make a dataset appear much more constraining than it really is.
For this reason, we try to assess the actual degree of uncertainty
for as many objects as possible by conducting a literature search
of density estimates for each object and examining the spread
between different estimates.

In approximately half of the total number of molecular data-
points given in Crutcher et al. (2010), volume densities are taken
from surveys different from those from which the magnetic field
data are taken. Even if the centre coordinates and angular resolu-
tion between the Zeeman survey and the one probing other physi-
cal parameters are the same, volume densities are usually derived
from CO and CS measurements (see appendices in Crutcher 1999,
and Falgarone et al. 2008). This introduces a bias since these
molecules provide information for regions different from those
where Zeeman emission occurs. Additional chemical assumptions,
as for example the N(H2)/N(CO) ratio and the depletion of the
species onto dust grains, can further complicate the picture (see
Tassis et al. 2012; 2014).

An example of the spread of volume-density estimates using
different tracers is DR21OH: Vallée & Fiege (2006) used 12CO

observations to determine the volume density of the core, which
they reported to be n(H2) = 3.4 × 105 cm−3. Mangum et al
(1991) used C18O observations to derive n(H2) ≥ 6 × 106 cm−3

for the same object. The difference is over an order of magnitude,
much greater that the factor of 2 used by CWHFT10. Further
uncertainties are introduced through the morphology of the cores.
In absence of a better practice, column densities are converted
to volume densities by assuming spherical geometry. However,
no real information exists for the line-of-sight size of the core.
It is clear from the above that the uncertainties in the volume
densities can be much greater than the factor of two adopted by
CWHFT10.

Studying the cited literature, we find that volume-density
values reported in CWHFT10 are not always consistent with
the references to which they are attributed, presumably as a re-
sult of updated data analysis (cores NGC2024, L1457S, L1457Sn,
L1495(6), L1534, L1544). In any case, the changes in the adopted
volume densities are indicative of the uncertainties introduced by
various choices in the data analysis.

Even if discrepancies greater than a factor of two are only
present in a small number of cases, since the total number of

points is small, the resulting effect on the statistical analysis of
the dataset can be significant. We find the greatest variations
for the more evolved cores; measurements of volume densities in
other literature sources are generally greater than the ones re-
ported in CWHFT10. Table 1 summarizes different volume den-
sity measurements for the fraction of CWHFT10 objects for which
a literature search yielded additional density estimates. Figure (8)
demonstrates the effect of density uncertainties on the slope of the
B – ρ relation in a simple way, focusing on datapoints with signif-
icant (> 3σ) measurements of the magnetic-field strength rather
than upper limits. Objects for which multiple measurements of
the volume density are available in the literature are shown in
color. If the lowest available measurements of the volume density
are used, the value of κ (apparent slope derived through log-log
regression on the B – ρ plane using detection-only data) is κll

= 0.58 (solid line). These points are consistent with the volume-
density values adopted by CWHFT10. If the highest available
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1.

measurements of the volume density are used, then κul = 0.46
(dashed line).

We can also quantify the statistical effect of the updated
uncertainties, by performing a Monte-Carlo simulation of the ap-
parent slope κ derived through a naive statistical analysis of mock
observations drawn from the CWHFT10 model with updated un-
certainties in the volume density where these are available (and
a factor of 2 when no additional information is available). Our
analysis is similar to that of Crutcher (1999): a single power law
is fitted through regression to the detections-only data (as de-
fined in Crutcher 1999: measured line-of-sight |B| in units of its
observational uncertainty greater or equal than 2.5). We repeat
the “experiment” 105 times. The distribution of κ values obtained
in this manner is shown in Figure 9. A Gaussian fit to the dis-
tribution shown yields a mean of 0.59 and a spread of 0.07: the
detections-only slope is nonconstraining, and can be anywhere
from ∼ 0.4 to ∼ 0.8 within 2σ (assuming the CWHFT10 model
is correct).

We conclude that there are several cases for which the true
uncertainty in the volume density is much greater than the factor
of 2 adopted by CWHFT10, and that the effect of changing the
adopted volume-density measurements within the range of esti-
mates found in the literature can have a very significant effect on
the B – ρ relation of at least detections-only data.

In order to quantify the effect of the large volume-density
uncertainties in the treatment of the entire datasets, we re-
peat the goodness-of-fit test of §3.1 for molecular objects only,
properly accounting for uncertainties in density: for objects for
which multiple volume-density estimates exist in the literature,
we choose a density uniformly distributed in the available range.
For other objects, we assign a density within a factor of two of
the CWHFT10 value. We calculate the cumulative distribution of
simulated (mock-observed) magnetic-field values and we check its
consistency with the cumulative distribution of actual magnetic-
field strength observations through a K-S test. The hypothesis
that the two distributions are the same is rejected at the 0.3%
level.
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Figure 9. Distribution of apparent slope κ derived through log-
log regression on the B – ρ plane of detection-only data for the
optimal model of CWHFT10, using updated volume-density un-
certainties.

The reason for this discrepancy can be seen in Figure 10,
which overplots data and model predictions on the B – ρ plane.
Using the same algorithm described above, we calculate, at each
density bin, the median simulated |Bz| (solid line) as well as the
|Bz| limits that contain 1σ (68%, dashed lines) and 2σ (95%,
dotted lines) of our simulated observations. On the same plot, we
overplot with red dots the measurements that come from molec-
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Table 1. Density measurements of various objects in CWHFT10.
Values from: Crutcher et al. 1999 (1); Mookerjea et al 2012 (2);
Troland & Crutcher 2008 (3); Hirota et al. 1997 (4); Motte et al.
2007 (5); Girart et al 2013 (6); Sarma et al 2013 (7); Saito et al.
2007 (8).

Core CWHFT10 value Other Measurements Ref.
(cm−3) (cm−3)

NGC 2024 1.3× 104 2× 105 (1)

S88B 1.3× 104 3× 105 (8)

3.4× 105 (7)

DR21OH1 3.4× 105 2× 106 (1)

1.36 × 108 (2)

2× 106 (5)

2× 107 (6)

DR21OH2 3.4× 105 4× 106 (1)

1.36 × 108 (2)

2× 106 (5)

2× 107 (6)

L1457S 1.3× 104 3× 103 (3)

L1457Sn 1.7× 104 4× 103 (3)

L1534 5.4× 103 1× 104 (3)

L1544 3.2× 103 1.3× 104 (3)

L1595(6) 4.1× 103 8.2× 103 (3)

B1 2× 104 3.2× 105 (4)

ular tracers in CWHFT10. The cause of the strain registered by
the K-S test between the CWHFT10 model and the data can be
clearly identified in this plot. While reasonable fractions of points
are within the expected 1σ and 2σ limits at various densities, they
are not symmetric about the expected median: a larger fraction
of points lies systematically below the median than above.

3.3 A flat distribution of magnetic field strengths?

A final potentially problematic assumption in CWHFT10 is that
of the shape of the probability distribution of magnetic-field val-
ues. CWHFT10 adopt a uniform distribution of B-values, be-
tween some minimum and some maximum value. There are two
issues arising from this choice. The first one is statistical. The uni-
form distribution is a convenient tool and significantly simplifies
statistical analyses when it can be used without loss of generality
or in absence of further information. However, it is always the
most restrictive option among all frequently used bi-parametric
distributions of the same variance σ2. The reason is that, for a
uniform distribution of finite width, the probability to have in-
trinsic (i.e., free of observational error) values of the quantity of
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Figure 10. Median (solid line), 1σ (dashed lines) and 2σ (dot-
ted lines) limits of the simulated |Bz | at each density according
to the CWHTF10 model, overplotted with molecular data from
CWHTF10.

interest at a distance greater than
√
3σ from the mean is exactly

zero. This means that this type of distribution cannot adequately
describe peaked distributions with tails. If a collection of data-
points that shows a preferred value (a peak) as well as outliers
(tails) is forced onto a uniform distribution of variable width, the
best fit that will be obtained by likelihood analysis is a uniform
distribution that completely misses the peak and stretches out
all the way to the farthest outlier. In terms of the B – ρ scal-
ing problem: in order to accommodate, say, a single abnormally
high value of the B–field at very high densities, the uniform B-
distribution has to stretch its maximum to very high values, and
this could again result in a steeper scaling than otherwise war-
ranted by the data. This effect of the uniform-distribution choice
is somewhat moderated by the treatment of observational uncer-
tainties (making the probability of observation of an outlier finite
due to observational error), but it is not clear that this is enough
to eliminate the bias that could potentially be introduced.

The second problem with the choice of a uniform distribution
of B-values is conceptual. CWHFT10 assign a physical interpre-
tation to the width of the best-fit uniform distribution they derive
from their data: that, since the best-fit distribution extends uni-
formly from almost zero to a maximum value, this implies that
there is no preferred value of the magnetic field in objects of a
specific density, and that this is additional evidence for the dy-
namical insignificance of magnetic fields, compounded with their
preferred 2/3 slope of the B – ρ scaling. However, if there were a
preferred value of the magnetic field in the interstellar medium,
but there were also outliers, the CWHFT10 uniform distribution
would miss it and, consequently, would lead to a misleading phys-
ical interpretation of the available data.

The first question we ask in addressing these issues is
whether a different family of distributions which is capable of de-
scribing peaked distributions with tails may be an equally good or
better fit to the magnetic-field data. Such a family of distributions
is the lognormal,

p(B) =
1

B
√
2πσ0

exp

[
− (lnB − lnBm,a)2

2σ2
0

]
, (3)
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which represents a Gaussian distribution of lnB centered at

lnBm,a and with spread σ0. We will identify optimal parame-
ters for a lognormal (instead of a uniform) distribution of in-
trinsic magnetic-field strengths, B, which is consistent with the
observed |Bz | values in a narrow density range (from 2 × 103 to
4× 103 cm−3). We have chosen that particular density range be-
cause it is well populated (27 observed objects) so that it provides
enough statistics to give a good sense of the underlying distribu-
tion, and narrow enough so that we can ignore any evolution with
density between points.

In order to determine parameters of this distribution, we
scan the two-dimensional parameter space of (Bm,a, σ0), and for
each pair we simulate a distribution of observed |Bz | with random
observation directions (uniform cos θ) and including Gaussian ob-
servational errors identical to the ones quoted in CWHTF10. The
resulting distribution is then compared to the distribution of ob-
served |Bz|. Since the purpose of this work is not to repeat the
sophisticated statistical analysis of CWHTF10 but simply to as-
sess the effect of relaxing the potentially problematic assump-
tions, we have not formally obtained a best-fit distribution; in-
stead, we selected the set of parameters that minimizes the K-S
statistic (yielding, in our case, a K-S p-value of 80% of the two
datasets to be drawn from the same distribution). This means
that a proper fit (for example, through a maximum-likelihood
analysis) may yield a slightly different set of optimal parame-
ters, which, if anything, will be an even better fit to the data.
The optimal parameters we have identified for the lognormal in
this narrow density range are ln(Bm,a/µG) = 2.57 and σ0 = 0.3,
respectively. We assign this distribution to a number density of
na = 2.61 × 103 cm−3, which is the average of the CWHTF10
quoted densities for objects in the density range we have consid-
ered. In the analysis that follows we assume that, for all densities
above 300 cm−3, the distribution p(B) remains lognormal with
the same σ0 at all densities, while Bm scales as

Bm(n) = Bm,a(na)

(
n

na

)α

. (4)

Figure 11 shows how the observed |Bz | values in the density

range we have considered compare to those expected from the
optimal lognormal B distribution and the CWHTF10 uniform
B distribution (assuming in both cases uniform viewing angles
cos θ and observational uncertainties as quoted in CWHTF10). It
is clear that the lognormal is a better match for the qualitative
behavior of the observed data.

Figure 12 shows the corresponding probability density func-
tions for the intrinsic magnetic-field strength B (instead of the
observed line-of-sight strength of the magnetic field, |Bz |) at the
number density na. The plot demonstrates how the CWHFT10
conclusion, that there appears to be no preferred value of the
magnetic field at a specific density in the interstellar medium,
because a wide uniform distribution is preferred over a much nar-
rower one, is a direct result of the constraining nature of a uni-
form distribution: the optimal lognormal, which we have shown
is a better qualitative description of the observed data, does show
a significant peak, corresponding to a preferred value at a given
density; however, significant tails exist. In contrast, the optimal
uniform distribution misses this peak, and extends to high and
low values in order to accommodate the tail values, giving the
false impression that the spread in intrinsic B needed to explain
the observed Bz is much greater than it is in reality.

4 RECONCILING THE B – ρ RELATION
WITH CORE SHAPES.

Having identified three potentially problematic assumptions in
the CWHFT10 analysis, we now re-evaluate the information their
(Bz , n) datapoints convey regarding the slope of the B – ρ relation
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Figure 11. Distribution of line-of-sight magnetic field values Bz

in the density range 2 − 4 × 103 cm−3. Blue histogram (solid
line): all observed objects (molecular data only). Green histogram
(dashed line): optimal lognormal distribution. Red histogram
(dashed-dotted line): CWHTF10 model (uniform distribution).

and we reconcile the latter with the lack of evidence for a prefer-
ence for spherical geometry in the CWHFT10 cores. We do so by:
(a) treating molecular (high-density) data on their own, since this
is where the debated scaling (B ∝ ρ2/3 vs B ∝ ρ1/2) arises; (b)
using updated uncertainties in the volume density where these
are available; and (c) using a lognormal distribution of intrinsic
magnetic-field strengths.

We repeat our goodness-of-fit tests of §3.1 using the optimal
lognormal distribution described in §3.3, with its mean scaled
with n with a slope α equal to either 0.65 (the CWHFT10 pre-
ferred value) or 0.5 (the historically preferred value due to the-
oretical expectations from magnetically-controlled gravitational
contraction and due to the empirical results from fitting a power
law to detection-only data). Figures 13 and 14 show the |Bz| –
n plane with lines corresponding to the median (solid), 1σ (long
dashes), and 2σ (short dashes) expected limits of mock obser-
vations drawn from the lognormal model, with slope α equal to
0.65 and 0.5, respectively. A K-S test between the observed and
simulated distributions of |Bz| values in the entire density range
of molecular datapoints, as in §3.2, returns a p-value of 7.5% for
observed and simulated data to be drawn from the same distri-
bution, for a scaling slope of 0.65; it returns a p-value of 15.2%
for a scaling slope of 0.5.

The agreement between data and model has improved sig-
nificantly even for a scaling slope of 0.65 (from 0.3% to 7.5%)
by switching from a uniform distribution of B-values to a lognor-
mal. This is achieved without changing the number of modeling
parameters; both uniform and lognormal are bi-parametric fam-
ilies of distributions. However, a slope of α = 0.5 is preferred
over α = 0.65, although the two cannot be distinguished at a
statistically significant level.
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Figure 12. Distribution of intrinsic magnetic-field strength B at
n = 2.61 × 103 cm−3. Green (dashed) line: optimal lognormal;
Blue (solid) line: CWHTF10 model (uniform distribution).
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obtained from the optimal lognormal p(B) and α = 0.65, over-
plotted with molecular data from CWHTF10.

5 SUMMARY

In this paper, we discussed ways to assess the relation between
the magnetic-field strength and the gas density in the interstellar

medium.
We reviewed the connection between the exponent κ in the

relation B ∝ ρκ and the geometry of a cloud. We showed that
specific combinations of cloud geometry and magnetic-field ori-
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Figure 14. Median (solid line), 1σ (long-dashed lines) and 2σ
(short-dashed lines) limits of the simulated |Bz | at each density
obtained from the optimal lognormal p(B) and α = 0.5, overplot-
ted with molecular data from CWHTF10.

entation result in different B – ρ relations, with B ∝ ρ2/3 being
unique to the spherical-cloud (or core) geometry.

In light of this result, we sought to verify whether the claim
of B ∝ ρ2/3 (at high densities) through the statistical analysis
of a large sample of density and magnetic-field measurements by
CWHFT10 is consistent with the geometry of objects in their
sample. To this end, we have studied emission maps in all 27 ob-
jects in the CWHFT10 sample for which such data were available.
We only found aspect ratios consistent with a spherical geometry
in 4 of them; the distribution of aspect ratios does not show any
preference toward unity, which would be the signature of spherical
shapes. We thus concluded that there is no evidence of preferen-
tially spherical objects in the CWHFT10, a result inconsistent
with a B ∝ ρ2/3 relation.

We then investigated the possibility that this disagreement
could be caused by simplifying assumptions in the CWHFT10
statistical analysis.

We first tested the effect of using a joint model for low-
and high-density data and forcing the low-density data to a con-
stant magnetic-field strength, independent of density. We used
Monte-Carlo simulations to produce mock observations from the
best CWHFT10 model with identical observational uncertainties
as the ones quoted in CWHFT10, and we used a Kolmogorov-
Sminrov test to determine whether the mock observations were
consistent with the data. We found that:

• When treating the two branches (HI and molecular) of the
CWHFT10 model separately, the low-density B ∝ ρ0 branch is
inconsistent with the data (p-value = 0.35%), while the high-
density branch is marginally consistent (p-value = 5.2%).

• These two branches deviate from the data in opposite direc-
tions, and, as a result, when we treat the combined dataset, we
find artificially improved consistency (p-value = 19.7%).

We therefore conclude that the finding of CWHFT10, that
a model with B ∝ ρ0 at low densities and B ∝ ρ2/3 at high
densities is the preferred description of observations of densities
and magnetic fields, is an artifact of their combined treatment of
low- and high-density datapoints.
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We also checked whether the uncertainty in volume densities

of a factor of 2 adopted by CWHFT10 is a good estimate, by trac-
ing literature sources and comparing different density estimates
for the same objects when these were available. We found that for
several objects the actual uncertainties, as reflected in the spread
of estimates in the literature, are much greater. When repeating
our consistency analysis between the high-density branch of the
CWHFT10 model and the data using updated volume-density
uncertainties, the agreement between model and data worsens,
with the p-value dropping to 0.3%. The reason for this is that the
additional density values available in the literature (especially at
the highest-density objects) tend to be greater, instead of being
symmetrically distributed about the value adopted in CWHFT10:
more recent estimates have generally produced upward correc-
tions in volume densities.

We investigated whether a lognormal distribution for p(B)
would yield better agreement with the data than the CWHFT10
uniform distribution. We found that it does.

Finally, we relaxed the three problematic assumptions, by (a)
treating molecular observations on their own, (b) using updated
volume-density uncertainties, and (c) using the optimal longormal

to model the distribution of magnetic-field strengths. We repeated
our goodness-of-fit K-S tests for the lognormal models, scaled with
density with slopes of 0.65 (the optimal CWHFT10 slope) and 0.5.
We found that the K-S test accepts both models. However there
is a preference for B ∝ ρ1/2 (by a factor of 2 in the p-value of the
K-S test), which is also preferred by the independent analysis of
cloud shapes. This result is in agreement with predictions of the
ambipolar-diffusion theory of star formation.
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Chapter 5

A new method for accessing the shapes
of cores

Motivated by the need for accurate density estimates we have developed a new method for probing the
shape of each prestellar core individually. With knowledge of the column density and the 3D shape
of the core calculating the volume density is then trivial. Previous methods for the determination of
the shape of prestellar cores on an object-by-object basis have been highly complex and with limited
application to observational data (Steinacker et al. 2005; Li & Goldsmith 2012).

For over 70 years, molecules have been the leading probes of the physical conditions of molecular
clouds and cores (see van Dishoeck & Blake 1998 for a review on interstellar chemistry). However,
molecular emission maps have never been used to probe the shape of cores. The dynamical and chemical
evolutions are coupled and thus different shapes translate to different abundance distributions (Aikawa
et al. 2002; Tassis et al. 2012). Furthermore, the length of the path of integration also differs depending
on the intrinsic shape of each core. Based on these two arguments we devised a method using integrated,
molecular emission maps to access the intrinsic structure of cores. We have demonstrated that our
method compared remarkably well with available observational data.
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ABSTRACT

We present a new method for assessing the intrinsic 3D shape of prestellar cores
from molecular column densities. We have employed hydrodynamic simulations of
contracting, isothermal cores considering three intrinsic geometries: spherical, cylin-
drical/filamentary and disk-like. We have coupled our hydrodynamic simulations with
non-equilibrium chemistry. We find thata) when cores are observed very elongated (i.e.
for aspect ratios ≤ 0.15) the intrinsic 3D geometry can be probed by their 2D molecu-
lar emission maps, since these exhibit significant qualitative morphological differences
between cylindrical and disk-like cores. Specifically, if a disk-like core is observed as a
filamentary object in dust emission, then it will be observed as two parallel filaments in
N2H

+; b) for cores with higher aspect ratios (i.e. 0.15 ∼ 0.9) we define a metric ∆ that
quantifies whether a molecular column density profile is centrally peaked, depressed or
flat. We have identified one molecule (CN) for which ∆ as a function of the aspect ratio
probes the 3D geometry of the core; and c) for cores with almost circular projections
(i.e. for aspect ratios ∼ 1), we have identified three molecules (OH, CO and H2CO)
that can be used to probe the intrinsic 3D shape by close inspection of their molecular
column density radial profiles. We alter the temperature and the cosmic-ray ionization
rate and demonstrate that our method is robust against the choice of parameters.

Key words: ISM: clouds – ISM: molecules – star: formation – methods: numerical

1 INTRODUCTION

The intrinsic 3D shape of prestellar cores holds important
clues about the star formation process since it is determined
by the interplay of forces responsible for cloud fragmenta-
tion and core formation. Unfortunately, the two dimensional
projection of a prestellar core on the plane of the sky probed
by dust emission maps can be identical for different intrinsic
3D core shapes (Figure 1). Knowledge of the 3D structure
of cores combined with observations that probe their kine-
matics and magnetic field could provide valuable insights as
to which is the predominant mechanism that regulates star
formation.

The significance of the problem has lead to numer-
ous statistical studies over the past few years. Myers et al.
(1991); Ryden (1996) and Curry(2002) each considered a
sample of dense cores and suggested that prestellar cores
have a preferentially prolate shape. More recent work (Jones,
Basu & Dubinski 2001; Jones & Basu 2002; Goodwin; Ward-
Thompson & Whitworth 2002; Tassis 2007; Tassis et al.
2009) has shown that most prestellar cores have an oblate
morphology. The theoretical picture is no clearer. In MHD
turbulent simulations (Gammie et al. 2003; Li et al. 2004)

evidence points towards triaxial cores, with a preference
to prolate shapes, whereas simulations where core forma-
tion is magnetically driven (Basu & Ciolek 2004; Ciolek &
Basu 2006) indicate that prestellar cores should have oblate
shapes. Spherical cores are not favoured in any of the studies
mentioned above as they would require all 2D projections to
be circular. However, close-to-round objects are observed in
nature, albeit seldom. Poidevin et al. (2014) analysed a sam-
ple of 27 cores in the Lupus I cloud using Herschel-SPIRE
350 µm data. They found that 3 cores had aspect ratios con-
sistent with that of a circular object. Similarly, Tritsis et al.
(2015) considered a sample of 27 cores from various clouds
and found that 4 had close to circular projections.

For circular objects, as projected on the plane of the
sky, dust emission maps alone cannot break the degeneracy
between disk-like, cylindrical and spherical cores. Dapp &
Basu (2009) considered analytical column density profiles of
prestellar cores and proposed:

Σ(x) =
Σc√

1 + (x/a)2
× arctan

(√R2 − x2

√
x2 + a2

)
(1)

as a column density profile appropriate for spherical cores.
Here, R is the radius of the sphere, x is the offset from the
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Figure 1. Total column density maps from our hydrodynamical simulations for a spherical (upper left), cylindrical (upper middle) and a
disk-like (upper right) core as seen face-on. The middle panel depicts the total column density maps for the cylindrical (left) and disk-like
(right) cores as seen edge-on. In the lower panels we show total column density maps for the cylindrical (left) and disk-like (right) cores
each seen at an angle such that the aspect ratio of their projections is ∼ 0.5.

centre, α is a parameter proportional to the Jeans length,
and Σc is the central column density. In the same paper
they find that the analytical expression for the column den-
sity profile for a thin disk viewed with its axis of symmetry
parallel to the line of sight (face-on) is:

Σ(x) =
Σc√

1 + (r/a)2
(2)

where r is the distance from the centre of the disk. For a
filamentary cloud, integration of the volume density profile
given in Arzoumanian et al. (2011) along the z-axis yields:

Σp(r) =
Σc

[1 + (r/Rflat)2]p/2
(3)

where Σc is column density on the axis of symmetry of the
cylinder, Rflat corresponds to the thermal Jeans length,
and the value of p is determined from observations to be
1.5 < p < 2.5. Thus, when the projections of all three
geometries considered here are circular, their total column

density profiles can in general be characterized by a flat in-
ner part followed by a power-law decrease which steepens
at large radii1. The ambiguity in the total column density
profiles between different shapes and projection angles has
also been pointed out by past numerical work (Boss & Hart-
mann 2001; Ballesteros-Paredes et al. 2003; Nielbock et al.
2012).

Despite the similarity of profiles in dust emission maps,
much effort has been made to derive the 3D density distri-
bution of prestellar cores from continuum observations. In
a pioneering work, Steinacker et al. (2005) fitted the con-

1 Observed column density profiles will deviate from the analyt-
ical expressions. A flaring disk seen face-on, will be observed as a
ring in a column density map despite the fact that the maximum
volume density is at its centre. However, the peak of the ring will
be less than a factor of two larger than the column density at the
centre of the disk.
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tinuum emission map with Gaussian functions and using an
inverse 3D radiative transfer technique they were able to
reconstruct the intrinsic structure of the molecular core ρ
Oph D. Lomax et al. (2013) fitted dust continuum observa-
tions from Ophiuchus, using Bayesian analysis with just one
free parameter but with the a priori assumption that the
intrinsic shapes were ellipsoids.

From the chemical point of view, comparison between
simulations and molecular observations can provide im-
portant clues about the dynamics and the shape of the
core. Keto et al. (2015) compared predicted spectra for
H2O (110 − 101) and C18O (1− 0) with observations from
the starless core L1544 for various spherical models. They
concluded that the contraction of the core was best approx-
imated by that of a quasi-equilibrium Bonnor-Ebert sphere.
Aikawa et al. (2003) were able to reproduce molecular col-
umn density profiles for the same core by adopting a Larson-
Penston solution for the dynamics.

Molecular observations alone have also been used to
estimate the line-of-sight dimensions of structures inside
molecular clouds. Li & Goldsmith(2012) were able to esti-
mate the line-of-sight dimension of the B213 region in Tau-
rus using HC3N (1 - 0) observations. They found that it was
comparable to the smaller projected dimension and much
smaller than the largest projected dimension, thus suggest-
ing a cylindrical geometry. On the other hand, Storm et
al.(2014) derived the line-of-sight dimensions of elongated
structures seen in Barnard 1 from the kinematics of the gas.
Interestingly enough, they found that the depths into the
sky for some of them were comparable to their plane of the
sky dimensions, thus suggesting a disk-like geometry.

Here, we present a new recipe designed to break the
shape degeneracies caused by projections on the plane of
the sky and probe a prestellar core’s 3D structure. Our
method is based on column densities of commonly observed
molecules and can be applied to each core individually. This
paper is organized as follows. In section § 2.1 we give an
overview of our model. Our chemical network and the pa-
rameters altered in our models are described in § 2.2 and
§ 2.3 respectively. We present our results in § 3. We give a
summary and discuss our conclusions in § 4.

2 NUMERICAL METHODS

2.1 Models of dynamically evolving cores

We have performed hydrodynamic simulations of self-
gravitating, isothermal cores in 1D spherical and 2D cylin-
drical symmetry using the astrophysical code FLASH 4.0.1
(Fryxell et al. 2000; Dubey et al. 2008). We consider 3 intrin-
sic shapes; spherical, cylindrical/filamentary and disk-like.
We solve the equations of hydrodynamics on an adaptive
mesh grid with maximum nine levels of refinement (includ-
ing the zeroth level). The maximum level of refinement yields
a resolution of ∼10 AU. We use the standard FLASH mul-
tipole algorithm to solve Poisson’s equation.

For each of our models, the initial density of the core
is uniform and equal to 103 cm−3. The extent of the com-
putational area for the spherical models is 0.55 pc. In the
cylindrical core models the axial and radial dimensions are
0.72 and 0.48 pc respectively. Finally, the size of the simu-
lated region in disk-like core models is 0.96 pc in the radial

direction and 0.57 pc in the axial direction. All modelled
cores shape have four or more Bonnor-Ebert masses for all
temperature values in our parameter study but with their
masses being consistent with the core mass function (CMF)
(Sadavoy et al. 2010). Thus, all cores are thermally super-
critical to collapse.

Our cylindrical model will eventually fragment in two
condensation at its edges with a mean separation of ∼ 0.36
pc in agreement to observations (Kainulainen et al. 2015).
However, for the intended purposes of the current paper, we
end our simulations before the fragmentation of the cylinder
proceeds at a stage where it cannot longer be considered a
continuous structure.

Since our 2D simulations are cylindrically symmetric
and in the interest of reducing computational cost we have
only simulated one quadrant. At the outer boundary normal
velocity components are forced to zero in guard cells so as
to have no mass influx. Inner boundaries for these models as
well as at both boundaries of our spherical model are reflec-
tive. We assume zero initial velocities in all dimensions and
allow the cores to collapse under their self-gravity. We termi-
nate each run when the central density reaches ∼ 107cm−3.

2.2 Chemical Network

We couple the dynamical models with non-equilibrium
chemistry and follow the abundances of 214 gas-phase and
82 dust grain species. The evolution of these species is gov-
erned by 13967 chemical reactions. The reaction rates of our
chemical network are adopted from the fifth release of the
UMIST database (McElroy et al. 2013). In Table 1 we list
all the species present in our network.

The initial elemental abundances, relative to the
total density, are [He] = 2.2× 10−1, [Si+] = 3.1× 10−8,
[N] = 3.3 × 10−5, [C+] = 1.1× 10−4, and [O] = 2.7× 10−4.
Approximately 98% of hydrogen is in molecular form with
the rest as H atoms. The total deuterium abundance is
1.87 × 10−5, with 33% in molecular form and 66% in the
form of HD. Thus, the C/O ratio is 0.4, the D/H ratio
1.6× 10−5, and the mean molecular weight is 2.4. The ini-
tial abundances of molecular species are [H2] = 7.6× 10−1

and [D2] = 6.2× 10−6. Therefore, at the beginning of each
simulation, the only molecules present are H2, D2 and HD.

FLASH is able to monitor multiple fluids. We have ap-
propriately modified the ionization unit which already has
multispecies capabilities build in, and treat each molecular
species as a different fluid. Thus, for each species a separate
advection equation is solved with chemical abundances cal-
culated after advection terms. The abundances of H2 and
D2 are calculated from the conservation of the total hydro-
gen and deuterium at the end of each timestep. We follow
the formulation of Tassis et al. (2012) to model gas-grain
interactions.

The abundance profiles from our chemical model were
compared with those of previous chemical studies (Tassis
et al. 2012) and were found to be in good agreement. The
results of these previous chemical runs were in turn exten-
sively compared with observations from a number of dense
cores (see Tassis et al. 2012 for a list of the observational
studies). The values obtained from these observations are,
within uncertainties, consistent with the range of predictions
obtained by the chemical models.
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Table 1. Chemical species considered

Gas phase species

H+ H H+
2 H+

3 He He+ C C+ CH CH+ CH+
2

CH2 N N+ CH3 NH+ CH+
3 NH NH+

2 O CH4 CH+
4

O+ NH2 CH+
5 OH OH+ NH+

3 NH3 H2O NH+
4 H2O+ H3O+

C2 C+
2 C2H+ C2H C2H

+
2 C2H2 CN CN+ HCN+ C2H

+
3 HCN

HNC Si+ C2H
+
4 H2NC+ Si N2 CO+ HCNH+ CO N+

2 HCO

N2H+ HCO+ H2CO H2CO+ NO NO+ H3CO+ CH3OH O2 O+
2 CH3OH+

2

C+
3 C3H+ C2N+ CNC+ C3H

+
3 CH3CN CH3CNH+ CO2 CO+

2 HCO+
2 HC3N

HC3NH+ D+ D HD+ D+
2 H2D+ HD+

2 D+
3 CD CD+ CHD+

CD+
2 CHD CD2 CH2D CHD2 CD3 ND+ CH2D+ CHD+

2 CD+
3 ND

NHD+ ND+
2 CH3D CH2D2 CHD3 CD4 CH3D+ CH2D

+
2 CHD+

3 CD+
4 NHD

ND2 CH4D
+
2 CH3D

+
2 CH2D

+
3 CHD+

4 CD+
5 OD OD+ NH2D+ NHD+

2 ND+
3

NH2D NHD2 ND3 HDO D2O NH3D+ NH2D
+
2 NHD+

3 ND+
4 HDO+ D2O+

H2DO+ HD2O+ D3O+ C2D+ C2D C2D
+
2 C2HD C2D2 DCN+ C2H2D+ C2HD+

2

C2D
+
3 DCN DNC C2H3D+ C2H2D

+
2 C2HD+

3 C2D
+
4 HDNC+ D2NC+ DCNH+ HCND+

DCND+ DCO N2D+ DCO+ HDCO D2CO HDCO+ D2CO+ H2DCO+ HD2CO+ D3CO+

CH2DOH CHD2OH CD3OH CH3OD CH2DOD CHD2OD CD3OD CH3OHD+ CH3OD+
2 CH2DOH+

2 CHD2OH+
2

CD3OH+
2 CH2DOHD+ CHD2OHD+ CD3OHD+ CH2DOD+

2 CHD2OD+
2 CD3OD+

2 C3D+ C3H2D+ C3HD+
2 C3D

+
3

CH2DCN CHD2CN CD3CN CH3CND+ CH2DCNH+ CHD2CNH+ CD3CNH+ CH2DCND+ CHD2CND+ CD3CND+ DCO+
2

DC3N DC3NH+ HC3ND+ DC3ND+ HD CHD2CNH+ CD3CNH+ CH2DCND+ CHD2CND+ CD3CND+ DCO+
2

C3H2 C3H C3H
+
2 C3HD C3D C3HD+ C3D2 C3D

+
2 H2 D2

Dust grain species

H C CO H2CO Si C2 O2 CH OH NO CH2

H2O CO2 CH3 CH4 HNC HCO C2H2 HC3N N2 CN NH
HCN C2H NH3 CH3CN CH3OH NH2 N O H2 CH2OH D

HDCO D2CO CD OD CHD CD2 HDO D2O CH2D CHD2 CD3

CH3D CH2D2 CHD3 CD4 DNC DCO C2HD C2D2 DC3N ND DCN
C2D NH2D NHD2 ND3 CH2DCN CHD2CN CD3CN CH2DOH CHD2OH CD3OH CH3OD
C2D NH2D NHD2 ND3 CH2DCN CHD2CN CD3CN CH2DOH CHD2OH CD3OH CH3OD
CH2DOD CHD2OD CD3OD NHD ND2 HD D2 CHDOH CD2OH CH2OD CHDOD
CD2OD C3H2 C3H C3HD C3D2 C3D

Table 2. Parameters used in each run.

Runs Temperature (K) Ionization Rate (s−1)

1 10 1.3× 10−17

2 14 1.3× 10−17

3 7 1.3× 10−17

4 10 5.2× 10−17

5 10 3.3× 10−18

2.3 Parameter Study

We study the sensitivity of chemical abundances on the tem-
perature and the cosmic-ray ionization rate by performing a
suite of simulations. The parameters altered in each run are
listed in Table 2.

For our reference run (i.e. run 1 in Table 2) we adopt
typical H2 cloud conditions. The temperature is set at 10 K,
and a standard value of ζ = 1.3× 10−17 s−1 is used for the
cosmic-ray ionization rate. For each shape, we consider mod-
els with T = 7 K and T = 14 K. We change the cosmic-ray
ionization rate a factor of four above and bellow the standard
value (ζ = 5.2 × 10−17 s−1 and ζ = 3.3× 10−18 s−1 respec-
tively). Thus, we have a total of 15 runs, 5 for each intrinsic
geometry. The initial abundances of metals are the same for
all runs.

3 RESULTS

We have produced and examined the column density maps,
in various projection angles, of the total density and of all
molecules present in our chemical network when the cen-
tral density for all three geometries is 106 cm−3. The total
column density maps of our simulated cores when these ap-
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Figure 2. Radial profiles of CO abundance (left) and CO column
density (right) for the three geometries. The disk-like and cylin-
drical core models are assumed to be viewed face-on. Abundance
profiles for the disk-like and cylindrical cores are taken to extend
radially from the maximum density point on the axis of symme-
try. The central density for all three geometries is 106 cm−3.

pear circular (i.e with aspect ratios ∼ 1), very elongated (i.e.
with aspect ratios ≤ 0.15), and with an aspect ratio of 1/2
are shown in the upper, middle and lower panels of Figure 1
respectively.

A two-dimensional projection of a spherical core will al-
ways be circular. Hence, candidates for spherical cores are
the easiest to identify. Nonetheless, an indistinguishable, cir-
cular shape can also result from the projection of a cylin-
drical or a disk-like cloud if viewed with their axis of sym-
metry parallel to line of sight (face-on) (see upper panel of
Figure 1). Therefore, even seeing a core as a close-to-round
object in a dust emission map does not necessarily imply
it is spherical. In the opposite case, when a disk-like and
a cylindrical core are observed with their axis of symmetry
perpendicular to the line of sight (edge-on), they would both
appear as elongated objects almost identical to one another
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Figure 3. Schematic definition of the parameter ∆ for a circular object. In the left panel we plot the total column density of our spherical
model. The green circle is a contour that marks 50% of the maximum of the total column density. The numerator of ∆ is the mean of
the molecular column density inside that contour (green hatched region in the right panel). The red circle is a contour that marks the
region of the core with total column density higher than a background value. The denominator of ∆ is the mean of the molecular column
density inside the red circle (red hatched region in the right panel). The molecular column density map here is that of CO for a spherical
geometry.

(see middle panel of Figure 1). The degeneracy amongst the
2D projections of a disk-like and a cylindrical cloud remains
for intermediate projection angles as well. In this case, both
intrinsic 3D shapes would manifest themselves as ellipsoids
with their aspect ratios depending on the projection angle.
This is shown in the lower panel of Figure 1 when the cylin-
drical (left) and the disk-like cores (right) are both viewed
such that their projections have aspect ratios 1/2. For the
same evolutionary stage, the projection angle required so
that our simulated cylindrical and disk-like cores are seen as
ellipses with aspect ratio 1/2 would be 85◦ and 65◦ respec-
tively. However, the frequency of the different aspect ratios
varies for different intrinsic shapes and has been studied
before (Curry 2002; Tassis 2007). Although our results are
consistent with these studies, in the edge-on case these ob-
jects would be most probably identified as dense ”filaments”
rather than ”cores” with the difference only being semantic.

Physical scales in Figure 1 are of little importance since
in real life, a core of smaller size could be at a smaller dis-
tance and thus appear equal in size to a larger core at a larger
distance. Depending on the mass and the evolutionary stage,
two cores with different intrinsic geometries, located at the
exact same distance, could have the same physical scales.

A molecular column density profile is determined by
two factors:

(i) the distribution of the abundance of that molecule, and
(ii) the path of integration along a line-of-sight.

Clouds and cores with different intrinsic shapes evolve at
different rates. Since the dynamical and chemical evolution

are coupled (Aikawa et al. 2002; Tassis et al. 2012) the abun-
dance of a molecular species and its distribution at a cer-
tain evolutionary stage will differ for discrete geometries.
The path of integration along a line of sight is also subject
to the core’s morphology. We illustrate these two effects in
Figure 2 assuming the disk-like and cylindrical cores are seen
face-on. In the left panel we plot the abundance of CO and
for all three intrinsic geometries the profiles are centrally
depressed as expected for a depletion-affected molecule. In
the right panel, we show the column density of CO for these
geometries. For the spherical core it is only slightly centrally
depressed, for the disk-like core it is slightly centrally peaked
with an overall flat behaviour, and only for the cylindrical
core does it resemble the true, abundance profile of CO.

It is clear that geometrical effects have a strong impact
on the appearance of the core when it is observed through
the chemical lens. The differences induced in molecular col-
umn density profiles from the intrinsic shape of the core can
in turn be used to identify its true shape. However, radia-
tive transfer processes also have a strong influence on how a
core is observed on the plane of the sky. Such processes are
approximated by either the critical density (ncrit) or by the
effective density (neff).

The concept of critical density is an overly simplistic
approximation since subthermal excitation of molecules is
neglected. In addition, calculations of ncrit usually do not
take under consideration optical depth effects. The effective
density is defined as the density needed to produce an 1 K
molecular line (Evans 1999). This is an easily detectable line.
In contrast to ncrit, in neff radiative trapping is accounted
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Figure 4. Upper panel: the value of the parameter ∆ for OH
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cle=sphere, and blue square=cylindrical) and numbers denote
runs with different parameters (see Table 2). Different intrinsic
shapes occupy different regions of the plot.

for. The concept of neff is not free of caveats either. The ap-
proximation brakes down for low molecular column densities
and is not appropriate to describe more complex molecules
(CH3CHO). However, we examine prestellar cores where the
molecular column density is by definition high and we do not
propose any complex molecule as a geometry tracer.

We produced our molecular column density maps by
considering only the regions of the core with density higher
than the effective excitation density. We repeated the same
analysis by considering the critical density ncrit instead of
neff . We present only the molecules for which the results
with ncrit and with neff converge to each other. In this man-
ner, we ensure that radiative transfer effects are negligible
compared to the chemical effects. Critical and effective den-
sities are adopted from Shirley (2015). Driven from observa-
tions (Marchwinski et al. 2012) and the discussion in Shirley
(2015), we adopt a value of 102 cm−3 for the effective density
of CO. For OH, which is commonly believed to be optically
thin, we adopt a value of 4 cm−3 for the critical excitation
density (Goldsmith & Li 2005).

For the disk-like and filamentary cores the path of in-
tegration and thus the column density also depends on the
projection angle. For example, for a cylindrical core the path
of integration will be larger when it is viewed with its axis

of symmetry parallel to the line of sight rather than when it
is seen with its axis of symmetry perpendicular to the line
of sight. What is more, the molecular abundance distribu-
tion and the fact that we are only considering the portions
of the core where ntot ≥ neff when integrating, will have an
effect on the resulting molecular column density map which
also depends on the projection angle. Hence, we distinguish
three cases; face-on, edge-on and intermediate angles. We
have identified geometry-probing molecules that apply for
each case separately. Consequently, the aspect ratio of the
projected object as observed in dust emission determines the
geometry-probing molecules that should be used.

3.1 Face-on

Face-on, when all intrinsic 3D shapes appear circular, we
only get one-dimensional information from the column den-
sity profiles for all intrinsic geometries (along the radius of
the projected, circular object). The true 3D shape of a core
has such a strong effect on the molecular column density
profile that for a specific geometry the profiles appear simi-
lar for the majority of molecules or for group of molecules.
In spherical cores, depletion is not obvious in column den-
sity maps in any of the molecules in our chemical network,
not even for the ones that are most affected by it, such as
CO and HCO+. The reason for this is that the path of in-
tegration shortens as the offset from the centre increases.
Hence, lower abundances in the centre of spherical cores are
counterbalanced by the larger integration paths.

In disk-like cores, seen face-on, molecular column den-
sity profiles are usually flat since the path of integration is
always the same and molecular abundances mostly change
within an innermost, very thin disk. In cylindrical cores, we
meet a variety of behaviours. For this intrinsic shape, col-
umn density profiles are either very centrally peaked or very
centrally depleted. The difference with disk-like cores is that
now abundances vary in a much larger portion of the core. If,
for example, we consider a depletion-affected molecule, then
in cylindrical cores we integrate through more gas where the
abundance of that molecule is low than we do in disk-like
cores.

Therefore, we need a way to measure the quantitative
differences of molecular profiles. To do so, we define two
parameters. The first parameter ∆ is defined to be the ratio
of mean values of molecular column density in two different
regions of the core. These two regions are defined based on
the total column density traced by dust emission maps. More
specifically, the numerator is the mean molecular column
density inside a contour that marks 50% of the maximum
total column density. The denominator is the mean of the
molecular column density in the extent of the core where
the total column density is higher than a background value,
i.e.:

∆ =

NX inside a contour that
marks 50% of the maximum of Ntot

NX in the extent of the
core where Ntot ≥ background value

where X is a molecular species and the background total
column density value is set to 7×1021 (Könyves et al. 2013)2.

2 We have verified that results do not change significantly if the
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Figure 5. Same as in Figure 4 for CO (left column) and H2CO (right column). Numbers denote models with different parameters (see
Table 2) and symbols represent different intrinsic geometries, as in Figure 4 (star=disk-like, circle=sphere, and square=cylindrical). We
use open symbols to plot the results where we considered ncrit instead of neff when producing the molecular column density maps.

The definition of ∆ is also shown schematically in Figure 3.
Here we show the total column density map (left panel)
and the column density map of CO (right panel) for the
spherical core. We have also overplotted the contour marking
50% of the maximum of the total column density with a
green circle and the one marking the region of the core with
Ntot ≥ 7× 1021 with a red circle in both maps.

The second parameter ∆σ2 is the ratio of the variance
of the molecular column density profiles in the same two
regions of the core. Hence, while ∆ quantifies whether a
molecular column density profile is centrally peaked (> 1),
depressed (< 1) or flat (≈ 1), ∆σ2 quantifies how much
a profile changes from the central to the outer regions of
the core. Since the parameter ∆ is a ratio of mean values,

contour in which we compute the numerator is changed to 25%
or 70% of the maximum of the total column density and the
background column density is changed a factor of two above and
below the value adopted here.

it can be confidently computed even from low resolution
observations. However, to adequately describe the variation
of molecular column density from the inner to the outer
regions of the core and thus the parameter ∆σ2 , high angular
resolution data are required.

In the upper panel of Figure 4 we plot the parameter
∆ for OH for each run and for each intrinsic geometry sep-
arately. We plot our results with red stars for the disk-like
core, with blue squares for cylindrical core models, and with
green circles for spherical cores. We present only the results
obtained considering neff but results considering ncrit are
identical since both values are very low. For our cylindrical
core models, the column density profiles of OH are centrally
depressed and clearly separate from the other two intrinsic
shapes. The profiles of both the disk-like and spherical mod-
els are only slightly centrally depressed and the parameter
∆ alone cannot break the degeneracy. However, when we
plot the parameter ∆σ2 against ∆ in order to also include
how the profiles change, the three geometries clearly sep-
arate. This is shown in the lower panel of Figure 4 where
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Figure 6. CD2 column density maps for a cylindrical (upper
panel) and an disk-like (lower panel) core. The maps closely re-
semble those of the total column density.

the numbers next to each symbol denote runs with different
parameters. Two more molecules, CO and H2CO, that can
be used in the same manner are shown in Figure 5. In this
Figure, we use open symbols to plot the results obtained
with ncrit. Thus, the intrinsic geometry of a circular object
can be identified by plotting the parameter ∆σ2 against the
parameter ∆ for specific molecules. Different intrinsic 3D
shapes will occupy different regions of the plot.

3.2 Edge-on

When disk-like and cylindrical clouds are observed edge-
on (i.e. for aspect ratios ≤ 0.15), distinguishing them from
spherical clouds is trivial. What is more, we now get two di-
mensional information (e.g. along the 2 principal axes of the
projected object) and classification of clouds can be made
without use of the parameter ∆. Instead, a simple compar-
ison of 2D emission maps from observations with column
density maps from simulations for key molecules is sufficient.

All fully deuterated hydrocarbons consisting of one car-
bon atom trace the total column density very accurately and
thus the resulting maps for both a cylindrical and a disk-
like core would be qualitatively indistinguishable from a dust
continuum emission map. For CD2 this is shown in Figure 6.
Certain fully deuterated hydrocarbons consisting of two car-
bon atoms, such as C2D2 also behave in the same manner.
Partly deuterated hydrocarbons with one or more carbon
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Figure 7. Zoomed N2H+ column density maps for a cylindri-
cal (top) and a disk-like (bottom) core seen edge-on. Tempera-
ture and ionization rate are those of our reference run. The disk-
like core would be observed as two parallel filaments whereas the
cylindrical core would split into two horseshoe-shaped cores.

atoms such as C2HD and CH2D may also be good density
tracers but this is not a robust property against the param-
eter study. Since these molecules follow the total density
we have not taken into account radiative transfer processes
when producing their column density maps. If the critical
densities of these molecules are much higher than 106 cm−3,
i.e. the central density of all three modelled cores, then they
will not be detected in a core of that evolutionary stage.
However, if their critical densities are smaller than 106 cm−3

then they will continue to trace the central region and their
molecular column density maps will qualitatively resemble
those of the total column density in all projection angles and
thus suffer from the same degeneracies with respect to the
intrinsic shape.

Qualitative differences between cylindrical and disk-like
clouds are observed in the column density maps of certain
molecules with low critical densities. In CH3N and OH,
disk-like cores manifest themselves as a depletion hole. In
contrast, an irregular shape with no clear structures results
when the core is cylindrical. Unfortunately, the differences
are not large enough in order for these molecules to be used
as probes of the intrinsic geometry.

In Figure 7 we show zoomed N2H
+ column density

maps of the cylindrical (upper panel) and disk-like (lower
panel) cores for our reference run. In N2H

+ a disk-like core
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would be observed as two semi-parallel, slightly bent fila-
ments. Cylindrical cores, which are a better approximation
to a filamentary cloud, will either be seen as two separate
elliptical objects or as continuous elongated structures, sim-
ilar to but broader than in dust emission maps. Column
density maps of N2H

+ for the rest of our parameter study
runs are shown in Figures 8 & 9. When the N2H

+ column
density maps of disk-like cores are produced by considering
ncrit instead of neff this splitting effect is still prominent.

The effect does not uniquely occur for N2H
+. Other

molecules that follow the same behaviour are NH3 and
C3H2. The column density maps of these molecules are very
similar to those of N2H

+ for both intrinsic shapes. For NH3

this splitting in molecular column density maps of disk-like
models occurs independently of whether we include radia-
tive transfer effects in our analysis. In contrast, for C3H2

the effect is visible only when we consider the regions of the
core with ntot ≥ neff .

As a result, whether the splitting effect is visible in a
molecular column density map of our disk-like core also de-
pends on the critical density of the molecule under consider-
ation. In contrast to C3H2, the effect is visible in CH3CN if
we neglect the critical density when integrating to get its 2D
projection map but it is not visible when we properly take it
into account. In the latter case, the CH3CN column density
maps of both the disk-like and cylindrical core models resem-
ble those of the total column density. If the critical density
is neglected, the splitting effect is also seen in the molecu-
lar column density maps of HCO+

2 , H2CO, H2DO+, CD+
3 ,

C3H2D
+, CHD+

2 , CH2D
+, CH4, CO2, and DCO+

2 provided
of course that the shape of the core is that of the disk. Thus,
these molecules are promising candidates in which the split-
ting effect may be seen, especially if they have transitions
with low effective densities.

This splitting effect can be understood if depletion is
considered. Despite the fact that N2H

+ is a high-density
tracer (Tafalla et al. 2002), at very high densities depletion
will eventually take over. Bergin et al.(2002) took N2H

+ (1
- 0) observations of the well studied prestellar core B68 us-
ing the IRAM 30 m telescope (beam size 25”). They found
an N2H

+ depletion hole towards the centre of the core. Pa-
gani et al. (2007a) & Pagani et al. (2007b) observed the
prestellar core L183 with the same telescope and found that
N2H

+ was depleted by a factor of 6 in the inner regions of
the core. Chitsazzadeh et al. (2014) observed the prestellar
core L1689-SMM16 and also found a decrease in abundance
of NH3 and N2H

+ towards higher densities. Di Francesco
et al. (2004) found evidence of N2H

+ depletion towards the
Ophiuchus A core. In agreement to these observations the
abundance of NH3 and N2H

+ in our chemical models drops
inside the high-density region. In Figure 10 we show, in
3D, the N2H

+ abundance distribution for the disk-like (left)
and cylindrical (right) core models. Isosurfaces are at 35%
(blue isosurfaces) and 90% (red isosurfaces) of the maximum
N2H

+ abundance. The inner blue shaded isosurface of the
disk-like core has a larger radius than that of the cylindri-
cal core. Thus, for a thin disk seen edge-on, the effect in
molecular column density will be more severe than that for
a cylindrical cloud, since the path of integration along a line
of sight passing through the high-density region is larger.
Furthermore, for a disk-like core the high-abundance region
of N2H

+ will be parallel to the actual high-density region,

whereas the opposite is true for a cylindrical cloud. Conse-
quently, in such a map, the N2H

+ column density will probe
the regions above and below the disk. With this reasoning,
one might expect that the column density of N2H

+ would
also probe the regions on either side of the high-density re-
gion of the disk. Hence, if the regions surrounding the disk
were also connected, the resulting projected shape would be
that of an empty ellipse. However, the gradient from the
N2H

+ column density peak towards the centre of the cloud
is sharper in the z direction (see Figure 11) and the net
result is two parallel elongated structures.

The splitting effect that occurs for disk-like cores might
have already been observed. Fernández-López et al. (2014)
observed the Serpens South molecular cloud in N2H

+ (J =
1 → 0) using CARMA. They found that what appeared as a
single filamentary structure in dust continuum was actually
composed of two or three N2H

+ filaments. In a subsequent
study of Serpens Main and with the same tracer, Lee et
al. (2014) also found two separate filaments inside what ap-
peared to be a filamentary structure in dust emission. They
argued that with CARMA’s higher resolution they were able
to resolve substructures of the filamentary objects observed
with Herschel.

Fernández-López et al. (2014) also estimated the width
of the N2H

+ filaments. They found that these structures
had approximately half the width of the filaments observed
in dust continuum. Figure 12 shows the total column density
and N2H

+ column density profiles, parallel to the short axis,
for our cylindrical (left) and disk-like (right) core models. If
the true 3D shape of the structure observed by Fernández-
López et al. (2014) were that of a cylinder then, due to the
fact that no splitting occurs for such an intrinsic geome-
try, the N2H

+ profile would be broader, leading to a larger
width, in contradiction to their results. If however, the in-
trinsic geometry of that object were disk-like, because of the
splitting due to depletion, the two apparent N2H

+ filaments
would have smaller widths (right panel of Figure 12). Sugi-
tani et al.(2011) took polarization measurements at the re-
gion observed by Fernández-López et al. (2014). They found
that the magnetic field was perpendicular to the filamentary
structure where the splitting occurs.

As a proof of concept we have created the N2H
+ col-

umn density map of our disk-like core as seen edge-on at
the highest resolution possible from the simulations. The
core was then ”placed” at a distance of 415 pc (i.e. the same
distance adopted by Fernández-López et al. 2014 for the Ser-
pens South Molecular Cloud) and the image was convolved
using a Gaussian filter assuming a beam size equal to that
of CARMA (7”) (upper panel of Figure 13). We then con-
volved the original map to Herschel′s 350 µm beam size
(25”) (lower panel of Figure 13). In agreement with the
observational results of Fernández-López et al. (2014) the
splitting is no longer visible when N2H

+ emission is con-
volved to Herschel′s resolution (see their Figure 3 where
they perform the same analysis using observations).

3.3 Intermediate projection angles

Observationally, there is no way of determining the angle
between the axis of symmetry of a core and the line of sight.
Also, for the same projection angle, an ellipsoid resulting
from a cylindrical cloud will have a different aspect ratio



10 Tritsis et al.

-0.72 -0.36 0 0.36 0.72

pc

0.48

0.24

0

-0.24

-0.48

p
c

-0.72 -0.36 0 0.36 0.72

pc

0.48

0.24

0

-0.24

-0.48

p
c

-0.72 -0.36 0 0.36 0.72

pc

0.48

0.24

0

-0.24

-0.48

p
c

-0.72 -0.36 0 0.36 0.72

pc

0.48

0.24

0

-0.24

-0.48

p
c

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

1e9

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

1e8

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

1e9

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

1e8

Figure 8. N2H+ column density maps for a filamentary core as seen edge-on for various sets of parameters. Top left is run 2, top right
is run 3, bottom left is run 4 and bottom right is run 5. See Table 2 for details on the parameters of each run.
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Figure 9. Same as in Figure 8 but for our disk-like models.
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Figure 10. N2H+ 3D abundance plots for a disk-like (left) and
a cylindrical (right) core. Isosurfaces are at 35% (blue shaded
isosurfaces) and 90% (red shaded isosurfaces) of the maximum
N2H+ abundance. The inner, low abundance disk will have a
larger radius than that of the inner, low abundance cylinder and
as a result the effect of depletion will be more severe in the column
density map of a disk when it is observed edge-on.
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Figure 11. N2H+ column density profiles for a disk-like core.
The gradient in the z direction from the peak to the centre of the
disk-like core (dotted red line) is larger than that in the radial
direction (solid blue line). As a result, a disk-like cores will not
be observed as an empty ellipse when observed in N2H+.

than an ellipsoid resulting from the projection of a disk-like
core. Thus, in order to have a recipe that probes the true 3D
shape of a core, it is only meaningful to relate a parameter
to the aspect ratio of the projected shape. That parameter
can again be the parameter ∆ as defined in § 3.1. Here,
there is no need to make use of the parameter ∆σ2 since the
degeneracy between disk-like and spherical cores is broken
by dust emission maps alone.

In order to compute the aspect ratio of the projection
of core, we first define the contour that marks 50% of the
maximum of the total column density. We then divide the
lengths of the two principal axes determined by that contour.
Thus, we define both the parameter ∆ and the aspect ratio
in a self-consistent manner.
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Figure 12. Left: Total column density radial profile (dotted line)
and N2H+ column density radial profile (solid line) for a cylin-
drical core. Right: Total column density axial profile (dotted line)
and N2H+ column density axial profile (solid line) for a disk-like
core. A scenario in which the N2H+ filamentary structures have
half the width from the filamentary structures observed in dust
emission can more easily be realized if the intrinsic geometry of
the core is disk-like rather than cylindrical.
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Figure 13. N2H+ column density maps for the disk-like core as
observed edge-on convolved with two different beam sizes. In the
upper panel the map was convolved with a beam size equal to
that of CARMA and in the lower panel with Herschel′s 350 µm
beam size. At Herschel′s resolution the ”splitting effect” is not
visible and N2H+ emission appears to peak at the z=0 plane.
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Limited observational resolution can cause a projected
object look rounder and can also change the apparent peak-
ness of a molecular column density profile. Hence, for a
molecule to be a good geometry tracer the value of the
parameter ∆ must be different for cylindrical and disk-like
cores regardless of the resolution. To that end, results from
simulations were convolved with a Gaussian filter assuming
a beam size equal to 35” and a distance of 1 kpc. The value
of the parameter ∆ and the aspect ration were then com-
puted at both instances. We have identified one molecule
which satisfies these criteria.

In Figure 14 we show the parameter ∆CN as a function
of the aspect ratio. If the true shape of the core is that
of a disk (red shaded region in Figure 14), ∆CN is close
to unity, especially for aspect ratios ≥ 0.6. In contrast, if
the core is cylindrical (blue shaded region in Figure 14),
the molecular column density profiles along both axes of
the projected object are very centrally peaked and ∆ ≫ 1.
This is the case for aspect ratios from 0.2 to unity, although
the greatest differences in the values of the parameter ∆
are found if the projected objects have aspect ratios ≈ 0.6.
In Figure 14 the upper boundaries of the shaded regions
are obtained by considering the best possible resolution of
the simulations. The value of ∆ and the aspect ratio for
different combinations of beam sizes and distances fall inside
these shaded regions provided that the resolution is better
than that obtained with a beam size of 35” and distance 1
kpc. The results presented here are obtained by considering
the effective excitation density neff of CN although results
obtained by considering the critical density ncrit of CN are
in very good agreement.

The differences between cylindrical and disk-like cores
seen in Figure 14 can be understood as follows. For cylin-
drical clouds, the molecular abundance of CN will be higher
in a cylindrical shell just outside the innermost high-density
thin cylinder. When such a core is seen at an offset from ex-
actly edge-on, higher abundances will be integrated over a
longer line of sight. As a result, the molecular column density
will peak even more in the central region and the parameter
∆ will increase. In contrast, for disk-like cores the path of
integration gets shorter as the viewing angle changes from
exactly edge-on to exactly face-on and therefore the value
of ∆ will be closer to unity.

4 DISCUSSION AND CONCLUSIONS

In the simulations presented here, the initial abundances of
all chemical compounds were set to zero. In order to exam-
ine to what extent this approximation is unphysical, we have
also considered a run in which the chemistry is left to evolve
for 1 Myr at a uniform density of 103 cm−3 before collapse.
We have confirmed that the abundances at a central density
of 106cm−3 do not change significantly. However, as it has
been pointed out by previous studies (Aikawa et al. 2001), if
the pre-collapse phase lasts longer and/or is at a higher den-
sity, abundances will deviate more from the models without
a pre-collapse phase.

The molecular column density maps presented in this
paper are produced only from the portions of the cores where
ntot ≥ ncrit and ntot ≥ neff , where we considered the tran-
sitions corresponding to the lowest possible values for ncrit

and neff . These are the inner regions of the cores, away from
the boundaries of the computational region. Furthermore,
when defining ∆ and ∆σ2 , we have not included values of
molecular column density that coincided with regions with
total column density below a background value. We are thus
confident that our results are not affected by the boundaries.

The disk-like and cylindrical cores as well as the spheri-
cal core are idealized shapes of what can be found in nature.
Triaxial cores appear to be a better fit to observations in sta-
tistical studies although axisymmetric shapes are not ruled
out (Tassis 2007). The splitting effect might not be visible
in the same manner if we have a triaxial oblate spheroid in-
stead of a disk-like geometry. The abundance of N2H

+ will
continue to probe the regions above and bellow the high-
density region, but for an oblate spheroid the path of inte-
gration also gets smaller as we move along the short axis.
Hence, for an oblate spheroid the higher abundance of N2H

+

around the high-density region might be counterbalanced by
the shorter path of integration. However, a scenario in which
an oblate spheroid observed edge-on will split in 3 parallel
elongated structures when seen in N2H

+ can also be real-
ized. In such a scenario, the middle structure will be seen
due to the fact that N2H

+ also probes the regions in front of
and behind the depleted region. A dip might then be caused
due to lower abundance and smaller integration path, and
finally two elongated structures above and bellow the middle
one will be seen, simply due to higher N2H

+ abundance. In
any case, the occurrence or not of the splitting effect for an
oblate spheroid depends on its intrinsic aspect ratio and the
interplay between N2H

+ abundance and integration path.

What is more, the splitting effect will not be visible for
cores in earlier evolutionary stages. For a disk-like core with
central density ∼ 104cm−3 only the innermost regions of the
core will be visible in N2H

+ since its effective density is of
that order. Nonetheless, in case the splitting effect is ob-
served in a manner similar to that presented in this paper,
we can safely conclude that the intrinsic 3D shape of the
core resembles a disk. Likewise, if a core appears filamen-
tary in dust emission, the central density is of the order of
∼ 106cm−3, and is seen as two separate elliptical objects or
as a broad continuous structure in a N2H

+ column density
map, we can conclude that its true shape is a cylinder. Fi-
nally, if the core is seen as a circularly symmetric object we
can apply the face on method to determine the true shape
of the core. We intend to return to the problem of triaxial
cores with supplementary 3D simulations, including mag-
netic fields, and with a post-processing analysis of our result
with a radiative transfer code in a future publication.

For projection angles such that our simulated cylindri-
cal and disk-like core models are seen as ellipses or round
objects the effect of depletion is not severe. As a result, both
cores would appear centrally peaked in N2H

+ emission, with
∆ > 1. In fact, at low resolution the N2H

+ column density
maps of the two cores would be qualitatively identical to
their respective total column density maps. This is in agree-
ment with the early survey of N2H

+ emission from Lee et
al. (2001) which had a large beam size (52”).

Whether a molecule is a good geometry-tracer does
not simply depend on which gas density better traces. It
rather depends on its abundance distribution. The major-
ity of molecules mentioned in § 3.2 have an abundance that
peaks at a density of approximately a few times 104 cm−3 to
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Figure 14. The parameter ∆ of CN as a function of the aspect ratio for disk-like and cylindrical models (red and blue shaded regions
respectively) for different resolutions. The horizontal dotted line is at ∆ = 1. Results are obtained considering neff . For disk-like models
∆CN is close to unity, especially for aspect ratios ≥ 0.6 whereas for cylindrical models the value of the parameter ∆ is much greater than
1 for all aspect ratios.

105 cm−3. Their abundance then starts to decline for higher
densities. In contrast, the abundance profile of CN has a
plateau at slightly higher densities, although it too depletes
at densities of the order of 106 cm−3. If our cylindrical and
disk-like cores are seen edge-on then N2H

+ and NH3 are
proven good geometry traces because they exhibit the ”right
amount” of depletion. If, for the same projection angle, the
cores were observed in CO then they would both appear
as depletion holes with no qualitative differences amongst
them.

For a random projection angle we derive the aspect ra-
tio by dividing the major and the minor axis of the ellipse
defined by the contour that marks 50% of the maximum of
the total column density. This is the same contour we use to
define the parameter ∆. We have confirmed that if we esti-
mate the aspect ratio with a method based on the first and
second moment of the flux density (e.g. Tassis et al. 2009)
our results are not affected. However, for self-consistency, we
recommend to define the aspect ratio and the parameter ∆
in the same manner.

Our method can be summarized in the following steps:

• From dust continuum observations determine the aspect
ratio of the core by defining a contour that marks 50% of the
maximum of the total column density and dividing the two
principal axes. The geometry-probing molecule that should
be used is determined by the aspect ratio of the projected
object.

• For aspect ratios ≤ 0.15 the geometry probing molecule
will be N2H

+ (and/or NH3).

(i) If the core appears as two parallel filamentary structures

in the N2H
+ (NH3 ) column density map then its true

shape is that of a disk.
(ii) If it is seen as a continuous, broader than in dust emis-

sion, structure then it is cylindrical-like.

• When the aspect ratio of the core is in the range 0.15 ∼
0.9 compute the parameter ∆ for CN as defined in § 3.1.

(i) If the value of the parameter ∆ is ≫ 1 then the core is
cylindrical-like.

(ii) If ∆ is close to unity then the geometry of the core is
disk-like.

• For well resolved, centrally peaked, circular objects with
polar symmetry that can be face-on projections of disk-like
or filamentary cores or projections of spherical cores calcu-
late the parameters ∆σ2 and ∆ for OH (and/or CO, H2CO)
as defined in § 3.1.

(i) When both ∆σ2 and ∆ are close to unity the intrinsic
shape of the core is disk-like.

(ii) If ∆ is close to unity but ∆σ2 ≪ 1 then the core is
spherical.

(iii) If both ∆ and ∆σ2 ≪ 1 then the true shape of the core
is cylindrical-like.
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Chapter 6

Bridging the gap between theory and
observations

In order to improve and better benchmark our method for probing the intrinsic shape of cores we also
have to properly account for radiative transfer effects. To this end, we have developed a state-of-the-
art line radiative transfer code, called PyRaTE. PyRaTE (Python Radiative Transfer Emission) is
a non-LTE code and has two main advantages over the majority of existing radiative transfer codes.
Firstly, the population densities are computed with variations in all physical parameters (i.e. density,
molecular abundance, temperature and velocity) taken into account. Secondly, we have developed
easy-to-use interfaces for importing data from simulations and exporting the results in formats directly
comparable to observations as well as a number of auxiliary modules to facilitate this comparison. With
PyRaTE we will not only be able to improve our method, but since cores with different intrinsic 3D
shapes are expected to have distinct velocity fields, we will also be able to incorporate the additional
information from the spectral line profiles in our analysis.
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ABSTRACT

We describe PyRaTE, a new, freely available, non-local thermodynamic equilib-
rium (non-LTE) line radiative transfer code developed specifically for post-processing
astrochemical simulations. Population densities are estimated using the escape proba-
bility method. When computing the escape probability, the optical depth is calculated
towards all directions with density, molecular abundance, temperature and velocity
variations all taken into account. A very easy-to-use interface, capable of importing
data from simulations outputs performed with all major astrophysical codes, is also
developed. The code is written in Python using an embarrassingly parallel strategy
and can handle all geometries and projection angles.

Key words: Physical data and processes: Radiative transfer – ISM: clouds – ISM:
molecules – methods: numerical

1 INTRODUCTION

Recent advancements in computer technologies, have al-
lowed for simulations of multiphysics astrophysical problems
to flourish. Numerical codes and methods are becoming in-
creasingly sophisticated and accurate (Krumholz et al. 2007;
Mocz et al. 2014a; Mocz et al.2014b; Schaal et al. 2015;
Hopkins 2015; Hopkins & Raives 2016). Astrochemical sim-
ulations in which the chemical and dynamical evolution of
astrophysical objects are coupled, follow in the same direc-
tion (Tassis et al. 2012a; Tassis et al. 2012b; Clark et al.
2013; Motoyama et al. 2015; Walch et al. 2015; Tritsis et al.
2016; Seifried & Walch 2016).

Observational astrophysics is also advancing rapidly.
New, very high angular and spectral resolution data ob-
tained with telescopes such as ALMA can reveal features
of astrophysical objects in unprecedented detail. Further-
more, such observations offer a unique opportunity to dis-
tinguish between different theoretical models. To do so, a
connection between theoretical results and observations is
essential. Since observationally our full range of knowledge
about astrophysical objects is obtained through the study
of electromagnetic radiation, a direct comparison requires

? Institute for Theoretical and Computational Physics, formerly

Institute for Plasma Physics

post-processing simulation outputs with radiative transfer
(RT) codes.

Post-processing astrochemical simulations with line ra-
diative transfer codes is not a trivial task. Local thermo-
dynamic equilibrium (LTE) is not attained in many astro-
physical problems and the population densities of the species
under consideration have to be computed in non-local ther-
modynamic equilibrium (non-LTE). The majority of the ex-
isting radiative transfer codes (Keto 1990; Keto et al. 2004;
Hogerheijde & van der Tak 2000; van der Tak et al. 2007;
Brinch & Hogerheijde 2010; Dullemond 2012) do compute
the population densities in non-LTE. However, the validity
of certain approximations and assumptions, as for example
is homogeneity and the calculation of optical depth from
average quantities, may not always be appropriate. Further-
more, restrictions in the number of dimensions existing RT
codes can handle and the fact that the interfaces are not
always particularly practical can cause confusion and limit
the number of choices a user has.

In this paper we describe the PyRaTE (Python Radia-
tive Transfer Emission) code. PyRaTE is a user-friendly,
embarrassingly parallel, modular, non-LTE radiative trans-
fer code, fully written in Python1. It makes use of the yt
analysis toolkit (Turk et al. 2011) which can handle simu-

1 https://www.python.org/

c© 0000 RAS
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lation outputs performed with all major codes2 as well as
generic adaptive mesh refinement (AMR) and array data.
As a result, exporting data from astrochemical simulations
requires no effort. Moreover, PyRaTE can handle all ge-
ometries and all projection angles. In its current version,
the code is focused on star formation and molecular cloud
related problems. However, it can be easily modified so that
it can be used for any astrophysical problem.

In section § 2 we describe the formalism of radiative
transfer used, the numerical methods, we compare our re-
sults with those from RADEX (van der Tak et al. 2007)
and with analytical solutions, and we outline the parallelism
strategy we follow and the design of the code. In § 3 we
use numerical simulations presented in a previous study to
demonstrate the code’s capabilities. A summary of this work
and future goals are given in § 4.

2 CODE DESIGN

2.1 Basic formalism

Integration of the non-relativistic, time-independent equa-
tion of radiation transfer between two grid points i and i+1
yields:

Ii+1 =
(e−τ

C
i+1 − p)Ii + pSLi + qSLi+1 + Sk

1 + q
(1)

(Yorke 1986) where the contributions of line and dust con-
tinuum emission, denoted with the superscripts L and C re-
spectively, are considered separately. In Equation 1 I is the
radiative intensity, SL is the source function for line emis-
sion and τC is the optical depth for continuum emission.
The quantities q, p and Sk are given by:

q =
τLi+1

1 + e−τ
L
i+1

(2)

p = q(e−τ
L
i+1−τCi+1) (3)

Sk = e−τ
C
i+1

∫ i+1

i

κCSCe
∫ s
i κ

C(s′)ds′ds (4)

where SC is the source function for dust continuum emission
and τLi+1 is the optical depth of the line:

τLi+1 =

∫ i+1

i

κL(s)ds (5)

In Equations 4 and 5 s is the length along the line-of-sight
(LOS), κC is the extinction coefficient for continuum emis-
sion, computed from Mie theory, and κL is the line extinc-
tion coefficient:

κL = nlBlu
hν0
4π

[
1− nugl

nlgu

]
ϕ(ν) (6)

(Mihalas 1978). In the latter equation, g is the statistical
weight, B is the Einstein B coefficient, ν0 is the rest fre-
quency of the line, h is the Planck constant, n is the popu-
lation density of the upper and lower level (denoted with the

2 For a full list of the codes that yt and thus PyRaTE can han-

dle see http://yt-project.org/docs/dev/examining/loading_

data.html

Figure 1. Flow chart of the algorithm used to compute the pop-

ulation ratio (PR) at each grid point. The same procedure is
followed for all grid points.

subscripts u and l) and ϕ(ν) is the normalized profile func-
tion such that

∫
ϕ(ν)dν = 1. As a result, I can be computed

by calculating the quantities that appear in Equations 2
through 6, inserting them in Equation 1 and performing the
ray-tracing.

2.2 Dust model

We use a three component dust grain model consisting of
amorphous carbon grains, silicate grains and dirty ice (i.e.
water, ammonia and carbon particles) coated silicate grains.
Our grain model is that of Preibisch et al. (1993) which is
appropriate for dense molecular cloud conditions. However,
the amount of dust has been reduced to be compatible with
the calculations performed by Pollack et al.(1985). The sub-
limation temperature of each component is ∼ 2000, 1500
and 125 K respectively. All components are assumed to be
spherical with sizes ∼ 10 nm for the carbon, ∼ 50 nm for the
silicate and ∼ 60 nm for the dirty ice coated silicate grains.

The data for the efficiency factor for extinctionQext and
the albedo α (α = Qsca/Qext, where Qsca is the efficiency
factor for scattering) are stored in the code in tabulated
form. Based on the desired frequency, linear interpolation is
applied through the data for each of the dust components.
The extinction coefficient for dust emission is then computed

c© 0000 RAS, MNRAS 000, 000–000
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as:

κC =
3∑

d=1

ndQ
ext
d πr2d (7)

where nd is the number density of each grain component
which is in turn determined from the temperature and den-
sity of each grid point. The source function for continuum
emission is computed as the sum of the thermal emission,
weighted over the albedo, and the contribution from scat-

tering. For the interpolation we use a standard scipy rou-
tine3. Higher order interpolation through the data can also
be used by changing a keyword in the interpolating function.
Finally, by adjusting this dust grain model, PyRaTE can
be modified to suit a variety of astrophysical problems.

2.3 Computing the population ratio (non-LTE)

We consider a simple two level system. Then, the rate of
change of the population density in the upper level will be
the sum of the excitation (absorption and collisional exci-
tation) and de-excitation (induced emission, spontaneous
emission and collisional de-excitation) processes:

dnu
dt

= −nuBuluν+nlBluuν−nuAul+nlnH2Clu−nunH2Cul

(8)
In Equation 8, uν is the radiative energy density, Cul and
Clu are respectively the de-excitation and excitation coef-
ficients due to collisions, nH2 is the number density of the
H2 molecule which is the dominant collisional partner, and
Aul is the Einstein A coefficient for spontaneous emission.
In order to compute the first two terms on the right hand
side of Equation 8 a priori knowledge of the radiation field
is required. As a result, the entire problem has to be solved
iteratively, a computationally very demanding task. An al-
ternative solution to the problem is to approximate uν as
SLν (1 − β) where β is the probability of a photon escaping
the cloud. Following the same reasoning, the radiation field
due to external photons penetrating the cloud will be, Sνβ.

If we now further assume statistical equilibrium dnu
dt

=
0, divide Equation 8 with nl and rearrange we can write the
population ratio as:

nu
nl

=

gu
gl
e−E/KBTi′j′k′

1 + Aul

n
H2
i′j′k′Cul

βi′j′k′
(9)

where KB is the Boltzmann constant, Ti′j′k′ and nH2
i′j′k′ are

respectively the temperature and density at a grid point
(i′j′k′) and E is the energy of the transition. To obtain
Equation 9 we also made use of the fact that the collisional
excitation and de-excitation coefficients are related as:

Clu = Cul
gu
gl
e−E/KBT (10)

In order to determine the population densities we also
have to compute the escape probability at every grid point.
To do so, we use an accelerated Λ-iteration described in the
following steps:

(i) First, we assume an initial value for the escape proba-
bility and calculate an initial population ratio for grid point
(i′j′k′) from Equation 9.

(ii) Based on that initial guess for the population ratio, the
infinitesimal optical depth of the line is computed at all grid
points as:

dτLijk =
c3

8πν30

Auln
molec
ijk

∆vthijk
(
gu
gl
nl − nu)ds (11)

3 http://docs.scipy.org/doc/scipy/reference/interpolate.

html
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approximation are overplotted with a solid black line.

(van der Tak et al. 2007). In Equation 11, c is the speed
of light, nmolecijk is the number density of the molecule at
grid point (i, j, k) and ∆vth is the thermal width of the line.

(iii) Next, the total optical depth is computed as the sum of
the infinitesimal optical depth of the grid points for which
their absolute velocity difference with grid point (i′j′k′) is
smaller than the thermal width.

(iv) The algorithm then searches the direction for which
the optical depth of the line is minimum. For example, the
minimum optical depth for a 3D cartesian grid is computed
from six sums as:

τLi′j′k′ = min
( A∑

i=i′+1

dτLijk[| vi′j′k′ − vij′k′ |< ∆vthij′k′ ],(12)

0∑

i=i′−1

dτLijk[| vi′j′k′ − vij′k′ |< ∆vthij′k′ ],

B∑

j=j′+1

dτLijk[| vi′j′k′ − vi′jk′ |< ∆vthi′jk′ ],

0∑

j=j′−1

dτLijk[| vi′j′k′ − vi′jk′ |< ∆vthi′jk′ ],

C∑

k=k′+1

dτLijk[| vi′j′k′ − vi′j′k |< ∆vthi′j′k],

0∑

k=k′−1

dτLijk[| vi′j′k′ − vi′j′k |< ∆vthi′j′k]
)

where A, B and C are the sizes of the grid in the i, j and k

directions, respectively.

(v) With that optical depth, a new escape probability and
population ratio are computed.

(vi) If the absolute difference of the previously and newly
computed population ratios is smaller than some tolerance,
then the value is stored in computer memory. If this condi-
tion is not satisfied steps (ii) through (vi) are repeated until
the population ratio converges to a value.

A flow chart of the algorithm that summarizes these
steps is shown in Figure 1. With this procedure, density,
temperature, velocity and molecular abundance variations
are all taken into account. For a multilevel species, the full
system of equations arising from statistical equilibrium has
to be solved. A workaround can be to use the sum of colli-
sional rates in the denominator of equation 9, and is what
PyRaTE does at the moment. The proper treatment of the
system of equations, following the same methodology de-
scribed above, is soon to be added to the code. After the
population densities have been computed, the line source
function is calculated as:

SL =
2hν3

c2
1

nlgu
nugl

− 1
(13)

The described procedure is a simple Λ-iteration. To in-
crease the computational speed we implement an accelerated
scheme. In each successive iteration, the new population ra-
tio is the mean of the two previously computed values in-
stead of just the previously computed value. Furthermore,
since the escape probability is not expected to vary much
between adjacent grid points, the result for one grid point
is used as the initial guess for the neighbouring cell. Since
for species with low critical densities the above procedure
is redundant, the algorithm first checks if the second term
in the denominator of Equation 9 is much less than unity.
If so, the population ratio is computed from the Boltzmann
distribution. In Figure 2 we show an example where the pop-
ulation ratio for a grid point is calculated using simple (red
dashed line) and accelerated (black solid line) Λ-iterations.
In the latter case the algorithm converges within a few iter-
ations. For an 1D isothermal spherical collapse model with
304 grid points, a tolerance of 10−7 and an optically thick
12CO molecule the algorithm converges in ∼ 0.9 seconds in
one central processing unit (CPU).

2.4 Benchmarking

In order to test the validity of the algorithm developed we
compare our results with those of RADEX (van der Tak et
al. 2007). To do so, we adopt the set-up of a test-problem of
RADEX4, the parameters of which are shown in Figure 3.
In this model, the abundance of HCO+ is low (∼ 10−9), so
that the emission is optically thin, and the radial profiles of
the physical parameters were created based on the model by
Shu (1977). Results of the population ratio obtained from
both codes, with and without considering the contribution
from the cosmic background radiation field, are shown in

4 https://www.strw.leidenuniv.nl/astrochem/radtrans/

c© 0000 RAS, MNRAS 000, 000–000



Simulating non-LTE line transfer 5

10
-1

10
0

10
1

10
2

τ

10
-1

10
0

10
1

In
te
n
s
it
y

Analytical

PyRaTE

Figure 5. The intensity at the centre of the line as a function
of the ”mean” optical depth, as this is defined in Kylafis (1983).

With the solid black lines we plot the results from the analytical
solution and with the red squares the results from the code. The

intensity is plotted in units of hν3/c2.

Figure 4 and are very similar. The minimum value of the
escape probability computed with PyRaTE during the Λ-
iterations for all grid points was ∼ 0.97, i.e. very close to
unity. Thus, our algorithm correctly reproduces the fact that
the emission is optically thin.

To further test the developed algorithms we compare
results from PyRaTE against the analytical solutions de-
rived in Kylafis (1983) for an one dimensional problem. In
this problem, the velocity field is of the form ~v = (v0/L)zk̂
and the temperature, abundance and density are uniform
everywhere. In Figure 5 we show the intensity at the cen-
tre of the line as this is calculated from the analytical ex-
pressions (solid black line) and numerically (red squares) as
a function of the ”mean” optical depth defined in Kylafis
(1983). Results from the code are in perfect agreement with
the analytical method.

2.5 Loading data and constructing the grid

Data from astrochemical simulations and from files con-
taining molecular data5 are initially loaded into the code
and stored in computer memory in tabulated form. These
include the mass density, the abundance of the molecule
under consideration, the Einstein coefficients, collisional
excitation/de-excitation coefficients, the dimensions of the
grid and velocities in all directions. Magnetic fields for Zee-
man splitting measurements will also be included in a future
version.

5 Molecular data are taken from the Leiden Atomic and

Molecular Database (Schöier et al. 2005) http://home.strw.

leidenuniv.nl/~moldata/

Original Grid Zeroth Level

First Level Second Level

Figure 6. Treatment of AMR simulation outputs. Depending
on the desired resolution, from the original AMR grid, a new

uniform grid is created. When the resolution of the maximum

level of refinement is selected, new grid points are created with
values equal to the one of the grid point of the parent level.

CPU 1

CPU 2

CPU 3

CPU 4

Figure 7. Strategy followed to parallelize the algorithms in our

code. During ray tracing each processor is responsible only for
a set of rays (coloured lines) passing through the computational

region.

2.6 Parallelization

When loading data we assume spherical symmetry for 1D
simulation outputs, plane and axial symmetries for 2D sim-
ulation outputs in cylindrical geometry and no symmetries
for 3D simulations. These symmetries are accounted for in
our calculations. However, the module responsible for ex-
porting simulation data can be easily modified such that the
desired symmetries and velocity conventions are followed.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 8. 12CO (J = 1 - 0) emission line from a ray passing
through the centre of a simulated spherical core under the LTE

approximation (bold red line) and with non-LTE (black line).

Gaussian noise with a signal-to-noise ratio of ∼ 5 was added to
the lines. The code correctly reproduces the expected inverse P-

Cygni line profile.

Where necessary, volume rendering is performed simultane-
ously with ray tracing. Throughout the code, we use cgs
units. Velocities with a minus sign represent motions to-
wards the observer and vice versa. All other conventions fol-
lowed in the code (e.g. conversion of frequencies to velocities)
are consistent with the ones followed in radio astronomy.

Simulation outputs performed both in adaptive mesh
refinement (AMR) and in uniform grids are supported. How-
ever, AMR grids are re-sampled into uniform grids based on
the resolution of a refinement level. In the upper left panel
of Figure 6 we show an example of an AMR grid with two
levels of refinement. In the upper right, lower left and lower
right panels we show the resulting grids constructed from the
original grid, based on the zeroth, first and second level of
refinement respectively. The values of additional grid points
created in the lower panels of Figure 6 have the same values
as the ones in the parent level. This treatment has the ad-
vantage of simplifying the algorithms and making them easy
to read and modify. However, adding more grid points can
substantially increase the computational time, especially for
AMR simulations with many levels of refinement. In a future
version we plan to upgrade the treatment of AMR grids.

In order to reduce computational time we have paral-
lelized the majority of the code’s modules using an embar-
rassingly parallel strategy. In Figure 7 we show an example
of a 3D grid in which ray tracing is performed on four CPUs.
Each CPU is responsible only for a set of rays (coloured lines
in Figure 7). Similarly, in the modules computing the pop-
ulation ratios, the grid is split over the number of available
processors and is then reconstructed. Given this strategy the
code is linearly scalable. PyRaTE uses the package mpi4py

6 which provides functions and bindings for the Message
Passing Interface (MPI) and which can be easily installed
alongside yt.

2.7 Auxiliary modules

A number of modules are available for pre-processing the
simulation data and post-processing the results after ray-
tracing is performed. The user has the option to add micro-
turbulent broadening:

∆vtot =
√

∆v2turb + ∆v2th (14)

where ∆vth is the thermal linewidth and ∆vturb may be
a constant number for all grid points or random numbers
drawn from a flat or a Gaussian distribution. Additional
modules also exists for debugging purposes and for creating
simple models so there is no need for a priori astrochemical
simulations.

To facilitate comparison with observations the user has
a number of options. Gaussian noise can be added to spec-
tral lines, based on a user-defined signal-to-noise ratio (SNR)
and emission maps can be convolved with Gaussian filters
based on some desired distance and telescope’s beam size.
Spectral lines can be plotted in antenna temperature, mJy
or in cgs units. Furthermore, frequencies can be binned to
match the spectral resolution of observations. The result-
ing output format of PyRaTE is equivalent to a position-
position-velocity (PPV) cube from observations which can
also be saved in FITS format for further analysis. Options
for creating integrated emission maps are also available.

3 TEST CASES

The numerical simulations used to demonstrate PyRaTE’s
capabilities were performed with the astrophysical code
FLASH4.0.1 (Fryxell et al. 2000, Dubey et al. 2008) and
were described in detail in Tritsis et al. (2016). Here we give
a brief overview of these calculations. In Tritsis et al. (2016)
we employed hydrodynamic simulations combined with a
non-equilibrium chemical modelling consisting of 214 gas-
phase and 82 dust grain species. We considered three intrin-
sic geometries; spherical, cylindrical/filamentary and disk-
like. The initial number density was 103 cm−3 and the tem-
perature was constant and equal to 10 K.

In Figure 8 we show a 12CO (J = 1 - 0) emission line
from a LOS threading the middle of our spherical core.
With the red line we plot our results assuming LTE and
the black line non-LTE calculations. Random, gaussian noise
was added to the line with a signal-to-noise ratio (SNR)
of ∼ 5. PyRaTE correctly reproduces the inverse P-Cygni
line profile characteristic of infall motions (Evans 1999). The
emission line is doubled peaked with the blue component be-
ing stronger due to absorption along the LOS. Furthermore,
the line profile changes depending on whether LTE is as-
sumed. Since in non-LTE we expect that the upper level
will be less populated than in LTE, the source function of
the line, and thus the intensity, will decrease. This feature is
also clearly seen in Figure 8, especially for the blue shifted

6 https://pypi.python.org/pypi/mpi4py
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Figure 9. An isothermal cylinder collapsing as seen in four velocity slices (upper row). The lower row shows the spectrum from a LOS

passing through the centre of the map (blue points in upper row) while the red line traces the velocity of each slice map.

component of the line. Furthermore, from Figure 8 it can
be seen that the line profile changes depending on whether
LTE is assumed. That is due to the velocity profile. The
velocity differences between the centre of the core and the
outer parts are larger than the thermal width of the line.
Consequently, the total optical depth decreases, the escape
probability increases and CO is only subthermally excited.
However, if we were to ”observe” the two lines, taking reso-
lution restrictions into account, both profiles could probably
be fitted by two Gaussian functions.

In Figure 9 we show four velocity slices from the collapse
of a simulated isothermal cylindrical core model as seen in
N2H+. The core is observed such that its axis of symmetry
is perpendicular to the LOS (edge-on). In the upper panel
we plot the emission map in each velocity slice and in the
lower panel a spectral line (black line) threading the centre
of the map (blue points in the upper panels). The red line
in the lower panel traces the velocity shown in the upper
panel.

4 SUMMARY

Radiative transfer is essential when comparing results from
astrochemical simulations with radio observations. To this
end, we have developed an easy-to-use non-LTE line radia-
tive transfer code. The code can be used to post-process
results from astrochemical simulations performed with all
major astrophysical codes and can handle all geometries and
projection angles. The population densities are computed
using the escape probability method with variations in den-
sity, molecular abundance, temperature and velocities taken
into account.

Compared to existing radiative transfer codes the popu-
lations densities in PyRaTE are not computed from average

quantities and velocity variations are taken into account. It’s
simple interfaces both for importing and exporting data and
the fact that it is written in Python make the code easy-
to-use, flexible and capable of producing publication quality
figures effortlessly.

In a future version we plan to include a full treatment of
the Stokes parameters in our code. Thus, simulations of the
polarization of spectral line emission will also became pos-
sible. The algorithms for ray-tracing and for computing the
population densities will continue to be developed both in
terms of performance and accuracy. We think that PyRaTE
can be proven an important tool in the effort of connecting
theory with observations.
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Chapter 7

Concluding remarks

The recent observations from Herschel space observatory have reshaped our knowledge about the
morphology of molecular clouds. Furthemore, observations of the magnetic field from Planck and
HAWC+ have provided and will continue to provide new insights about the role of the magnetic field
in their evolution. A successful theory of star formation should not only to be able to explain this vast
amount of new observational data but also provide new predictions.

Here, we have developed the theoretical framework behind the formation of elongated structures
seen in the low-density parts of molecular clouds. We have found that they are created due to compress-
ible fast magnetosonic waves. Our theory has not only been able to successfully explain the observed
properties of these structures but has also provided new predictions to be tested observationally. We
have tested one such prediction, namely that in the presence of boundaries these waves can be trapped,
thus resulting in normal modes. We have analysed existing observations of an isolated interstellar cloud
and we have indeed found normal modes, a result that has allowed us to reconstruct its 3D structure.
Another a prediction that can be tested with future interferometric observations with ALMA is the
excitation of sausage MHD waves which can be detected through velocity variations along the long
axis of these elongations. Finally, our theory can provides the means to study the spectrum of Alfvén
waves in the Galaxy.

Furthermore, we have developed a method to probe the 3-dimensional shape of prestellar cores on
an object-to-object basis. The 3D shape of cores encodes important information regarding the physical
processes that dominate the formation of stars while different theories predict different shapes. Thus,
we think that this method can be proven an important tool in the effort of distinguishing between
opposing star formation theories. In future work we plan to extend our dynamical models of collapsing
cores and post-process our numerical simulations with the line radiative transfer code we developed.
Then, comparison of observed and synthetic molecular column density maps and spectra can aid to
permanently settle the long-debated subject of the shape of prestellar cores.

Our results of the 3-dimensional structure of clouds in all physical scales are further strong indica-
tions that their evolution is magnetic dominated (Mouschovias & Ciolek 1999).

80



References

[1] Aikawa, Y., Ohashi, N., & Herbst, E. 2003, The Astrophysical Journal, 593, 906

[2] Alves, J., Lombardi, M., & Lada, C. J. 2007, Astronomy & Astrophysics, 462, L17
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