

Physisorption vs Chemisorption				
Chemisorption	Physisorption			
Electron exchange	Polarization			
Chemical bond formation	Van der Waals attractions			
Strong	Weak			
> 1eV (100 kJ mol ⁻¹)	< 0.3 eV (30kJ mol ⁻¹)			
Highly corrugated potential	Stable only at cryogenic			
Analogies with coordination	temperatures (N ₂ 77K, He 4K)			
chemistry	Less strongly directional			
Second phase can form	Multilayers can form			
for suitable T and P				
O/Fe, Al, Si	H ₂ / Fe, Au			
H/Pd	H ₂ O/Au			
NH3/Cu	NH _x /Cu			
	Lecture 6			

Fick's first law of diffusion						
$J = -D\frac{dC}{dx}$ For steady-state diffusion condition (no change in the system with time), the net flow of atoms is equal to the diffusivity <i>D</i> times the diffusion gradient dC/dx $J\left(\frac{atoms}{m^2s}\right) = -D\left(\frac{m^2}{s}\right)\frac{dC}{dx}\left(\frac{atoms}{m^3} \times \frac{1}{m}\right)$						
'-' sign: flux direction is				Diffusivity (m ² /s)		
from the higher to the lower	Soluto	Solvent (bost structure)	500°C	1000°C		
concentration; i.e. it is the	J. Carbon	(flost structure)	(930 F)	(1830 F)		
opposite to the	2. Carbon	BCC iron	$(5 \times 10^{-12})^{-12}$	(2×10^{-9})		
concentration gradient	3. Iron	FCC iron	(2×10^{-23})	2×10^{-16}		
concentration gradient	4. Iron	BCC iron	10-20	(3×10^{-14}) 2×10^{-16}		
	6. Manganese	FCC iron	(3×10^{-24})	$2 \sim 10$ 10^{-16}		
Diffusivity D depends on:	7. Zinc	Copper	4×10^{-18}	5×10^{-13}		
1. Diffusion mechanism	8. Copper	Aluminum	4×10^{-14} 10^{-18}	$\frac{10^{-10} \text{ M}^{\circ}}{2 \times 10^{-13}}$		
2 Tomporature of diffusion	10. Silver	Silver (crystal)	10-17	$\frac{2 \land 10}{10^{-12}}$ M		
	11. Silver	Silver (grain boundary)	10 ⁻¹¹			
Type of crystal structure (bcc :	12. Carbon	HCP titanium	3×10^{-16}	(2×10^{-11})		
4. Crystal imperfections						
5. Concentration of diffusing species						
	Le	cture 6		6		

